
A Content-Aware Block Placement Algorithm for Reducing
PRAM Storage Bit Writes

Brian Wongchaowart Marian K. Iskander Sangyeun Cho
Department of Computer Science

University of Pittsburgh
{bpw5,marianky,cho}@cs.pitt.edu

Abstract

Phase-change random access memory (PRAM) is a
promising storage-class memory technology that has
the potential to replace flash memory and DRAM
in many applications. Because individual cells in a
PRAM can be written independently, only data cells
whose current values differ from the corresponding bits
in a write request need to be updated. Furthermore,
when a block write request is received, the PRAM
may contain many free blocks that are available for
overwriting, and these free blocks will generally have
different contents. For this reason, the number of bit
programming operations required to write new data
to the PRAM (and consequently power consumption
and write bandwidth) depends on the location that
is chosen to be overwritten. This paper describes a
block placement algorithm for reducing PRAM bit
writes based on the idea of indexing free blocks using
a content-based signature; computing the signature
value of a new block of data to be written allows a
free block with similar contents to be located quickly.
While the benefit that can be realized by the use of any
block placement algorithm is heavily dependent on the
workload, our evaluation results show that block place-
ment using content-based signatures is able to reduce
the number of PRAM bit programming operations by
as much as an order of magnitude.

1. Introduction
Phase-change random access memory (PRAM) is a
storage-class memory technology with many features
that make it a viable candidate for replacing flash mem-
ory and even DRAM: nonvolatility, byte-addressability,
low power operation, fast random read speed, and
improved write endurance [1], [2]. Like flash memory,
however, there is a significant asymmetry between
PRAM read and write performance. A PRAM cell
encodes a bit by being in one of two states with

very different electrical resistivities. Reading the cell
merely involves sensing its resistivity, which is a fast,
nondestructive, low-power operation, whereas updating
the bit value stored in a cell requires changing the
state of the cell’s phase-change material, which is an
expensive operation in both time and energy compared
to reading a cell.

Several researchers have observed that because indi-
vidual PRAM cells can be written independently, only
the memory cells whose current values differ from
the corresponding bits in a write request need to be
programmed [3], [4]. This technique, which we will
call data-comparison write (DCW) after [3], reduces
power consumption, improves write bandwidth, and
also contributes to a longer device lifetime by reducing
wear on the cells. While other architectural mecha-
nisms may improve write bandwidth and wear leveling,
essentially the only way to reduce the energy used
in writing data, given a certain PRAM technology, is
to write the same data using fewer bit programming
operations.

In this paper we investigate the possibility of re-
ducing the number of PRAM bit programming op-
erations by intelligently choosing where a block of
data is written. When a block write request arrives
at the PRAM, there may be many free blocks that
are available for overwriting with new data. Because
these free blocks will generally have different contents,
the number of bit programming operations required
to write the new data depends on the location that is
chosen to be overwritten, assuming that DCW is used.
This block placement decision provides an opportunity
to reduce the overall number of bit writes required to
store a given amount of data in the PRAM. To the best
of our knowledge, no previous work on PRAM block
placement has been published aside from wear leveling
techniques whose goals are very different from ours.

While it may be desirable to write a new data block
to the free location whose contents are already most



similar to it, the cost of searching for this optimal
location is unlikely to be acceptable if there are a large
number of free blocks to choose from. An algorithm
is thus needed that can quickly locate free blocks that
are similar to a given data block. This paper describes
such a block placement algorithm, based on the idea of
indexing free blocks using a content-based signature.
Computing the signature value of a new block of data
allows a free block with similar contents to be quickly
located.

In experiments involving a variety of disk access
traces, we simulate the number of bit writes required
to store a given amount of data using DCW without
block placement optimization. We then compare this
to the number of bit writes required when using our
placement algorithm and when using an ideal nonclair-
voyant placement algorithm that always finds the most
similar free block in the PRAM. While the benefit of
using our placement algorithm is heavily dependent on
the workload, our evaluation results show that block
placement optimization using content-based signatures
can reduce the number of bits that need to be written
by an order of magnitude in a realistic scenario.

The remainder of this paper is organized as follows.
Section 2 reviews key facts about PRAM storage
technology. Section 3 describes our signature-based
block placement algorithm. In Section 4, we describe
our evaluation methodology and report our results.
Section 5 discusses some practical considerations. Fi-
nally, Section 6 reviews related work and Section 7
summarizes the paper.

2. PRAM Background
Phase-change random access memory technology is
based on the use of a memory cell material that has
two phases with very different electrical properties.
An “amorphous phase” exhibits high resistivity. In
the “crystalline phase,” however, the resistivity drops
by as much as five orders of magnitude [2]. These
contrasting resistivity levels can be used to store a
bit of information in each PRAM cell. Heating the
phase-change material to its crystallization temperature
for a sufficiently long period of time causes it to
assume its crystalline state, while heating it to a yet
higher temperature for a short period of time makes the
material amorphous. Both of these operations require
high-power current pulses. Reading the state of a cell
is done with very low power by sensing its resistivity.

