
StealthWorks: Emulating Memory Errors

Musfiq Rahman, Bruce R. Childers and Sangyeun Cho

Computer Science Department, University of Pittsburgh, Pittsburgh PA 15260 USA

Abstract. A study of Google’s data center revealed that the incidence
of main memory errors is surprisingly high. These errors can lead to
application and system corruption, impacting reliability. The high error
rate is an indication that new resiliency techniques will be vital in fu-
ture memories. To develop such approaches, a framework is needed to
conduct flexible and repeatable experiments. This paper describes such
a framework, StealthWorks, to facilitate research on software resilience
by behaviorally emulating memory errors in a live system. We illustrate
it to study program tolerance to random errors and in the development
of a new software technique to continuously test memory for errors.

1 Introduction

Today’s computing paradigms and applications owe much of their success to the
availability of inexpensive high-capacity main memory. The capacity of computer
memories has increased dramatically: A current laptop might have four gigabytes
of memory and a server might have tens or hundreds of gigabytes. With the
horsepower unleashed by chip multiprocessors, the pressure on memory capacity
will only increase as future applications operate on even larger data sets and
new execution environments (e.g., virtualization) gain popularity.

The ability to inexpensively construct a many-gigabyte main memory is
thanks to increased DRAM chip density (i.e., more memory bits fit in a fixed chip
area). Although DRAM improvements are a key enabler to numerous computing
advancements, there is a sinister side to the story. As DRAM density improves,
the smaller bit cells are more susceptible to manufacturing variations and sen-
sitivities that can cause the cells to malfunction under certain environmental
conditions. These malfunctions cause application corruptions, increased service
disruption, and decreased system reliability. While it is commonly believed that
the probability of “soft errors”, which result from background radiation flipping
a bit (a single-event upset, or SEU), is increased in large main memories, “hard
errors” are also likely. Transient and hard errors happen due to intermittent and
permanent failures in the memory circuits, rather than external events.

Indeed, a recent study about memory reliability for Google’s data centers
showed that there are 25,000 to 70,000 errors per billion device hours per year
and more than 8% of DRAM chips are affected each year [7]. Of these errors,
transient and hard errors were common. This result defies conventional wisdom
that application memory corruptions are only plagued by SEUs. An important
conclusion from this study is error correction techniques are necessary to achieve



the best reliability. However, these techniques do not come without cost. A typi-
cal hardware approach to protect against SEUs is a “SECDED” code, which re-
quires eight extra memory bits per 64-bit word to repair one bit error. Even with
this 12.5% information redundancy, the memory is still susceptible to multi-bit
errors, which necessitates more sophisticated schemes, like chipkill [1]. Unfortu-
nately, even a simple SECDED scheme is too expensive (in power and dollars)
for most machines. Thus, the use of a scheme, like chipkill, is even more unlikely
in the competitive marketplace of commodity computing. Given this situation,
run-time verification and testing techniques that improve resilience without in-
creasing system cost will serve a vital role [3–5].

To develop new software techniques for both soft and hard errors, a flexible
and efficient framework is needed to model, insert and monitor memory errors in
an experimentally repeatable and controlled manner. We developed such a frame-
work, called StealthWorks, that can inject and emulate soft and hard errors and
observe their impact on applications and the system. StealthWorks is hosted in
an actual computer system, and thus, is a fast vehicle for emulation and study
of errors. In this paper, we demonstrate StealthWorks with two case studies, one
for soft errors and the other for hard errors. The first study illustrates Stealth-
Works in evaluating application vulnerability to single-event upsets by randomly
injecting single bit flips. The second study demonstrates StealthWorks for the
development of a novel software-based approach to improve resilience of legacy
and commodity systems that cannot use or afford hardware error correction
methods for multi-bit hard errors.

2 StealthWorks

Figure 1 shows the components in StealthWorks, which are grouped into the
System-under-Test and the User Interface. The System-under-Test emulates
memory errors in an actual machine’s memory. The User Interface is a remote
client for interacting with the System-under-Test.

Fault

Injector

Fault 

Checker

Application

Fault

Model

TestBench

C
o
n
tr
o
l 
S
e
rv
e
r

System-under-Test User Interface

Fig. 1. StealthWorks framework



We focus on the System-under-Test, which has several modules. The Test
Bench runs experiments through user scripts. The Fault Modeler determines
the errors to inject and the Fault Injector emulates them. The Fault Checker
intercepts program memory operations to check addresses for the presence of an
error. Finally, the Control Server mediates communication between the System-
under-Test and the User Interface. The Fault Modeler, the Fault Injector, and the
Fault Checker form StealthWorks’ core. Figure 2 shows how these core modules
are organized and interact with one another. Next, we explain each module in
the System-under-test.

Instrumented Application

Data Value

Corruption
Fault Lookup

Fault Generation

Memory Op.

