
A Content-Aware Block Placement Algorithm for
Reducing PRAM Storage Bit Writes

Brian Wongchaowart Marian K. Iskander Sangyeun Cho

26th IEEE Symposium on Massive Storage
Systems and Technologies

May 6–7, 2010



Motivation

• Consider a block storage device in which the cost of
overwriting a block depends on both the existing block
contents and the new block contents.

• There are too many free blocks available for overwriting to
compare the cost of overwriting each one individually.

• How can one do better than picking an arbitrary free block to
overwrite?



Block Placement Decision

0 1 2 3 4 5 6 7 8

New Block

co
st

=
0.

5

co
st

=
0.

9
cost

=
0.1

cost =
0.3



PRAM Storage

• Nonvolatile Phase-change Random Access Memory (PRAM)
may soon replace flash memory and DRAM in many
applications.

• Each memory cell contains a material that has two phases
with very different electrical properties.

• An “amorphous phase” exhibits high resistivity, while a
“crystalline phase” has much lower resistivity.

• Reading the bit value stored in a cell consists of sensing its
resistivity (a fast, low-power operation).



PRAM Updates

• In order to change the bit value stored in a PRAM cell, the
phase-change material must be brought into a different phase
by heating.

• Heating the phase-change material to its crystallization
temperature for a sufficiently long period of time causes it to
assume its crystalline state.

• Heating it to a yet higher temperature for a short period of
time makes the material amorphous.

• Both of these operations require high-power current pulses
(relative to the read operation).



Differential Writes

• Individual PRAM cells can be programmed independently of
other cells.

• When overwriting data stored in PRAM, only cells whose
current value differs from the new value to be written need to
be updated.

• Since programming a cell requires an order-of-magnitude more
energy than reading it, it is advantageous to read every cell
and only program those that need to be updated. This
technique is known as data-comparison write (DCW).

• Key point: writing a block of data to a free location with
similar contents (small Hamming distance) is less expensive.



Our Approach: Content-Based Block Signatures

• Our idea is to index all of the free blocks in the PRAM using
a content-based signature.

• When a new data block needs to be written, its signature is
computed as well.

• Blocks with matching signatures have similar contents, so a
free location can be chosen for a new data block by looking
up the signature of the new data in the free block index.



Free Block Signature Index

PRAM

Free Block Signature Index

0x8392 0x6356 0x543a 0x9cf6



Block Signature Computation

• Divide a block into n equal-size sets of bits and count the
number of 1-bits in each set.

Set 1 Set 2 . . . Set n

• The block signature is a vector containing the approximate
number of 1-bits in each set. Element i of this vector is an
m-bit integer that denotes the range of bit counts in which
the actual number of 1-bits in set i lies.

• Example: each set consists of 128 bits and m = 4, so the
possible values for the number of 1-bits in a set are divided
into 16 ranges. An approximate bit count of 0 stands for 0–7
bits, an approximate bit count of 1 stands for 8–15 bits, etc.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0.05

0.10

0.15

0.20

Figure: Distribution of signature values for uniformly distributed random
data when there are 2 sets per block and 6 bits are used in the signature
to represent the approximate number of 1-bits in each set.



Block Placement Algorithm

• Assume that the signature of every free block has been
indexed.

• When a request to write a new data block arrives at the
PRAM, the signature of the new block is computed.

• If the PRAM contains at least one free block with the same
signature value as the new block, pick the free block that is
most similar to the new block from among the first ` free
blocks with the same signature, where ` is a parameter called
the search distance limit.

• If there are no free blocks with the same signature value as
the block to be written, arbitrarily pick a signature value that
is present in the index and pick from among the first ` free
blocks with that signature.



Evaluation

• We use a fixed block size of 512 bytes and block signature
sizes of 16 and 32 bits.

• The number of sets per block varies from 1 to the number of
bits in the signature.

• We consider search distance limits of 1, 5, and 10. A search
distance limit of 1 means that the block placement decision is
made using the free block signature index alone without the
need to read and compare the contents of multiple free blocks
in the PRAM.

• We compare the number of bits written by our
signature-based block placement algorithm with the number
of bits written using differential writes without block
placement optimization (DCW alone) and the number of bits
written if the free block most similar to the block to be
written is always chosen (exhaustive search).



Random Trace

• The PRAM initially has 128 MB of free space containing
uniformly distributed random data.

• 64 MB of uniformly distributed random data is then written
to the PRAM. We simulate the block placement decisions and
calculate the fraction of the bits in the write requests that
actually needs to be written.