The properties of a PRAM device that are crucial
to our work are that the state of individual cells can
be changed independently and that testing the state
of a cell is a much less expensive operation (in time
and power) than setting it. Since only a fraction of

the bits in a memory block stored in the PRAM
will typically be changed by a write operation, it
is generally advantageous to first read the existing
contents of the entire block, compare it with the new
data to be written, and then update only the bits that
need to change. The cost of the read and comparison
operations is offset by avoiding the unnecessary bit
writes. Any memory technology where this “differ-
ential write” mechanism is effective can benefit from
block placement optimization, since the number of bits
that need to be written (and thus the cost of the write
operation) depends on the location that is chosen to be
overwritten.

3. Block Placement Algorithm
At a high level, our proposed block placement algo-
rithm is very simple. Every free block in the PRAM
is indexed by a signature value computed from its
contents. When a new data block needs to be written,
its signature is computed in the same manner. Blocks
with matching signatures are assumed to have similar
contents, so a free location can be chosen for a new
data block by looking up the signature of the new
data in the free block index. The following subsections
describe the process of computing a block signature
and choosing a free location in greater detail.

3.1. Block Signature Computation

The goal of our block signature computation algorithm
is to succinctly describe a block’s contents using a
short, fixed-length bit string. Perhaps the simplest way
to describe the contents of a block of data is to treat it
as an unordered collection of bits and count the number
of 1-bits in this collection. If all information about the
positions of bits is discarded in this way, however, then
a block consisting of n 1-bits followed by n 0-bits
would not be distinguishable from a block consisting
of n 0-bits followed by n 1-bits. Changing one of these
two blocks into the other requires updating all of the
bit values, so these two blocks should not share the
same signature.

Our solution to this problem is to partition a block
into multiple unordered collections of bits (“sets”) and
count the number of 1-bits in each set. Using two sets,
this approach is able to distinguish a block of 0-bits
followed by 1-bits from a block of 1-bits followed
by 0-bits. Increasing the number of sets produces a
higher-resolution picture of the block contents, at the
cost of an increase in the signature size or a decrease
in the number of bits that can be allotted to storing
the (approximate) number of 1-bits in each set. In
our evaluation, we will explore the trade-off between
having many sets per block versus many bits per set.



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0.05

0.10

0.15

0.20

Figure 1. Distribution of signature values for uni-
formly distributed random data.

There is an additional reason why dividing a block
into many sets is desirable. If the number of 1-bits
and 0-bits in a set is equal, then in the worst case
overwriting such a set with a different set that has the
same count of 1-bits and 0-bits will cause all of the
bits in the first set to change, since all of the 1-bits can
change to 0-bits and vice versa. If a set that consists of
90% 1-bits is overwritten with another set consisting
of 90% 1-bits, however, then at most 20% of the bits
in the first set change (10% of the bits change from
1 to 0, while 10% of the bits change from 0 to 1).
A similar result holds for two sets consisting of 90%
0-bits. When blocks whose corresponding sets have a
similar number of 1-bits overwrite each other, there
is thus a better guarantee on the number of bits that
change if these sets are heavily biased towards either
0-bits or 1-bits. This is intuitively more likely when
sets are small.

Our approach to block signature computation there-
fore consists of partitioning a block into n equal-size
sets of bits and using the number of 1-bits in each set
as one component of a vector of length n that serves
as a signature for the block as a whole. In order to
limit the size of a block signature, we fix the number
of bits allotted to representing the number of 1-bits
in each set. To be precise, suppose that a set contains
s = 2k bits and that the count of 1-bits in the set is b,
where 0 ≤ b ≤ s. If m bits are reserved for each set in
the block signature and m ≤ k, then the interval [0, s]
is divided into 2m regions, each of size s/2m except
for the last region, which is wider than the others by
1: [0, s/2m− 1], [s/2m, 2s/2m− 1], . . . , [s− s/2m, s].
The index of the region in which b lies (counting from
0) is an m-bit integer that represents the approximate
value of b—we call this m-bit integer the signature
value of the set. If m > k, then the signature value of
the set is simply b, the count of 1-bits in the set. The
concatenation of the n set signature values forms an
mn-bit signature value for a block.

For example, Figure 1 shows the distribution of
signature values for 512-byte blocks of uniformly

distributed random data when there are 2 sets per
block and 6 bits are used in the signature to represent
the approximate number of 1-bits in each set. The x-
and y-axes correspond to the 6-bit signature values
for the two sets, while the z-axis gives the probabil-
ity that a block has a particular combination of set
signature values. The distribution peaks in the center
of the plot since each set can be expected to contain
approximately as many 1-bits as 0-bits. We will use
similar plots in Section 4 to give some indication of
the contents of the data blocks in our experiments, with
the change that the z-axis will give the actual frequency
of a particular block signature value.

