
An Analytical Performance Model for

Co-Management of Last-Level Cache

and Bandwidth Sharing

Taecheol Oh, Kiyeon Lee, and Sangyeun Cho

Computer Science Department, University of Pittsburgh

Pittsburgh, PA 15260, USA

Abstract—Processor cores in a chip multiprocessor (CMP)
typically share a large last-level cache and the off-chip memory
bandwidth. Previous studies demonstrate that explicit cache
capacity and off-chip bandwidth partitioning can yield better
overall system performance than without partitioning. However,
little work has been done to study the interaction between cache
capacity partitioning and off-chip bandwidth allocation. This
paper develops a hybrid analytical model that takes into account
the two partitioning problems together in order to capture
their inter-dependence. With an elaborate case study, we show
that an optimal resource management strategy would require a
coordinated allocation of the cache and the off-chip bandwidth
resources.

Keywords—Chip multiprocessor (CMP), performance model-
ing, simulation, resource sharing.

I. INTRODUCTION

Chip multiprocessor (CMP) architectures have become the

mainstream computing platform. To improve system perfor-

mance and reduce the performance volatility of individual

threads, explicit last level cache and off-chip bandwidth par-

titioning schemes have been proposed [5], [7], [8], [13]–

[17], [21]. Explicit resource allocation is also important in a

virtualized environment where tasks with different quality-of-

service (QoS) goals are co-scheduled [18]. While the effect of

cache capacity partitioning and off-chip bandwidth partitioning

has been studied extensively, few studies have looked at how

cache partitioning and bandwidth partitioning interact with

each another. To address this void, this paper takes a first

step to develop a simple yet powerful analytical model that

considers the two allocation problems in an integrated manner.

Our model is “hybrid” in the sense that it requires one-time

profiling of target benchmarks to extract key parameters.

A. Previous related work

The problem of cache partitioning is, given N cores each

running a task that share a cache capacity of C, to determine

{c1, c2, . . . , cN},
∑

ci = C and allocate cache capacity ci to

the task on core i such that a desired objective function is max-

imized. Typical objective functions are aggregate throughput,

weighted speedup, and fairness.

Suh et al. [21] dynamically allocate cache capacity to two

co-scheduled tasks to minimize the number of cache misses.

They introduce the notion of marginal gain to guide capacity

allocation decisions. Iyer [5] proposes a framework called

CQoS (cache QoS) to facilitate reasoning and design practices

to offer QoS at the shared cache level. Likewise, in [7], Kim

et al. propose a set of algorithms that promote fairness as the

objective function for cache partitioning. Qureshi and Patt [16]

proposed a low-overhead hardware mechanism to accurately

monitor the utility of cache capacity given to a task (a notion

similar to marginal gain). Unlike the above previous work

that resorts to hardware support for partitioning, Lin et al. [8]

uses the OS page allocation mechanism to “color” pages and

control cache partitioning in software.

Researchers have studied the DRAM bandwidth partitioning

problem [13]–[15], [17]. Nesbit et al. [15] focus on achieving

fairness in the presence of DRAM bandwidth sharing. Rafique

et al. [17] reduce the average DRAM access latency by

adaptively adjusting bandwidth shares among co-scheduled

tasks. Mutlu and Moscibroda [13], [14] achieve higher overall

bandwidth utilization and system performance without de-

grading fairness with intelligent grouping/scheduling of mem-

ory accesses. However, these previous works assume private

caches and/or do not consider coordination of cache and

DRAM bandwidth partitioning.

Finally, Bitirgen et al. [2] proposed a global resource

manager that uses artificial neural networks to allocate shared

cache capacity and off-chip bandwidth together. Their simu-

lation based study shows that the two partitioning problems

must be tackled together for best performance. Our results,

obtained with explicit analytical modeling, corroborate their

observation. More recently, Liu et al. [9] presented a detailed

analytical model to study how off-chip memory bandwidth

partitioning affects CMP system performance. Similar to our

work, they develop an additive CPI model that incorporates

the effect of finite cache capacity and DRAM bandwidth.

The main differences of their model and ours are: (1) Liu

et al. use an in-order core model while we model an out-

of-order core; (2) They use Little’s law to estimate queueing

delays (determined by the arrival rate of the memory access

process and the delay of each access) while we employ a

probabilistic model with an access arrival histogram collected

from actual applications; and (3) They focus on dynamic

partitioning of cache and DRAM bandwidth while we first

focus on static partitioning to more easily discover correla-

tions between particular partitioning decisions. Despite the

differences, both works reveal synergistic interactions between



cache partitioning and DRAM bandwidth allocation.