• We do not expect placement optimization to be effective for
random or compressed data where the data blocks are
uniformly distributed over the space of possible data blocks
because the PRAM is unlikely to contain a free block that is
similar to a new data block to be written.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.99 49.08 48.79
2 8 16 49.97 49.07 48.78
4 4 16 49.97 49.06 48.77
8 2 16 49.94 49.03 48.73

16 1 16 49.88 49.28 49.25

1 32 32 49.99 49.08 48.79
2 16 32 49.98 49.11 48.86
4 8 32 49.96 49.38 49.30
8 4 32 49.93 49.04 48.75

16 2 32 49.88 49.28 49.25
32 1 32 49.89 49.89 49.89

Table: Percentage of the random trace requiring a bit write. DCW alone:
50.00%. Exhaustive search: 46.47%.



Permutation Trace

• As in the random trace, the PRAM initially has 128 MB of
free space containing uniformly distributed random data.

• A random sample of half of the free blocks in the PRAM is
written back to the PRAM in random order.

• Ideally, no bits at all should be written, since all the blocks in
the write requests are already contained in the PRAM.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.94 48.84 48.34
2 8 16 49.90 48.71 48.07
4 4 16 49.96 49.04 48.73
8 2 16 49.88 48.80 48.27

16 1 16 37.68 3.81 0.05

1 32 32 49.94 48.84 48.34
2 16 32 46.96 36.86 28.43
4 8 32 34.17 10.57 2.91
8 4 32 49.48 47.19 46.48

16 2 32 37.68 3.81 0.05
32 1 32 0.00 0.00 0.00

Table: Percentage of the permutation trace requiring a bit write. DCW
alone: 50.00%. Exhaustive search: 0.00%.



JPEG Trace

• A 256 MB digital camera PRAM memory card initially
contains a FAT32 file system populated with 188 MB of JPEG
images. Free blocks are zeroed.

• The images on the card are deleted (but not overwritten), and
then 170 MB of different JPEG images are written to simulate
a user taking new photos.

• We use test shots from a digital SLR camera review.1

1http://www.imaging-resource.com/PRODS/D3X/D3XTHMB.HTM



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

10000

20000

30000

40000

50000

60000

70000

Figure: Distribution of signature values for the write request data blocks
of the JPEG trace.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.53 48.64 48.35
2 8 16 49.54 48.64 48.36
4 4 16 49.55 48.65 48.36
8 2 16 49.56 48.66 48.37

16 1 16 49.57 48.83 48.65

1 32 32 49.53 48.64 48.35
2 16 32 49.54 48.74 48.54
4 8 32 49.54 49.06 49.01
8 4 32 49.52 48.64 48.36

16 2 32 49.50 48.77 48.59
32 1 32 49.54 49.52 49.52

Table: Percentage of the JPEG trace requiring a bit write. DCW alone:
49.78%. Exhaustive search: 46.06%.



DNG Trace

• This trace is similar to the JPEG trace, except that
uncompressed Adobe Digital Negative (DNG) versions of the
same images are used to simulate the raw image formats
favored by professional photographers.

• The PRAM represents a 1 GB memory card that initially
contains a FAT32 file system populated with 946 MB of DNG
images.

• The old images are deleted and 757 MB of new DNG images
are written.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

10000

20000

30000

40000

50000

Figure: Distribution of signature values for the write request data blocks
of the DNG trace.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 30.34 29.39 28.99
2 8 16 30.26 29.31 28.92
4 4 16 30.29 29.54 29.31
8 2 16 30.57 30.00 29.78

16 1 16 32.55 31.86 31.36

1 32 32 30.34 29.39 28.99
2 16 32 30.25 29.00 28.66
4 8 32 30.29 29.64 29.57
8 4 32 30.31 29.43 29.10

16 2 32 30.44 29.68 29.33
32 1 32 32.52 31.61 31.29

Table: Percentage of the DNG trace requiring a bit write. DCW alone:
32.51%. Exhaustive search on a 1/8 sample of the trace: 25.02%.



Kernel Build Trace

• Five Linux 2.6.31 kernels are compiled from the source code
using different configuration settings.

• All blocks in the file system are initially free and zeroed.

• The files generated by each build are deleted after the build
completes, at which point the next build is started.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

10000

20000

30000

40000

50000

Figure: Distribution of signature values for the write request data blocks
of the kernel build trace.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 33.87 32.63 32.08
2 8 16 33.20 32.19 31.68
4 4 16 33.20 32.39 32.01
8 2 16 33.94 32.83 32.29

16 1 16 32.03 30.68 30.27

1 32 32 33.87 32.63 32.08
2 16 32 32.35 31.29 31.10
4 8 32 31.57 30.97 30.90
8 4 32 32.53 31.51 30.98

16 2 32 31.96 30.60 30.20
32 1 32 30.46 30.13 30.09

Table: Percentage of the kernel build trace requiring a bit write. DCW
alone: 38.21%. Exhaustive search: 23.82%.