3.2. Block Placement Decision

We assume that there is a mechanism by which the
operating system notifies the PRAM controller that
certain blocks can be regarded as free. Signature values
for these blocks are computed as described above and
the address of each block is stored in an index structure
that maps a given signature value to a list of free blocks
whose contents have that signature value. Newly freed
blocks have their addresses appended to the end of
these lists. When a request to write a new data block
arrives at the PRAM, the signature of the new block
is computed. There are now two cases to consider: the
PRAM either contains at least one free block with the
same signature value as the new block, or there are no
free blocks with a matching signature in the PRAM:

• If the PRAM contains a free block with a match-
ing signature value, then a lookup operation on
the free block index using the new block’s sig-
nature returns a list of free blocks with the same
signature. This list of block addresses is searched
for a free block that is most similar to the new
data block to be written. (Free block a is defined
to be more similar to the new block than free
block b if writing the new block on top of a would
require fewer bit writes than writing the new block
on top of b.) Since there may be a large number
of free blocks with the same signature value, our
algorithm is parameterized by a search distance
limit that determines the maximum number of
free blocks that are considered per placement
decision. The search for the best match among
the free blocks that have the same signature as
the new data starts at the head of the list of free
block addresses. When the search distance limit
is reached, or there are no more free blocks in
the list, the free block that was found to be most
similar to the block to be written is chosen for
overwriting and its address is removed from the
list.



• If there are no free blocks in the index with the
same signature value as the block to be written,
then a free block list for another signature value
is retrieved and a free block is selected from it.
Although it is possible to search the free block
index for signature values that are close to the
signature of the block to be written according
to some distance metric, our simulated imple-
mentation picks an arbitrary free block list from
the index and chooses a free block from it as
described in the preceding case. This avoids the
cost of looking up many signature values in the
index.

4. Evaluation
In this section we evaluate the effectiveness of our
block placement algorithm using different parameter
settings on disk traces chosen to provide a variety of
distributions of write data blocks: two simple synthetic
traces using uniformly distributed random data, two
traces in which the write request data consists of digital
camera images (compressed and uncompressed), a
trace of source code compilation, a suspend-to-disk
trace, and finally a trace of data snapshots from bench-
mark programs that represent typical high-performance
computing applications.

4.1. Experimental Methodology

Each of our traces specifies the initial contents of the
free blocks in the PRAM and a stream of block write
requests from the operating system. We simulate the
placement decision made by our algorithm for each
data block that is written and report the number of bit
writes that would be caused by the write requests in
each trace if DCW is used without block placement
optimization, if our block placement algorithm is used
in combination with DCW, and if a greedy exhaustive
search is always carried out to find the free block in
the PRAM that would require the smallest number of
bit writes using DCW. No wear leveling is performed,
so there is a fixed mapping between logical block
addresses and physical PRAM cells when no block
placement optimization is used.

In our experiments we use a fixed block size of 512
bytes and block signature sizes of 16 and 32 bits.
For each of the two signature sizes, we varied the
number of sets per block from 1 to the number of bits
in the signature. The number of bits used to encode
the number of 1-bits in each set is determined by the
signature size and the number of sets per block. For
each combination of sets per block and bits per set
in a block signature, we compare the effectiveness of
search distance limits of 1, 5, and 10 within a list

Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.99 49.08 48.79
2 8 16 49.97 49.07 48.78
4 4 16 49.97 49.06 48.77
8 2 16 49.94 49.03 48.73

16 1 16 49.88 49.28 49.25
1 32 32 49.99 49.08 48.79
2 16 32 49.98 49.11 48.86
4 8 32 49.96 49.38 49.30
8 4 32 49.93 49.04 48.75

16 2 32 49.88 49.28 49.25
32 1 32 49.89 49.89 49.89

Table 1. Percentage of the random trace requiring
a bit write.

of free block addresses. A search distance limit of
1 is particularly attractive because it means that the
block placement decision is made using the free block
signature index alone without the need to read and
compare the contents of multiple free blocks in the
PRAM.

4.2. Simple Synthetic Traces

We begin with two simple synthetic traces using uni-
formly distributed random data.

4.2.1. random Trace

In this trace the PRAM initially has 128 MB of free
space containing uniformly distributed random data.
The stream of write requests consists of sequentially
writing 64 MB of uniformly distributed random data
to the PRAM. Table 1 shows our experimental results.
The number of bit writes for each combination of al-
gorithm parameter settings is reported as a percentage
of the total size in bits of the write requests in the
trace.

All of the results in Table 1 are close to 50%,
which is the expected number of bit updates required
to change a data block generated uniformly at random
into another data block generated uniformly at random.
Using DCW without placement optimization in fact
caused 50.00% of the bits in the trace to be written,
while using greedy exhaustive search only improved
this to 46.47% of the bits in the trace being written. In-
creasing our algorithm’s search distance limit slightly
reduces the number of bit writes. In general, we do
not expect placement optimization to be effective for
random or compressed data where the data blocks are
uniformly distributed over the space of possible data
blocks because the PRAM is unlikely to contain a free
block that is very similar to a new block of data to be
written.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.94 48.84 48.34
2 8 16 49.90 48.71 48.07
4 4 16 49.96 49.04 48.73
8 2 16 49.88 48.80 48.27

16 1 16 37.68 3.81 0.05
1 32 32 49.94 48.84 48.34
2 16 32 46.96 36.86 28.43
4 8 32 34.17 10.57 2.91
8 4 32 49.48 47.19 46.48

16 2 32 37.68 3.81 0.05
32 1 32 0.00 0.00 0.00

Table 2. Percentage of the permutation trace
requiring a bit write.