B. Our contributions

We make the following contributions in this paper:

• We propose a profiling and analysis method to predict the

effect of limited bandwidth on a program’s performance. The

bandwidth available to a program is controlled by allocating a

number of “memory access slots.” We account for the effect of

the available bandwidth using a queueing model and the one-

time profiling of the target program. The capability to predict

the impact of limited bandwidth allows a designer to reason

about the effect of co-scheduling multiple programs on a CMP

chip.

• We validate our model against a detailed architecture sim-

ulator capable of modeling out-of-order cores. Our validation

results demonstrate that the proposed model predicts the

performance trend that agrees with results produced by the

simulator.

• We develop an analytical model to explore the coordi-

nated management of the shared L2 cache and the off-chip

bandwidth resources. With an elaborate case study, we show

that our model can be successfully used to consider the

effect of allocating individual resources simultaneously and

can correctly guide the decision process for effective co-

management of the two resources.

C. Paper organization

The remainder of this paper is organized as follows. We will

first describe the baseline performance model in Section II,

followed by Section III which details how we model the effect

of limited off-chip bandwidth. Section IV validates the model.

A detailed case study is presented in Section V and finally,

Section VI will summarize the conclusions of this paper.

II. BASE MODEL

While our model is not fundamentally limited by the number

of cores, we will use a two-core CMP as an example processor

for illustration. We will first discuss basic constraints and

develop performance models.

A. Cache size and bandwidth constraints

When cache and bandwidth resources are shared among pro-

cessor cores, the performance of a core is limited by the

cache capacity and the bandwidth it is allocated. Consider two

threads, A and B, sharing the cache space and the bandwidth.

The sum of cache capacity assigned to each thread, (SA, SB),
must be less than the total cache capacity of the system, (Ss):

SA + SB ≤ Ss (1)

Likewise, the total bandwidth requirements of the threads must

not exceed the system bandwidth:

BWr =
∑

BWthread (2)

BWr ≤ BWs

The main problem we consider in this paper is, then, to find

optimal SA, SB and BWA, BWB that maximize the system

throughput, fairness, or both.

B. Performance model

We measure the performance of a core in terms of IPC (in-

structions per cycle), or inversely, CPI. The aggregate system

performance is then simply sum of IPCs of the cores. The

cache capacity and off-chip bandwidth constraints will add

to the overall execution time of a program and its CPI. To

incorporate the extra queueing delays caused by the resource

allocation we have:

CPI = CPIideal + CPIfcp + CPIqueue (3)

where CPIideal is an unconstrained CPI (infinite cache capac-

ity and bandwidth), CPIfcp is the extra delay per instruction

caused by a finite cache capacity, and CPIqueue is the extra

queueing delay per instruction caused by limited off-chip

bandwidth.

C. Cache misses and memory-level parallelism

In our model, we consider out-of-order superscalar processor

cores. In-order processor blocks on a long latency cache miss,

and hence, it does not saturate the off-chip bandwidth unless

we have hundreds of cores. Modeling the performance of an

out-of-order superscalar processor is not straightforward. The

processor continues to issue independent cache accesses on

long latency misses to hide the latency. We adopt the first-

order superscalar processor model [6] to estimate the impact of

a long latency data cache miss on the out-of-order superscalar

processor performance.

The first-order model estimates the penalty of an “isolated

cache miss” and an “overlapped cache miss” differently. The

penalty of an isolated cache miss is approximated by the cache

miss latency. To handle overlapped cache misses, the first-

order model focuses on the distance between the memory

instructions that generated the misses. Since the processor

can issue cache accesses only if the corresponding memory

instructions are in the ROB (reorder buffer [3]) at the same

time, the model assumes a cache miss is overlapped with other

cache misses that are within the range of the ROB size.

In general, if m is the number of long latency data cache

misses and f(i) is the probability that misses will occur in

groups of i, the miss penalty becomes: (miss latency ×
∑m

i=1
f(i)/i) where distribution f(i) can be collected while

we profile the target benchmark.

Finally, CPIfcp is:

CPIfcp = MPI × miss penalty

= MPI × latM ×
m
∑

i=1

f(i)

i
(4)

where MPI is average misses per instruction and latM is the

memory access latency.