Interception

F
a
u
lt
 

T
a
b
le

Kernel

Monitor

Kernel

Services

Operating System KernelApplication Process

Fault Model Process

Fault Modeler

Fault Injector

Fault Checker

Figure Key

Fig. 2. Components comprising Fault Modeler, Fault Injector and Fault Checker

2.1 Test Bench

This component runs experiments through user-configurable scripts. An exper-
iment includes the workload (how to run it), parameters for modeling memory
errors, duration, and the statistics to collect. The scripts interact with the other
StealthWorks modules.

2.2 Fault Modeler

The Fault Modeler hosts a user-specified fault model. This fault model deter-
mines what errors should be present in the memory. As shown in Figure 2,
the Fault Modeler has two parts: Fault Generation and a Kernel Monitor. The
user implements the fault model in Fault Generation with services provided
by StealthWorks, including insert/delete an error, the Kernel Monitor, timers,
event triggers, simulated system temperature, usage meters, age meters, and
utility data types and functions. As shown in the figure, the fault model inter-
acts with the Fault Injector through a database of errors, called the Fault Table.
The fault model can insert and remove errors from the database.



The fault model indicates memory error addresses, error types, distribution,
run-time causes, and how to corrupt data values for error types. A memory
address with an error is indicated by a physical address since errors occur in
hardware resources (i.e., physical pages). In addition to where to place errors,
the fault model can optionally indicate how to corrupt data values. To corrupt
a data value, the fault model marks a memory error address with a “corruption
annotation”. The annotation is user-defined. It can be used to specify the way
to corrupt a value, such as a random bit flip, a stuck-at-0 error, etc. Fault
Generation does not corrupt the actual data values because it cannot access
these values directly. Instead, this is done by the Fault Injector (discussed next).

The Kernel Monitor collects information about system operation for the fault
model. For instance, the Kernel Monitor can periodically sample memory uti-
lization of different physical memory regions. Because the Kernel Monitor needs
access to privileged information (e.g., page tables and allocation lists), it runs in
the kernel and system calls are done (via wrapper functions) to interact with it.

We have implemented several example fault models. One model statically
determines a fixed set of permanent errors, but it does not corrupt data values.
It is useful to study how often a program touches an error location. An extended
version can seed errors collected from a live system to create stress tests [5].
Another extension can corrupt data values for studying the inherent resilience
of programs to hard faults [4]. A final example model considers the operating
conditions identified in the Google study [7] as influential, including temperature,
memory utilization, and device age, to determine when to insert errors.

2.3 Fault Injector

The Fault Injector emulates the errors generated by the Fault Modeler. It has
three parts illustrated in Figure 2: the Fault Table, Fault Lookup, and Data Value
Corruption. The Fault Table is a kernel hashtable of errors, which is indexed by
physical memory word address. If an address is in the hashtable, it should be
emulated by the Fault Injector as having an error. A hashtable entry records
both the error type and the corruption annotation.

Fault Lookup is used by the Fault Checker to check whether a memory ad-
dress has an error. It is invoked with a system call that passes the address. If
an error is found, the system call returns a corruption annotation. If there is
no error, a sentinel value is returned to indicate an error-free address. Because
the Fault Checker intercepts memory operations, it operates on virtual addresses.
Thus, Fault Lookup maps a virtual address to a physical one using the program’s
page table. The physical address is used to access the Fault Table.

Finally, Data Value Corruption changes data values, as indicated by the
corruption annotation returned from Fault Lookup. For example, an annotation
might indicate a stuck-at-0 fault for a particular bit. Data Value Corruption
would set the stuck-at bit to 0 in the data value. Because it needs access to
program data (instruction operands), it runs in the program’s address space
(user space). It is simplest and most efficient to perform the corruption in user
space; it also avoids the difficulty kernel modification.



2.4 Fault Checker

The Fault Checker instruments program memory operations (instruction fetches
and memory reads/writes) with dynamic binary translation (DBT) to gather
an address trace. DBT can efficiently gather these address traces by optimizing
instrumentation code in the context in which it is injected [2, 6, 8].

Each operation is intercepted to send the effective virtual memory address
and access type (data/instruction, read/write, byte size) to the Fault Injector.
Memory operations are rewritten to call an analysis payload shown in Figure 2
as “Memory Operation Interception”. The analysis payload does a system call
to inform the Fault Injector via Fault Lookup about the access. When Fault
Lookup returns a corruption annotation, the Fault Checker invokes Data Value
Corruption to determine the actual corrupted data value.

The current implementation of the Fault Checker can use either Pin [6] or
Strata [8] DBT systems as the binary instrumenter. Pin offers easy-to-use in-
terfaces to quickly craft the analysis payloads to corrupt data values. Strata
provides lower-level facilities to inset and optimize the instrumentation code,
which can lead to low instrumentation overhead [2, 8].

2.5 Control Server

This module mediates communication between the System-under-Test and the
User Interface. It is a server that accepts connections from remote user interface
clients. The Client Server understands commands and queries to control the
System-under-Test and report information about an experiment. For example,
it has a command to change the emulated temperature and a query to report
application error rate.

3 Using StealthWorks

StealthWorks was developed in an ongoing project that aims to improve system
reliability with software resiliency strategies. The framework has been used to
run hundreds of experiments; we have found it to be robust and quite useful.