4.2.2. permutation Trace

The initial state of the PRAM in this experiment is the
same as for the random trace (128 MB of free space
containing uniformly distributed random data). The
trace of write requests was generated by choosing a
random sample of half of the free blocks in the PRAM,
and then sequentially writing these blocks back to the
PRAM in random order.

Table 2 reports our results for this trace. Using
exhaustive search, no bits are written, since all the
blocks in the write requests are already contained in the
PRAM. Our placement algorithm can match this result
when there are 32 sets per block, 1 bit per set, and a
search distance limit of at least 2 is used (the figure of
0.00% shown in Table 2 for a search distance limit of
1 represents a very small, but nonzero, number of bit
writes). DCW without placement optimization caused
50.00% of the bits in the trace to be written, since it
consistently writes one block of random data drawn
from a uniform distribution on top of another block of
random data drawn from a uniform distribution.

4.3. Digital Camera Image Traces

The next two traces simulate writing digital camera im-
ages to a PRAM memory card that contains no useful
data, but previously contained another set of images
that have now been deleted (but not overwritten). The
images used in these traces are test shots taken from
a review of the Nikon D3X digital SLR camera.1

4.3.1. jpeg Trace

The initial state of the PRAM in this trace represents
a 256 MB digital camera memory card that contains a
FAT32 file system populated with 188 MB of JPEG im-
ages (free blocks are zeroed). In this trace we assume

1. http://www.imaging-resource.com/PRODS/D3X/D3XTHMB.HTM

Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 49.53 48.64 48.35
2 8 16 49.54 48.64 48.36
4 4 16 49.55 48.65 48.36
8 2 16 49.56 48.66 48.37

16 1 16 49.57 48.83 48.65
1 32 32 49.53 48.64 48.35
2 16 32 49.54 48.74 48.54
4 8 32 49.54 49.06 49.01
8 4 32 49.52 48.64 48.36

16 2 32 49.50 48.77 48.59
32 1 32 49.54 49.52 49.52

Table 3. Percentage of the jpeg trace requiring a
bit write.

0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

10000

20000

30000

40000

50000

60000

70000

Figure 2. Distribution of signature values for the
write request data blocks of the jpeg trace.

that these images have been copied to more permanent
storage and simulate the number of bit writes required
to overwrite them with a new set of images. In par-
ticular, the trace captures the block writes caused by
reformatting the PRAM with a FAT32 file system and
writing a different 170 MB set of JPEG images into
the file system to simulate a user taking new photos.
Because the file system will be reformatted, all of
the blocks in the PRAM are considered free at the
beginning of the trace.

Greedy exhaustive search resulted in 46.06% of the
bits in this trace being written, which is only slightly
lower than our results for uniformly distributed ran-
dom data. DCW with no placement optimization also
behaves similarly to the case of uniformly distributed
random data: 49.78% of the bits in the trace were writ-
ten. Table 3 gives the performance of our placement
algorithm for this trace. Once again, compressed data is
little different from random data from the point of view
of block placement optimization. This is confirmed
by Figure 2, which shows the distribution of block
signature values for this trace when there are 2 sets
per block and 6 bits are used in the signature per set.
It is similar to Figure 1, which shows the distribution
of block signature values for uniformly distributed
random data.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 30.34 29.39 28.99
2 8 16 30.26 29.31 28.92
4 4 16 30.29 29.54 29.31
8 2 16 30.57 30.00 29.78

16 1 16 32.55 31.86 31.36
1 32 32 30.34 29.39 28.99
2 16 32 30.25 29.00 28.66
4 8 32 30.29 29.64 29.57
8 4 32 30.31 29.43 29.10

16 2 32 30.44 29.68 29.33
32 1 32 32.52 31.61 31.29

Table 4. Percentage of the dng trace requiring a
bit write.

4.3.2. dng Trace

The dng trace is similar to the JPEG trace, except that
uncompressed Adobe Digital Negative (DNG) versions
of the same images are used to simulate the raw image
formats favored by professional photographers. The
initial state of the PRAM represents a 1 GB memory
card that contains a FAT32 file system populated with
946 MB of DNG images. The trace captures the block
writes caused by reformatting the file system and
writing 757 MB of new DNG images to simulate a user
taking new photos. All of the blocks in the PRAM are
considered free at the beginning of the trace. Figure 3
shows the distribution of block signature values for this
trace when there are 2 sets per block. The fact that the
distribution peaks along the diagonal indicates that the
bias towards zeros or ones tends to be similar for the
first and second halves of each data block. Most of
the blocks are moderately biased towards having more
zeros than ones.