III. MODELING EFFECTS OF LIMITED BANDWIDTH

Insufficient off-chip bandwidth results in processor stalls and

affects the performance of not only individual applications

but also the overall system. This section derives a bandwidth

model that can be plugged into Equation (3). The terms used

in our analytical model are listed in Table I.



A. Bandwidth formulation

Memory bandwidth is the rate at which data can be read from

or stored into a memory by a processor.

Bandwidth (bytes/second) =

Bytes transferred between cache and memory

Execution time
(5)

To calculate the bytes transferred between cache and memory

in Equation (5), we multiply the number of cache misses and

the cache block size.

Cache misses × Cache block size (BS) (6)

We use several program parameters to obtain the execution

time in Equation (5): total instruction count (IC), ideal CPI

(CPIideal), misses per instruction (MPI), memory access

latency (latM ), and clock cycle time (CCT = 1/F ).

Execution time (T ) =

IC × (CPIideal + MPI × latM ) × CCT (7)

With Equations (6) and (7), the bandwidth requirement (BWr)

for a thread can be written as:

BWr =
IC × MPI × BS × F

IC × (CPIideal + MPI × latM )

=
MPI × BS × F

CPIideal + MPI × latM
(8)

The off-chip interface is modeled as a single-server queueing

system which serves requests on a first come first serve (FCFS)

basis. Hence, requests that find the bus busy must wait in a

queue until the bus becomes free. Thus, the effect of off-chip

bandwidth contention is the extra queueing delay (latqueue)

seen by off-chip memory requests. With the extra memory

access latency due to contention, the total memory bandwidth

consumption (BWr) is smaller than the system bandwidth

(BWs) as expressed below:

BWs ≥
N
∑

i=1

MPIi × BS × F

CPIideal i + MPIi × (latM + latqueue i)
(9)

where N is the number of threads running on a CMP.

B. Calculating average queueing delay

To estimate the average extra queueing delay of a thread

under bandwidth limitation, we profile the elapsed cycles

between consecutive L2 misses and create a histogram we call

“miss-inter-cycle.” The histogram is obtained from running

a program without bandwidth limitation to observe how dense

the program would generate off-chip accesses throughout the

execution.

After obtaining the histogram, to compute a reasonable

average queueing delay with various off-chip bandwidth ca-

pacity, we employ a queueing delay calculator (qdc) based

on a G/D/m queueing system: G—general input distribu-

tion (miss-inter-cycle), D—processing time of each station

(memory latency), m—number of stations (slot count). qdc

is essentially an event-driven Monte-Carlo simulator.

TABLE I
INPUT PARAMETERS.

System parameters

BS Cache block size (Bytes)

F CPU clock frequency (Hz)

BWs System bandwidth (Bytes/sec)

slot Number of off-chip memory access interfaces

Thread parameters

MPI Misses per instruction

MLPeffect The effect of memory-level parallelism on mem-
ory access latency

CPIideal Ideal CPI with infinite L2 cache size

latM Memory access latency

latqueue Extra queueing delay due to contention

sloti Fraction of off-chip b/w assigned to thread i

C. Computing additive CPI components

Let us revisit Equation (4) and rewrite it:

CPIfcp = MPI × MLPeffect × latM

= MPI0

(

C

C0

)

−α

· MLPeffect · latM (10)

We use the power law [4] to project MPI for various cache

sizes based on MPI0, the value for a reference cache size.

MLPeffect is simply
∑m

i=1
f(i)/i.

Recall that we assume the extra queueing delay due to

contention on average to be latqueue. Then, for an application

thread, we have:

CPIqueue = MPI × latqueue

= MPI0 ·

(

C

C0

)

−α

× latqueue (11)

Interestingly, qdc has revealed that the queueing delay due

to contention decreases as we add more bandwidth (slots)

according to the power law. That is, we have:

latqueue = latqueue0 ·

(

Slot

Slot0

)

−β

(12)

Fig. 1 illustrates this finding. It plots the queueing delays

calculated by Equation (12) (solid line) and the estimated

values by qdc with different off-chip bandwidth capacity or

slot count.

Finally, Equation (3) is rewritten:

CPI = CPIideal + MPI0 ·

(

C

C0

)

−α

×

(

MLPeffect × latM + latqueue0 ·

(

Slot

Slot0

)

−β
)

(13)

This equation reveals that the effect of the extra queueing delay

on CPI depends on MPI . Since the value of MPI varies with

different applications, each application suffers from the queue-

ing delay to a different degree. Hence, bandwidth allocation

(partitioning) can improve the overall system performance if

it favors applications that are more sensitive to the queueing

delay (i.e., having a large MPI value) over applications that

are less sensitive.