To illustrate StealthWorks’ usage, we describe two studies. In the first study,
we examine single-event upsets, which remain an important source of errors
for deep submicron technology. In this study, we used StealthWorks to inject
random SEUs into program data. We implemented a simple static fault model
that determines ten random memory addresses to receive an SEU. The addresses
are annotated with a “one-time bit flip” data value corruption. When a program
is run, the Fault Checker determines whether a memory read operand touches
an error address. If so, the Data Value Corruption flips a random bit in the word
at the error address. Once an error is hit, it is removed. This experiment injects
at most ten single-bit errors.

With this setup, we selected two example programs from SPEC2006 to de-
termine whether they would run to completion with a correct result. We picked



tonto and mcf because they are expected to touch a large number of memory
pages and will likely hit the inserted errors. We ran each program ten times with
the same errors. Out of the ten runs, tonto crashed eight times and mcf crashed
five times. From a closer inspection, it appears that tonto’s control flow is more
data dependent and susceptible to errors than mcf.

In the second study, we used StealthWorks to evaluate a new online tech-
nique to continuously test memory. This second study illustrates StealthWorks
for another memory error source – multi-bit permanent errors, which cannot be
corrected by traditional memory error correction. We developed a software-only
memory testing and scrubbing technique for computers that cannot support or
afford hardware error correction techniques. Our approach constantly tests an
application’s virtual memory pages; it guarantees that every memory page has
been tested within a specified time limit. Pages with permanent errors are re-
tired from page allocation. To keep run-time performance overhead low, the test
strategy uses a spare core in a chip multiprocessor to concurrently test memory
with program execution. In developing this approach, we relied extensively on
StealthWorks for development and experimental evaluation.

Fig. 3. Time to first fault from StealthWorks

Figure 3 shows one experiment that used StealthWorks to determine whether
our online testing technique reduced application vulnerability. To measure vul-
nerability, we used StealthWorks to find the “time to first fault” (TTFF) of
mcf when executed under a varying number of emulated errors in a 1-gigabyte
memory. The figure compares our technique (bars labeled “w/testing”) against a
baseline without testing (bars labeled “w/o testing”). The X-axis is the amount
of time until the first fault, and the Y-axis is the number of errors injected by
StealthWorks. To determine a set of bars, we used the Monte Carlo method to
do multiple trials since virtual-to-physical page mappings can change. Each trial
was limited to the first ten minutes of mcf’s execution. The baseline (without
testing) is also instrumented with StealthWorks to ensure that the execution
times with and without testing are the same. This permits a fair comparison be-



tween TTFF for runs without and with testing. The figure shows the minimum
and maximum of each trial as error bars.

As Figure 3 shows, without testing, mcf quickly encounters a memory location
with an error. As expected, the time to the first fault decreased (more vulnerable)
as the number of errors injected is increased. In comparison, our online testing
approach let mcf tolerate a higher number of errors before the first fault was
encountered.

The increased resilience comes at a small run-time cost; our continuous online
testing strategy incurs a modest average 3% degradation in performance. This
overhead comes from the additional memory pressure (on both the operating
system kernel’s memory allocator and the hardware memory subsystem) caused
by the testing process. This experiment shows the benefit of StealthWorks – the
framework permits development and study of software resiliency techniques with
different scenarios.

4 Conclusion

Memory errors are surprisingly common and can lead to application failure. To
mitigate errors, new resiliency techniques are needed. In this paper, we described
an extensible framework, StealthWorks, that can be used to develop and evaluate
methods to tolerate and correct memory errors. StealthWorks emulates memory
errors in a live machine. We have found it to be a robust and useful framework
for research on software resilience.

5 Acknowledgements

Christian DeLozier, Yang Hu and Yong Li implemented StealthWorks’ control
server and user interface client. This work is supported in part by the National
Science Foundation awards CCF-0811295, CCF-0811352, and CNS-0702236.

References

1. T. J. Dell. A white paper on the benefits of chipkill - correct ECC for PC server
main memory. In IBM Microelectronics Division, 1997.

2. N. Kumar, B. R. Childers, and M. L. Soffa. Low overhead program monitoring
and profiling. In ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE’05), pages 28–34, 2005.

3. M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou.
SWAT: An error resilient system. In 4th Workshop on Silicon Errors in Logic -
System Effects, 2008.

4. M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou.
Understanding the propagation of hard errors to software and its implications on
resilient system design. In Architecture Support for Programming Languages and
Operating Systems (ASPLOS’08), pages 265–276, 2008.



5. X. Li, M. C. Huang, and K. Shen. A realistic evaluation of memory hardware errors
and software system susceptibility. In USENIX Conference, 2010.

6. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with dy-
namic instrumentation. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PDLI’05), pages 190–200, 2005.

7. B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: a large-
scale field study. In Internaetional Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’09), pages 193–204, 2009.

8. K. Scott, N. Kumar, S. Velusamy, B. R. Childers, J. W. Davidson, and M. L. Soffa.
Retargetable and reconfigurable software dynamic translation. In International
Conference on Code Generation and Optimization (CGO’03), pages 36–47, 2003.