Table 4 gives our experimental results for this trace.
Using DCW alone resulted in 32.51% of the bits in the
trace being written, so our block placement algorithm
yields only a small additional gain over DCW, even
with the considerable overhead of reading up to 10 free
blocks for comparison. This poor performance would
not be a sign of any flaw specific to our placement
algorithm, however, if even the “ideal” approach of
searching through all of the available free blocks
before making a placement decision does not perform
much better. Because it was not feasible to simulate
placement by exhaustive search for a trace of this size,
we randomly sampled 1/8 of the blocks from the initial
PRAM contents and writes trace to obtain a “scaled
down” version of the dng trace that involves writing
95 MB of data to a 128 MB PRAM. Greedy exhaustive
search on this trace shows 25.02% of the trace being
written, suggesting that DCW alone already exploits

0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

10000

20000

30000

40000

50000

Figure 3. Distribution of signature values for the
write request data blocks of the dng trace.

0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

10000

20000

30000

40000

50000

Figure 4. Distribution of signature values for the
write request data blocks of the kernelbuild trace.

most of the available bit write savings, leaving our
placement algorithm with little room for improvement.

4.4. Kernel Build Trace

The scenario captured by this trace is that a developer
or system administrator compiles five different Linux
2.6.31 kernels from the source code, using different
configuration settings. Each of the five kernels is built
in the same 256 MB ext4 file system, which is initially
empty and contains only free blocks filled with 0-
bits. Each build generates an average of 58 MB of
block write requests, but the files generated by each
build are deleted after the build completes, at which
point the next build is started. When the generated files
are deleted after each build, the data blocks that they
occupied are marked as free for the block placement
algorithm. Figure 4 shows the distribution of block
signature values for this trace when there are 2 sets
per block. This plot resembles that of the distributions
for random data and JPEG images, showing that the
number of ones and zeros is roughly balanced for most
data blocks.

Using DCW without placement optimization re-
sulted in 38.21% of the bits in the trace being written,
whereas only 23.82% of the trace was written using
exhaustive search, indicating that placement optimiza-
tion is potentially helpful for this trace. This can be
expected because similar files are generated by each
build, and the data blocks for one build’s files are
available for overwriting during the following build.



Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 33.87 32.63 32.08
2 8 16 33.20 32.19 31.68
4 4 16 33.20 32.39 32.01
8 2 16 33.94 32.83 32.29

16 1 16 32.03 30.68 30.27
1 32 32 33.87 32.63 32.08
2 16 32 32.35 31.29 31.10
4 8 32 31.57 30.97 30.90
8 4 32 32.53 31.51 30.98

16 2 32 31.96 30.60 30.20
32 1 32 30.46 30.13 30.09

Table 5. Percentage of the kernelbuild trace
requiring a bit write.

Table 5 shows the results for our block placement al-
gorithm. The best results lie roughly midway between
the lower bound provided by exhaustive search and the
upper bound of DCW without placement optimization;
using a search distance limit greater than 1 has little
benefit.

4.5. Suspend-to-Disk (swsusp) Trace

In this experiment we exhibit a scenario in which our
block placement algorithm is very effective compared
to using DCW alone. The experiment simulates a small
128 MB PRAM used solely for storing suspend-to-
disk images (this would be a reasonable size for a
Linux thin client). A Linux system was booted, the user
checked her email, and then the system was suspended
to disk using the mainline 2.6.31 kernel’s swsusp
(software suspend) implementation. The contents of
the suspend partition at this point are used as the initial
state of the PRAM. The system was then resumed,
the user checked her email again, and the system
was suspended a second time. The trace of write
requests consists of the data written sequentially to disk
by this second suspend operation. Since the existing
contents of the partition (from the first suspend) are
meaningless, all of the blocks in the PRAM are marked
as free at the beginning of the trace. Figure 5 shows
the distribution of block signature values for this trace
when there are 2 sets per block; in this trace most data
blocks contain more 0-bits than 1-bits.

Table 6 reports our experimental results. DCW with-
out placement optimization caused 16.09% of the bits
in the trace to be written. Using 4 sets per block,
8 bits per set, and a search distance limit of 1, our
placement algorithm was able to reduce the number
of bit writes required to 2.01% of the trace, or less
than 12.5% of the number required when using DCW
alone. Of course, we recognize that this trace is excep-

Search distance limit
Sets/block Bits/set Total bits 1 5 10

1 16 16 7.75 3.05 2.54
2 8 16 4.46 2.27 2.08
4 4 16 9.44 4.26 3.26
8 2 16 12.52 8.57 6.77

16 1 16 12.26 8.57 8.00
1 32 32 7.75 3.05 2.54
2 16 32 2.27 2.17 2.16
4 8 32 2.01 1.96 1.95
8 4 32 3.11 2.02 1.87

16 2 32 6.52 4.46 3.85
32 1 32 7.08 5.44 4.91

Table 6. Percentage of the swsusp trace requiring
a bit write.

0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

5000

10000

15000

20000

Figure 5. Distribution of signature values for the
write request data blocks of the swsusp trace.

tionally well suited for block placement optimization.
Placement by a greedy exhaustive search through all of
the available free blocks resulted in just 0.32% of the
bits in the trace being written, whereas picking a free
block uniformly at random for each placement decision
resulted in 26.20% of the bits in the trace being written.
Nevertheless, we conclude from this experiment that
block placement optimization can be a very effective
technique in a realistic scenario compared to using
DCW alone.