0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8 9 10

Q
u
eu

in
g

d
el

ay
(c

y
cl

es
)

Slot count

Model
sim

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 10

Q
u
eu

in
g

d
el

ay
(c

y
cl

es
)

Slot count

Model
sim

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9 10

Q
u
eu

in
g

d
el

ay
(c

y
cl

es
)

Slot count

Model
sim

astar bwaves cactusADM

Fig. 1. Examples showing that extra queueing delay with off-chip bandwidth constraint follows a power law: the queueing delay varies as a power of slot
count—astar, bwaves and cactusADM.

D. Bandwidth allocation

Off-chip bandwidth allocation determines how to distribute

memory request bursts from processor cores over the off-chip

interfaces to best utilize the available bandwidth. The off-

chip bandwidth can be allocated or partitioned among cores in

both space and time; for example, indicate that a core needs

exclusive access to off-chip bandwidth 60% of the time, or

that it requires 75% of the off-chip bandwidth. In our work,

we focus our attention solely on the spatial dimension of

partitioning.

In order to intuitively study the off-chip bandwidth alloca-

tion effect, we model the available bandwidth with allocatable

memory access interfaces or slots, Nslot. For instance, with 64

byte cache block size, 1 GHz frequency, and 200 cycle off-chip

memory access latency, the peak off-chip bandwidth of the

system can is Nslot × (block size)/(memory access latency)

or Nslot× 320 MB/sec.

E. Limitations

To make our model tractable, we have introduced simplifying

assumptions. First, we limit our study to CMPs with identical,

single threaded cores. Second, we assume workload charac-

teristics do not change over their execution. Third, we assume

each core has a private portion in shared L2 cache and threads

that run on different cores do not share data. Lastly, we do

not evaluate the power implications of various potential CMP

configurations.

IV. VALIDATION

A. Experimental setup

To validate our model, we compare our model and Zesto [10],

a detailed CMP architecture simulator. Table II lists the CMP

configuration parameters used in our experiments. We study

six SPEC CPU2006 benchmarks: astar, bwaves, cactusADM,

gobmk, h264ref, and hmmer. To quantify the prediction error

of our models, we take the absolute difference between the

CPI predicted by our model and the CPI measured by the

simulator, divided by the CPI measured by the simulator.

B. Results

To obtain the key parameters of our model, we first collect

CPIideal (CPI with infinite L2 cache), MPI0 (misses per

instruction) for a baseline cache size, and MLPeffect (the

TABLE II
CMP CONFIGURATION PARAMETERS.

CMP 2 cores on chip, shared on-chip L2 cache

Core 4-issue OOO, 96-entry ROB

L1 cache private Icache and Dcache for each core
Icache: 32KB, 64B cache block size, 4-way
Dcache: 32KB, 64B cache block size, 4-way

Shared L2 cache 4MB, 64B cache block size
32-way, 12 cycle hit latency

Memory ∼3.2 GB/s off-chip bandwidth
200 cycle round trip latency

effect of memory-level parallelism on memory access latency)

from one-time profiling of each benchmark. To collect the

power law parameters α and β, we run each benchmark with

different L2 cache sizes and off-chip access slot counts.

We first verify the accuracy of the out-of-order processor

CPI model described in Section II-C. Fig. 2 shows CPIs

collected by simulation and our model. The figure shows that

the overall trends of the predicted CPIs obtained with our

model closely follow the trends shown by the simulation. The

prediction errors of our model are low. The arithmetic and ge-

ometric mean of the errors with different cache sizes are 4.8%

and 3.9%, respectively. With different off-chip bandwidth, the

arithmetic and geometric mean of the errors are 6.0% and

2.4%.

From the results of the benchmarks with cache size and

slot count variation, interestingly we observe that the appli-

cations may get affected by both cache capacity and off-chip

bandwidth limitation, or by either of the two constraints. For

example, the cache capacity has an impact on astar to some

extent, up to 50% of CPI increase (with 128 KB). However, the

off-chip bandwidth constraint barely affects the application’s

performance. Applications similar to astar will benefit from

having more cache capacity rather than increasing the off-chip

bandwidth.