Suspend-to-Disk Trace

• A Linux system was booted, the user checked his email, and
then the system was suspended to a dedicated disk partition
using the Linux 2.6.31 swsusp (software suspend)
implementation.

• The contents of the suspend partition at this point are used as
the initial state of the PRAM.

• The system was resumed, the user checked his email again,
and then the system was suspended a second time. The trace
of write requests consists of the data written to disk by this
second suspend operation.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

5000

10000

15000

20000

Figure: Distribution of signature values for the write request data blocks
of the suspend-to-disk trace.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 7.75 3.05 2.54
2 8 16 4.46 2.27 2.08
4 4 16 9.44 4.26 3.26
8 2 16 12.52 8.57 6.77

16 1 16 12.26 8.57 8.00

1 32 32 7.75 3.05 2.54
2 16 32 2.27 2.17 2.16
4 8 32 2.01 1.96 1.95
8 4 32 3.11 2.02 1.87

16 2 32 6.52 4.46 3.85
32 1 32 7.08 5.44 4.91

Table: Percentage of the suspend-to-disk trace requiring a bit write.
DCW alone: 16.09%. Exhaustive search: 0.32%.



NAS Parallel Benchmark Snapshot Traces

• High-performance computing applications often generate data
snapshots to avoid restarting in case of system failure.

• We use data snapshots from four NAS Parallel Benchmark
programs: BT (block tridiagonal solver), CG (conjugate
gradient), FT (FFT), and MG (multigrid).

• Each benchmark program writes four snapshots to the PRAM
storage device. The first and second snapshots are written,
the space occupied by the first snapshot is freed and the third
snapshot is written, and finally the space occupied by the
second snapshot is freed and the fourth snapshot is written.

• There are initially 3 GB of free space in the PRAM and we
experiment with five possibilities for the contents of this
space: all 0-bits, and as many copies of the snapshots
produced by the BT, CG, FT, and MG programs, respectively,
as are required to fill up the free space.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

100000

200000

300000

400000

500000

Figure: Distribution of signature values for the write request data blocks
of the BT trace.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

100000

200000

300000

400000

500000

600000

Figure: Distribution of signature values for the write request data blocks
of the CG trace.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

200000

400000

600000

800000

1000000

Figure: Distribution of signature values for the write request data blocks
of the FT trace.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

200000

400000

600000

800000

1000000

1200000

Figure: Distribution of signature values for the write request data blocks
of the MG trace.



Initial PRAM contents
Trace Zeros BT CG FT MG

BT 47.81 49.65 50.37 49.67 49.31
CG 51.16 49.13 43.46 49.47 49.57
FT 48.93 49.38 50.00 48.81 49.35
MG 36.29 48.38 49.81 48.84 43.93

Table: Percentage of the NAS snapshot traces requiring a bit write when
DCW is used with random block placement.



Initial PRAM contents
Trace Zeros BT CG FT MG

BT 42.24 0.00 43.89 43.27 42.48
CG 32.96 39.45 0.00 34.38 40.14
FT 42.84 41.34 43.56 16.06 42.67
MG 33.65 40.29 41.85 41.55 0.00

Table: Percentage of the NAS snapshot traces requiring a bit write when
signature-based block placement is used with 4 sets per block, 8 bits per
set, and a search distance limit of 1.



Initial PRAM contents
Trace Zeros BT CG FT MG

BT 38.27 14.70 39.91 38.83 39.15
CG 26.67 25.66 0.38 25.14 25.81
FT 42.27 42.05 43.46 17.90 42.78
MG 33.15 39.64 40.42 40.03 15.04

Table: Percentage of the NAS snapshot traces requiring a bit write when
DCW is used with a manual block placement strategy: overwrite the first
snapshot with the third snapshot and the second snapshot with the
fourth snapshot.



Directions for Future Work

• Quantitative analysis of energy savings and latency impact
using measured values for the set, reset, and read operations.

• Evaluation using traces that represent mixed workloads.

• Applications beyond mass storage, e.g., PRAM main memory
behind a DRAM cache.

• Operating system hints, e.g., write an updated block to its
current location (skip placement optimization).



Summary

• The number of bit programming operations needed to store a
new data block in a PRAM storage device depends on the
current contents of the location at which the block is written.

• We proposed a signature-based block placement algorithm for
reducing the number of bit writes, which saves energy.
Parallelization can save time, but only reducing the number of
bit writes saves energy.

• With the right parameter settings, our block placement
algorithm was able to reduce the number of bit writes needed
to as low as 12.5% of the number needed when DCW
(differential writes) alone is used. This figure was achieved
without reading and comparing multiple free blocks.



Questions/Comments