4.6. NAS Parallel Benchmark Snapshot Traces

This experiment studies data snapshot traces from
high-performance computing applications. It is com-
mon to generate data snapshots as such applications
run so that precious computing cycles can be salvaged
in the event of a system failure. We employ data snap-
shots from four NAS Parallel Benchmark programs [5]:
BT (block tridiagonal solver), CG (conjugate gradi-
ent), FT (FFT), and MG (multigrid). Snapshots of main
data structures are captured and stored after the 2nd,
6th, 10th, and 14th iterations. The snapshot sizes range
from 317 MB (CG) to 1.25 GB (FT).

We assume that only the most recently generated
snapshot needs to be kept to enable recovery. Each
benchmark program therefore produces a trace in



0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

100000

200000

300000

400000

500000

(a) BT

0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

100000

200000

300000

400000

500000

600000

(b) CG

0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

200000

400000

600000

800000

1000000

(c) FT

0
10

20
30

40
50

60

Set 2

0
10

20
30

40
50

60

Set 1

0

200000

400000

600000

800000

1000000

1200000

(d) MG

Figure 6. Distribution of signature values for the write request data blocks of the NAS snapshot traces.

which the first and second snapshots are written to the
PRAM storage device, the space occupied by the first
snapshot is freed before the third snapshot is written,
and the space occupied by the second snapshot is freed
before the fourth snapshot is written. Figure 6 shows
the distribution of block signature values for these four
traces when there are 2 sets per block.

We compare three block placement algorithms in
this experiment: our signature-based block placement
algorithm, an algorithm that chooses uniformly at
random from the available free blocks, and a manual
block placement strategy. The signature-based place-
ment algorithm was configured to use 4 sets per block,
8 bits per set, and a search distance limit of 1, since this
combination of parameter settings performed well on
the kernelbuild and swsusp traces. Our manual block
placement strategy was to write the first and second
snapshots of each trace sequentially to the PRAM,
and then exactly overwrite the first snapshot with the
third snapshot and the second snapshot with the fourth
snapshot (this is possible because all of the snapshots
generated by a single program have the same size).

In this experiment we assume that there are initially
3 GB of free space in the PRAM and consider five
possibilities for the contents of this space: all 0-bits,
and as many copies of the four snapshots produced
by the BT, CG, FT, and MG programs, respectively,
as are required to fill up the 3 GB of free PRAM
space. The intuition behind these choices is that we
would like to learn the number of bit writes caused by
writing one benchmark program’s data snapshots onto

a PRAM where another program has just written its
snapshots.

Table 7 reports the percentage of the four snapshot
traces requiring a bit write when DCW is used with
random block placement for each of the five choices
for the initial PRAM contents. Tables 8 and 9 report
the corresponding results for our signature-based block
placement algorithm and manual block placement.
The signature-based block placement algorithm clearly
outperforms random block placement, but in most
cases the manual block placement strategy did still
better. The reason for this is that writing the third
and fourth data snapshots of each trace on top of
the corresponding freed blocks of the first and second
snapshots turned out to be an excellent optimization
that the signature-based placement algorithm fails to
make. It can thus be concluded that a programmer with
knowledge of the semantics of the data written by an
application can potentially make better data placement
decisions than our automatic algorithm, a fact that we
do not find very surprising.

5. Discussion
The experiments described in the preceding section
show that while the signature-based block placement
technique presented in this paper can be very beneficial
for some applications, its effectiveness in any particular
setting needs to be evaluated on a case-by-case basis.
Although further research is required to more exactly
quantify the cost-benefit trade-off of using our block
placement strategy, the work described in this paper



Initial PRAM contents
Trace Zeros BT CG FT MG
BT 47.81 49.65 50.37 49.67 49.31
CG 51.16 49.13 43.46 49.47 49.57
FT 48.93 49.38 50.00 48.81 49.35
MG 36.29 48.38 49.81 48.84 43.93

Table 7. Percentage of the NAS snapshot traces
requiring a bit write when DCW is used with

random block placement.

Initial PRAM contents
Trace Zeros BT CG FT MG
BT 42.24 0.00 43.89 43.27 42.48
CG 32.96 39.45 0.00 34.38 40.14
FT 42.84 41.34 43.56 16.06 42.67
MG 33.65 40.29 41.85 41.55 0.00

Table 8. Percentage of the NAS snapshot traces
requiring a bit write when signature-based block

placement is used with 4 sets per block, 8 bits per
set, and a search distance limit of 1.

Initial PRAM contents
Trace Zeros BT CG FT MG
BT 38.27 14.70 39.91 38.83 39.15
CG 26.67 25.66 0.38 25.14 25.81
FT 42.27 42.05 43.46 17.90 42.78
MG 33.15 39.64 40.42 40.03 15.04

Table 9. Percentage of the NAS snapshot traces
requiring a bit write when DCW is used with a

manual block placement strategy.

opens up a promising line of research. In particular, the
fact that the energy required to write a block of data
to a PRAM storage device depends on the location to
which this data is written presents a novel opportunity
for reducing PRAM energy consumption.