The cache capacity affects the CPI of bwaves by a very

small margin, up to 1 or 2% of CPI increase (with 128

KB), but bwaves suffers from small off-chip bandwidth, up

to 40% of CPI increase with 2 slot counts. The CPI of this

type of application scarcely increases when the cache capacity

decreases. Applications similar to bwaves will benefit from

allocating more off-chip bandwidth rather than increasing the

cache size. cactusADM has an impact from the cache capacity,



0.90

1.10

1.30

1.50

1.70

1.90

128KB

256KB
512KB

1M
B

2M
B

4M
B

No
rm

al
ize

d 
CP

I

0.98
0.99

1
1.01
1.02
1.03
1.04
1.05
1.06

2 slots

4 slots

6 slots

8 slots

10 slots

No
rm

al
ize

d 
CP

I

0.9
1

1.1
1.2
1.3
1.4
1.5

2 slots

4 slots

6 slots

8 slots

10 slots

0.8
1

1.2
1.4
1.6
1.8
2

2 slots

4 slots

6 slots

8 slots

10 slots

astar bwaves cactusADM

astar bwaves cactusADM

0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03

128KB

256KB

512KB

1M
B

2M
B

4M
B

(a)

0.90
1.00
1.10
1.20
1.30
1.40
1.50

128KB

256KB

512KB
1M

B

2M
B

4M
B

No
rm

al
ize

d 
CP

I

0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10

128KB

256KB

512KB

1M
B

2M
B

4M
B

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

128KB

256KB

512KB

1M
B

2M
B

4M
B

0.996
0.998
1.000
1.002
1.004
1.006
1.008

2 slots

4 slots

6 slots

8 slots

10 slots

No
rm

al
ize

d 
CP

I

0.9998
0.9999

1
1.0001
1.0002
1.0003
1.0004

2 slots

4 slots

6 slots

8 slots

10 slots

0.99
0.995

1
1.005
1.01

1.015
1.02

1.025

2 slots

4 slots

6 slots

8 slots

10 slots

gobmk h264ref hmmer

gobmk h264ref hmmer

0.90

0.95

1.00

1.05

1.10

1.15

128KB

256KB

512KB

1M
B

2M
B

4M
B

Sim Anal

(b)

Fig. 2. CPIs collected with our model and Zesto (a) using different L2 cache sizes and (b) allocating different off-chip bandwidth. The CPIs are normalized
to the CPI with 4MB cache size in (a) and to the CPI with slot count 10 in (b).

up to 12% of CPI increase (with 128 KB), and the off-chip

bandwidth constraint, up to 60% of CPI increase with the slot

count 2. The performance of such applications can easily be

affected when either the off-chip bandwidth or cache capacity

is decreased.

V. CASE STUDY

A. Evaluated architecture and workloads

Table III lists the base parameters that we selected hypotheti-

cally to reveal the capability of our model. We use two threads

in this study—thread A and thread B.

B. System optimization objectives

We have three system-level optimization objectives focusing

on performance and fairness. “Throughput” measures the

combined progress rate of all co-scheduled threads, whereas

“fairness” measures how uniformly the threads are slowed

down due to resource sharing.

Throughput. The aggregate performance of a system can be

defined as the sum of the throughput of all cores in the system.



TABLE III
INPUT PARAMETERS.

System Parameters

BS, cache block size (Byte) 64 B

F , CPU clock frequency (Hz) 1 Ghz

Slot, peak off-chip bandwidth 1.6 GB/s

latM , L2 miss penalty (cycles) 10 cycles

Thread A Thread B

MLPeffect, the effect of memory-level
parallelism on memory access latency

0.55 0.25

CPIideal, ideal CPI with infinite L2 1.05 0.3

MPI0, baseline MPI 0.027 0.077

latqueue0, baseline queueing delay 78.09 50.34

α, power law factor for cache size 0.88 0.78

β, power law factor for queueing delay 3.36 4.29

We use:

IPCsystem =

Ncore
∑

i=1

IPCi (14)

where Ncore represents the number of cores in the system.

Fairness. Improving the throughput of a system may cause

unwanted degradation in some application’s performance.

Weighted speedup (WS) was proposed by Snavely and

Tullsen [19] to measure the fairness of co-scheduled threads.

More precisely, if thread i achieves an IPC of IPCalone,i when

running alone in a CMP system and achieves an IPC of IPCi

when running simultaneously with applications on other cores,

fairness is expressed as

Ncore
∑

i=1

WSi =

Ncore
∑

i=1

IPCi

IPCalone,i

=

Ncore
∑

i=1

CPIalone,i

CPIi

(15)

where WSi is the weighted speedup for thread i.
Harmonic mean of normalized IPC. Using the fairness and

the throughput metric by itself may have drawbacks. The

fairness does not give any importance to the overall throughput

and the throughput does not provide any fairness among

threads. The harmonic mean fairness (harmonic mean of

normalized IPCs) balances both fairness and performance [11].

HMIPC =
Ncore

∑Ncore

i=1

IPCalone,i

IPCi

(16)

C. Approximating optimal cache and off-chip bandwidth allo-

cation

To observe the impact of varying allocated L2 cache capacity

and off-chip bandwidth, we draw color-mapped 3D figures.

Fig. 3 presents conceptually the dimensions we vary in the

CMP resource management problem. The X axis represents

the L2 cache capacity and the Y axis represents the off-chip

bandwidth allocated for thread A. The rest of the L2 cache

capacity and the off-chip bandwidth are allocated for thread B.

Our analytical model draws a “terrain”-like surface (variations

along the Z axis) in the area defined by the X and Y axis. With

the movement of thread A along the X and Y axis, we can

observe how the two resources affect individual thread and the

system performance by focusing on the Z axis. We vary the

Fig. 3. Shared resources (cache and off-chip bandwidth) variation on 3-
dimensional graph.

L2 cache size from 128 KB to 4 MB, the slot count from 1

to 4, assuming the off-chip bandwidth is 1.6 GB/sec (5 slots)

in the studied system.

Fig. 4 shows the summation of two threads’ off-chip band-

width requirements (normalized to the peak off-chip band-

width) over different cache capacity and off-chip bandwidth

allocations. The color in the figure varies from black to yellow

via purple and red according to the Z axis value. The lowest

area in Fig. 4(a) is shown in purple and the highest area is

shown in red and yellow. Fig. 4(b) shows the 3D plot projected

onto a 2D plane.

With the above arrangement, it becomes intuitive for us

to inspect at a high level how the total off-chip bandwidth

requirements change with different cache capacity allocation

points. Assuming that the actual sustained DRAM bandwidth

doesn’t exceed about two thirds of the peak DRAM bandwidth,

we carved out the regions that actually show higher bandwidth

than that, as shown in Fig. 4(b). That is, the regions within

the dotted lines AB and CD in the plot represent the cache

allocation points where the system performance will be likely

constrained by the limited off-chip bandwidth.

D. Throughput

Fig. 5 shows the summation of two threads’ IPC. The color

is changed from black to red via blue and green according to

the Z axis value. The highest area in Fig. 5(a) is shown in red

and the lowest area in black. In Fig. 5(a), the solid line (A)

makes a steep curve, suggesting that the overall IPC can be

affected by the off-chip bandwidth variation when thread A is

given a smaller amount of cache capacity than thread B.

On the other hand, line (B) shows that the off-chip band-

width variation has a little effect on the overall IPC when

thread A uses much larger cache capacity than thread B. From

the figure, we can roughly determine that thread A should be

assigned with smaller cache capacity and off-chip bandwidth

than thread B.

We project the 3D plot in Fig. 5(a) onto a 2D plane,

as shown in Fig. 5(b), to find the best resource allocation.

Regardless of how we allocate cache and off-chip bandwidth in

the black and blue area, it is hard to achieve high throughput.



Fig. 4. Off-chip bandwidth requirement of two threads: (a) Summation of two threads’ off-chip bandwidth requirement, (b) projection of the 3D graph in
(a) onto a 2D plane. The line AB and CD in (b) indicate the boundary for the optimal resource sharing with regard to the off-chip bandwidth constraint.

(a) (b)

(B)

(A)

Fig. 5. Overall IPC of two threads: (a) Summation of two threads’ IPC, (b) projection of the 3D graph in (a) onto a 2D plane. The circled area in (b) reveals
the best resource allocation for the system throughput.

Nevertheless, in the green and red area, we can accomplish

a fairly high throughput of the system. The red area reveals

the best resource allocation of cache and off-chip bandwidth

to obtain the highest IPC: thread A—1 MB cache and 2 slots,

Thread B—3 MB cache and 3 slots.

E. Fairness

To achieve fairness among the applications, we use the

weighted speedup metric. The weighted speedup estimates the

reduction in execution time of each thread, by normalizing

each thread’s performance to its inherent IPC value obtained

when the thread runs alone.