In the remainder of this section, we discuss some
practical considerations relevant to our block place-
ment algorithm: the utility of block placement opti-
mization beyond conventional mass storage applica-
tions, the cost in time and space of maintaining and
using the free block signature index, and the hardware
and operating system support that our algorithm can
benefit from.

5.1. Applications Beyond Mass Storage

In this paper we have focused on applications in
which the PRAM replaces a block storage device
such as magnetic disk or flash memory, rather than
DRAM. There are two primary reasons for this. First,
block placement optimization only makes sense when

a placement decision can be made for a relatively
large block of data at a time, since any benefit gained
from making a placement decision at the granularity of
individual memory words is almost certainly not worth
the time and storage overhead of making the placement
decision. Second, the additional latency introduced by
our placement algorithm is more likely to be tolerable
when writes are asynchronous (that is, the system does
not block waiting for the write to complete).

We believe that our techniques are also applicable,
however, when PRAM is used as a large main memory
behind a fast DRAM cache. In this case only blocks
that are evicted from the DRAM cache are written to
the PRAM, and a large write queue can be provided to
prevent stalls caused by PRAM write delays. We also
note that if low write latency is required at certain
times, then the placement optimization step can be
skipped without any impact on the correctness of the
PRAM’s operation. Placement optimization trades a
reduction in the number of bit writes for increased
latency, and the decision about whether this trade-off is
desirable can be made dynamically at run time. In fact,
the search distance limit parameter of our algorithm
allows the trade-off between placement latency and the
number of bit writes to be fine-tuned.

5.2. Time and Space Complexity

We require an index data structure that supports ef-
ficient retrieval of a list of free blocks that have a
specified block signature value, deletion of free blocks
that are chosen for overwriting, and addition of newly
freed blocks. A standard data structure for this purpose
is a balanced search tree that maps block signature
values to a linked list of block addresses. A balanced
search tree such as a red-black tree guarantees a worst-
case time complexity of O(lg n) for the operations of
search, insertion, and deletion, where n is the number
of nodes in the tree. In our case the number of nodes
is equal to the number of distinct signature values for
the free blocks in the PRAM (assuming that when
the last free block with a particular signature value is
used up, the node corresponding to that signature value
is deleted from the tree). In practice, the number of
distinct signature values may be considerably smaller
than the number of free blocks in the PRAM, as
the plots of block signature distributions in Section 4
suggest.

Once the node corresponding to a signature value
is found during the processing of a write request, the
time complexity of searching for the best match within
the linked list of free blocks with that signature value
depends on the search distance limit parameter of our
algorithm. A search distance limit of 1 means that the



block address at the head of the list is always chosen
and removed in constant time. A search distance limit
of d > 1 corresponds to at most d block read and
comparison operations, followed by the removal of
one of the first d addresses from the linked list. If the
only entry in the linked list is removed, then the entire
node is deleted from the search tree in O(lg n) time.
Inserting the address of a newly freed block into the
index consists of either a tree search or a tree insertion
operation, followed by appending a new element to a
linked list of free block addresses; this also requires
O(lg n) time.

The amount of memory needed to store a balanced
tree of linked lists of free block addresses is linear in
the sum of the number of tree nodes and the number of
linked list entries. Both of these values are bounded by
the number of free blocks in the PRAM, so the total
storage requirement of our algorithm is linear in the
number of free blocks. The free block signature index
will perform optimally if it is kept in DRAM, but if this
is not feasible, then it can be stored in PRAM using
a standard database index structure such as a B-tree,
parts of which can be cached in DRAM.

5.3. System Support

Finally, our proposed scheme will benefit from ad-
ditional support from the operating system or the
hardware. In our experiments the smallest write request
received from the operating system overwrites an entire
512-byte block. Two optimizations are possible if the
operating system knows that only a small fraction of
a block has been modified. First, the operating system
can give a hint to the PRAM controller that the best
location for the block is probably its current physical
location so that the placement optimization step can be
skipped. Second, if the operating system knows exactly
which words in the block have been modified, then it
is wasteful for the operating system to send the entire
block to the PRAM and have it compare the old data
block with the new data to see which bits need to be
updated. The operating system can instead send only
the words that have changed and their addresses to
the PRAM. This idea is similar to the “partial write”
scheme of [6].

If there is an “auxiliary” or “spare” area associated
with each PRAM block (as in the case of NAND
flash memory [7]), the signature of the block’s contents
can be recorded there by the PRAM controller when
it updates the block (this signature must already be
computed in order to decide where a new block of
data should be written). Whenever a block becomes
free, its signature can be retrieved from the auxiliary
area. Such hardware support would eliminate the need

to recompute the signature of a newly freed block in
order to insert it into the free block index.

6. Related Work
Techniques for reducing the number of PRAM bit
writes can be employed at several levels. First, opti-
mizations at the application and operating system lev-
els can reduce the amount of memory and disk storage
needed to perform a certain task. Most obviously, data
that is not immediately needed can be compressed both
in memory and on disk. Memory pages or disk blocks
with identical contents can also be shared via a copy-
on-write mechanism [8].