Fig. 6 shows the summation of weighted speedup of each

thread. Fig. 6(a) shows how different resource allocations

among threads impact the fairness of the system. The highest

area in Fig. 6(a) is colored in red and the lowest area is colored

in black. Line (A) makes a relatively steep curve, suggesting

that the off-chip bandwidth variation can affect the weighted

speedup when thread A and thread B have same cache size.

Line (B) has a relatively gentle curve with the variation on

the off-chip bandwidth. From the figure, we can determine

that thread A and B should have similar cache capacity.

We again map the 3D graph in Fig. 6(a) onto the 2D plane,

as shown in Fig. 6(b). Regardless of how we allocate resources

in the black and blue area, it is difficult to achieve fairness

between the two threads. The red area reveals the best resource

allocation of cache capacity and off-chip bandwidth for the

fairness: Thread A—2 MB cache and 2.3 slots, Thread B—2

MB cache and 2.7 slots.

F. Harmonic mean of normalized IPC

Until now, we used throughput and fairness as an independent

metric. Let us consider the harmonic mean of normalized IPC,

which is a metric that combines both throughput and fairness,

as described in Section V-B.

Fig. 7 shows the summation of the harmonic mean of the

normalized IPC of each thread. In Fig. 7(a), line (A) makes

a steep curve, demonstrating that the off-chip bandwidth

variation can affect both overall IPC and overall fairness when

thread A is given a smaller cache capacity than thread B.



(a) (b)

(A)
(B)

Fig. 6. Weighted speedup of two threads: (a) Summation of two threads’ weighted speedup, (b) projection of the 3D graph in (a) onto a 2D plane. The
circled area in (b) reveals the best resource allocation for the fairness.

(a) (b)

(A)

Fig. 7. Harmonic mean of normalized IPC of two threads: (a) Summation of two threads’ harmonic mean of normalized IPC, (b) projection of the 3D graph
in (a) onto a 2D plane. The circled area in (b) reveals the best resource allocation for the throughput and fairness.

In Fig. 7(b), the red area shows the best resource allocation

of cache capacity and off-chip bandwidth when we simulta-

neously consider both the throughput and the fairness: thread

A—1.3 MB cache and 2.2 slots, thread B—2.7 MB cache and

2.8 slots.

VI. SUMMARY AND CONCLUSIONS

We discussed how we can achieve a system optimization

goal by considering the cache capacity allocation and the off-

chip bandwidth allocation simultaneously. We highlighted the

importance of achieving a balance between the two. We also

proposed a simple and powerful model that considers both

cache capacity and off-chip bandwidth at the same time. By

combining the two resource allocation problems, resources can

be distributed more efficiently to achieve higher throughput as

well as fairness.

It has previously been recognized that off-chip bandwidth

allocation may have little impact on the system performance

because cache allocation has a larger impact on performance in

a CMP architecture. Interestingly, however, such a hypothesis

is not necessarily correct. Our case study shows that addressing

the cache capacity and off-chip bandwidth allocation problems

together can improve the overall system performance, imply-

ing that there should be a synergistic interaction between them.

Fig. 8 indicates the best resource (cache and off-chip

bandwidth) allocations for each optimization objective in the

system: throughput (A), fairness (B), and both throughput and

fairness (C). Higher throughput ensures higher utilization of

processor resources, and fairness ensures that all threads are

given equal opportunity and that no threads are forced to

starve. Typically, different threads have different instruction

execution rates, and hence show different throughput. There-

fore, when allocating resources among threads, merely con-

sidering the throughput will give priority to threads with high

throughput, causing the rest to potentially suffer. On the other

hand, considering only fairness will result in inefficient use

of resources. Hence, focusing on a single objective provides

the best combined resource allocation for the objective itself,

but it may not provide the best resource allocation for other

system objectives.

In conclusion, we find that our analytical model is useful

for studying the two important CMP resource management



Fig. 8. Balanced optimal allocation points of shared resources (cache and
off-chip bandwidth) for 3 different optimization goals: (A) throughput, (B)
fairness, and (C) both throughput and fairness.

problems together—cache capacity allocation and off-chip

bandwidth allocation. Unlike previous efforts, our model is

capable of modeling out-of-order processor cores. Our vali-

dation study reveals that the proposed model has reasonable

accuracy in predicting the performance impact as we change

the cache capacity and the off-chip bandwidth allocation for

a thread. Our model requires a one-time profiling of target

threads using a fast single-thread architecture simulator.

ACKNOWLEDGEMENT

This work was supported in part by the US NSF grants:

CCF-1064976, CCF-1059283, and CCF-0702236; and by the

Central Research Development Fund (CRDF) of the University

of Pittsburgh. This work was done as part of the first author’s

thesis research and portions of this paper appear in his thesis.

REFERENCES

[1] AMD Multi-core. http://multicore.amd.com
[2] R. Bitirgen, E. Ipek, and J. F. Martinez. “Coordinated Management

of Multiple Interacting Resources in Chip Multiprocessors: A Machine
Learning Approach” Proc. Int’l Symp. Microarchitecture (MICRO), Dec.
2008.

[3] J. L. Hennessy and D. A. Patterson. “Computer Architecture: A Quanti-
tative Approach” Morgan Kaufmann, 2003.

[4] J. Huh, D. Burger, and S. W. Keckler. “Exploring the Design Space of
Future CMPs” Proc. Int’l Conf. Parallel architectures and computation

Techniques (PACT), 2001.
[5] R. Iyer. “CQoS: a Framework for Enabling QoS in Shared Caches of

CMP Platforms,” Proc. Int’l Conf. Supercomputing (ICS), June 2004.
[6] T. S. Karkhanis and J. E. Smith. “A First Order Superscalar Processor

Model,” SIGARCH Comput. Archit. News, 2004.
[7] S. Kim, D. Chandra, and Y. Solihin. “Fair Cache Sharing and Partitioning

in a Chip Multiprocessor Architecture,” Proc. Int’l Conf. Parallel

Architectures and Compilation Techniques (PACT), Oct. 2004.
[8] J. Lin et al. “Gaining Insights into Multicore Cache Partitioning: Bridging

the Gap between Simulation and Real Systems,” Proc. Int’l Symp. High

Performance Computer Architecture (HPCA), Feb. 2008.
[9] F. Liu, X. Jiang, and Y. Solihin. “Understanding How Off-Chip Memory

Bandwidth Partitioning in Chip Multiprocessors Affects System Perfor-
mance,” Proc. Int’l Symp. High-Performance Computer Architecture

(HPCA), Jan. 2010.
[10] G. H. Loh, S. Subramaniam, and Y. Xie. “Zesto: A Cycle-Level

Simulator for Highly Detailed Microarchitecture Exploration,” Proc. Int’l
Conf. Performance Analysis of Software and Systems (ISPASS), Apr.
2009.

[11] K. Luo, J. Gummaraju, and M. Franklin. “Balancing throughput and
fairness in smt processors,” Proc. Int’l Conf. Performance Analysis of

Software and Systems (ISPASS), 2001.
[12] Micron Technology. “TN-47-21: FBDIMM-Channel Utilization (Band-

width and Power)” http://www.micron.com, 2006.
[13] O. Mutlu and T. Moscibroda. “Stall-Time Fair Memory Access Schedul-

ing for Chip Multiprocessors,” Proc. Int’l Symp. Microarchitecture

(MICRO), Dec. 2007.
[14] O. Mutlu and T. Moscibroda. “Parallelism-Aware Batch Scheduling:

Enhancing both Performance and Fairness of Shared DRAM Systems,”
Proc. Int’l Symp. Computer Architecture (ISCA), June 2008.

[15] K. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. “Fair Queueing
Memory Systems,” Proc. Int’l Symp. Microarchitecture (MICRO), Dec.
2006.

[16] M. K. Qureshi and Y. N. Patt. “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches,” Proc. Int’l Symp. Microarchitecture (MICRO), Dec. 2006.

[17] N. Rafique, W. Lim, and M. Thottethodi. “Effective Management of
DRAM Bandwidth in Multicore Processors,” Proc. Int’l Conf. Parallel

Architectures and Compilation Techniques (PACT), Oct. 2007.
[18] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems

and Processes, Morgan Kaufmann, 2005.
[19] A. Snavely and D. M. Tullsen. “Symbiotic Job Scheduling for a Si-

multaneous Multithreading Processor,” Proc. Int’l Conf. Architecture

Support for Programming Language and Operating Systems (ASPLOS),
Jan. 2000.

[20] SPEC CPU 2006. http://www.spec.org/cpu2006/.
[21] G. E. Suh, S. Devadas, and L. Rudolph. “A New Memory Monitoring

Scheme for Memory-Aware Scheduling and Partitioning,” Proc. Int’l

Symp. High-Performance Computer Architecture (HPCA), Feb. 2002.