At the level of hardware architecture, several opti-
mizations are possible when a DRAM buffer or cache
is placed between the processor and a PRAM-based
main memory. The mechanism of “partial writes” [6]
tracks which memory words in a cache block or which
blocks in a memory page are modified by a processor
write instruction. When the dirty block or page is
evicted from the DRAM buffer, only the modified part
needs to be written back to the PRAM. On a page
fault, the “lazy write” scheme [9] places the page in
the DRAM cache without writing it to the PRAM. The
page is only written to the PRAM main memory when
it is evicted from the DRAM cache.

Within the PRAM module itself, data-comparison
write (DCW) [3] and Flip-N-Write [10] reduce the
number of bit write operations needed to write a
memory word. They both rely on the idea of replacing
a write operation with a read, modify, and write
sequence. DCW compares the new data word to be
written with the old data word and only updates the
bits that differ. If the number of bits in a memory
word is N , however, DCW still updates all N bits
in the worst case. Flip-N-Write improves significantly
on this by limiting the maximum number of bit writes
to N/2 in all cases. An auxiliary flip bit is added to
each word that inverts the logical meaning of the bits
stored in the PRAM when it is set. If writing the new
data word in noninverted form would require more than
N/2 bit updates (including setting the flip bit to 0 if
it is currently 1), then the flip bit is set to 1 if it is
currently 0 and the memory word is updated to match
the bitwise complement of the new data word to be
written. Both DCW and Flip-N-Write are compatible
with our block placement algorithm; we chose to use
DCW in this paper for a more intuitive presentation.

The idea of writing a data block at a physical
location different from the logical address supplied in
a write request is at the heart of PRAM wear-leveling
schemes (see [11] and [4] for recent proposals). Al-
though this can be viewed as a form of block placement



optimization, the goal of wear leveling is to minimize
the number of times that the most frequently written
bit in the PRAM is overwritten with a new value,
whereas our goal is to minimize the total number of bit
writes (for lower energy usage). If both wear leveling
and content-based block placement optimization are to
be used simultaneously, then the address translation
performed by the block placement algorithm should
be done first, and the resulting address given as input
to the wear leveling algorithm. This prevents the block
placement decision from defeating the purpose of the
wear leveling scheme.

7. Conclusions
In this paper we have proposed a new approach to
reducing the number of bit programming operations
required to write a sequence of data blocks to a PRAM
storage device. When a differential write scheme such
as DCW is employed, the number of bit writes needed
to store a new data block in the PRAM depends
on the current contents of the location at which the
block is written. This paper describes an efficient
block placement algorithm for choosing a free block
whose contents are already similar to a new data
block. We compared the number of bits written by our
algorithm to the number that would be written using
DCW without placement optimization on a variety
of disk traces. With the right parameter settings, our
block placement algorithm was able to reduce the
number of bit writes needed to as low as 12.5% of the
number needed when DCW alone is used. This figure
was achieved without reading and comparing multiple
free blocks, demonstrating that block placement using
content-based signatures is a promising approach to
reducing PRAM energy consumption.

Acknowledgments

This research was supported in part by the Na-
tional Science Foundation under grant numbers CCF-
0702236 and CCF-0952273.

References
[1] R. F. Freitas and W. W. Wilcke, “Storage-class memory:

The next storage system technology,” IBM Journal of
Research and Development, vol. 52, no. 4/5, pp. 439–
447, 2008.

[2] S. Raoux et al., “Phase-change random access memory:
A scalable technology,” IBM Journal of Research and
Development, vol. 52, no. 4/5, pp. 465–479, 2008.

[3] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and
B.-G. Yu, “A low power phase-change random access
memory using a data-comparison write scheme,” in
Proceedings of the 2007 IEEE International Symposium
on Circuits and Systems (ISCAS 2007), 2007, pp. 3014–
3017.

[4] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable
and energy efficient main memory using phase change
memory technology,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture
(ISCA’09), 2009, pp. 14–23.

[5] D. Bailey et al., “The NAS parallel benchmarks,”
NASA RNR Technical Report RNR-94-007, Mar. 1994.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architect-
ing phase change memory as a scalable DRAM alterna-
tive,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA’09), 2009,
pp. 2–13.

[7] Micron Technology, “NAND flash 101: An introduction
to NAND flash and how to design it in to your next
product,” Micron Technical Note TN-29-19, Nov. 2006.

[8] C. A. Waldspurger, “Memory resource management
in VMware ESX server,” in Proceedings of the Fifth
Symposium on Operating Systems Design and Imple-
mentation (OSDI’02), 2002, pp. 181–194.

[9] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scal-
able high performance main memory system using
phase-change memory technology,” in Proceedings of
the 36th Annual International Symposium on Computer
Architecture (ISCA’09), 2009, pp. 24–33.

[10] S. Cho and H. Lee, “Flip-N-Write: A simple determin-
istic technique to improve PRAM write performance,
energy and endurance,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’09), 2009, pp. 347–357.

[11] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srini-
vasan, L. Lastras, and B. Abali, “Enhancing lifetime
and security of PCM-based main memory with Start-
Gap wear leveling,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO’09), 2009, pp. 14–23.


