
An Analytical Model to Study Optimal Area Breakdown

between Cores and Caches in a Chip Multiprocessor

Taecheol Oh Hyunjin Lee Kiyeon Lee Sangyeun Cho

Department of Computer Science

University of Pittsburgh

Abstract

A key design issue for chip multiprocessors (CMPs) is how to

exploit the finite chip area to get the best system throughput.

The most dominant area-consuming components in a CMP

are processor cores and caches today. There is an impor-

tant trade-off between the number of cores and the amount

of cache in a single CMP chip. If we have too few cores, the

system throughput will be limited by the number of threads.

If we have too small cache capacity, the system may perform

poorly due to frequent cache misses. This paper presents a

simple and effective analytical model to study the trade-off

of the core count and the cache capacity in a CMP under a

finite die area constraint. Our model differentiates shared,

private, and hybrid cache organizations. Our work will com-

plement more detailed yet time-consuming simulation ap-

proaches by enabling one to quickly study how key chip area

allocation parameters affect the system performance.

1. Introduction

The last decade has seen the emergence and proliferation

of various general-purpose chip multiprocessor (CMP) ar-

chitectures. Today, CMPs are deployed in all major market

segments including PCs, servers, game consoles, and mobile

devices. A typical CMP chip has multiple identical proces-

sor cores and large on-chip cache memory. A multitude of

threads co-exist at a given time to perform a task in paral-

lel fashion. On-chip caches facilitate fast retrieval of data so

that the cores can make good progress with computation.

Historical technology trends and predictions reveal that

the chip size of future high-performance CPUs will stay rel-

atively constant [1]. An important question for a CMP archi-

tect is then how to break down a fixed chip area to various

processor components, with each new technology genera-

tion. Given that processor cores and caches are the two most

dominant area consumers, the question boils down to: How

many cores (or how much cache capacity) shall we integrate

on a chip? More detailed questions can follow. How many

cache levels should be integrated? How should the caches be

organized, shared or private? This paper introduces an ana-

lytical model to derive an optimal area breakdown between

cores and caches in a CMP design under a finite die area

constraint. The model also estimates the trade-off between

shared, private, and hybrid cache organizations.

Previously, Zhao et al. [2] introduced a constraint-aware

design analysis method and showed how to prune the cache

design space. They considered design constraints such as

area, bandwidth, and performance. Unlike our work where

the focus is to hit the trade-off between the core count and

the cache capacity, their architecture has fixed 32 cores. Huh

et al. [3] explored the design space of the CMP architec-

ture and studied the area and performance trade-offs. How-

ever, they only considered CMP organizations where L1 and

L2 caches are coupled to individual cores and there is no

inter-processor sharing. Alameldeen [4] derived a simple

analytical model that exposes the trade-off between the core

count and the cache capacity. Because the goal of their

study was to measure the impact of their cache compres-

sion techniques, they limited themselves to the shared L2

cache organization in their CMP model and did not consider

an L3 cache. Hill and Marty [5] applied Amdahl’s Law to

a CMP chip and build a cost model to obtain speedups for

symmetric, asymmetric, and dynamic CMP chips. They as-

sume that a CMP chip of a given size can have at most N
BCEs (Base Core Equivalents), where a BCE implements

the baseline core. However, they do not consider chip re-

sources expended on shared caches and do not account for

the trade-offs between cores and caches.

The rest of this paper is organized as follows. Section 2

builds a background for the paper. Section 3 and 4 present

in detail our analytical model with and without an L3 cache.

Section 5 provides validation results. Section 6 gives a case

study using our model, followed by conclusions in Section 7.

2. Background

2.1. Chip area trend

ITRS predicts that the Moore’s Law rate of on-chip transis-

tor density improvement will be maintained in the near fu-

ture [1]. It also forecasts that the high-end microprocessor

chip size, based on the competitive requirements for afford-

ability and power management, will remain constant (∼310

mm2). Hence, with each new technology generation, core

count and the cache capacity in a microprocessor will double

under an idealistic scaling assumption.

Let’s take Sun Niagara 2 as an example [6]. It features the

smallest core among the general-purpose high-end proces-

sors built with a 65-nm technology [7–9]. Compared with

its predecessor Niagara 1 built with a 90-nm technology,



Gate length 65 nm 32 nm

Core size 18.5 mm2 5 mm2

Area for 1MB cache 15 mm2 4 mm2

Table 1. Estimates of component sizes for a 32-nm CMP

based on the Niagara 2 implementation (65 nm) [10].

the Niagara 2 chip has shrunk in size (from 378 mm2 to

342 mm2) and has a larger L2 cache (from 3MB to 4MB).

This relatively small increase in L2 cache capacity is due

to the addition of more thread contexts (from 32 threads to

64 threads) and a floating-point unit to each core as well as

more system components such as network processing units.

Our case study in Section 6 will use the same chip size as

Niagara 2 (342 mm2) and use the component sizes derived

from Niagara 2. Without loss of generality we estimate the

component sizes (core and cache) of Niagara 2 by measuring

the published die photograph. We then convert the values to

a 32-nm technology node as shown in Table 1.

Given a die area, the number of cores and cache capacity,

the following inequality holds:

A ≤ N · Acore + AL2 (+ AL3 )

where A is the chip area, N the core count, Acore the core

area, AL2 the L2 cache area, and AL3 the L3 cache area.

2.2. Unit area model

In this work, we use a unit area model similar to cache byte

equivalent area (CBE) [3, 4]. CBE is the area for one byte

of cache memory. We can express chip area, core area, and

cache area in terms of CBE. Similarly, we define A1 as the

chip area equivalent to a 1MB cache area and use it as a unit

area. Given the definition, the following is derived:

Acache = A − N · Acore

= m ·A1 − N · c · A1 = A1(m − c · N) (1)

where m and c are design parameters. The actual capacity of

the L2 cache (in MBs) SL2 is given by Acache/A1 and has

the value (m − c ·N).

2.3. Throughput model

We use IPC (Instructions Per Cycle) as the metric to report

system throughput. To compute IPC, we obtain CPI (Cycles

Per Instruction, reciprocal of IPC) of individual processors

first. A processor’s “ideal” CPI can be obtained with an in-

finite L2 cache. In reality, the available cache capacity is

limited and it results in performance loss [11,12]. Hence,

CPI = CPIideal + CPIfinite cache penalty (2)

CPIfinite cache penalty can be obtained by dividing the ag-

gregate value of CPU cycles lost in handling cache misses

with the total number of instructions. (2) can be rewritten:

CPI = CPIideal + mpi(L2size) · mp
M

(3)

where mpi(L2size) is the number of misses per instruc-

tion for a given cache size L2size (in MBs) and mp
M

is

the average number of cycles needed to access memory and

handle an L2 cache miss. Once we obtain individual pro-

cessor’s CPI, the system throughput IPCsystem can be ob-

tained from the individual CPI values. Because we assume

that all the available processors are symmetric, we have

IPCsystem = N/CPI.

3. Model without L3 Cache

We first consider a CMP with L2 cache memory but no L3

cache memory. Many CMP systems fall into this category.

3.1. Private L2 Cache

Private L2 cache offers low access latency but may suf-

fer from many cache misses due to its increasingly limited

caching capacity as we add more cores [13]. From (2) we

derive the CPI for a processor with a private L2 cache.

CPI = CPIpr + mpi(SL2p) ·mp
M

(4)

where CPIpr is the CPI with an infinite private L2 cache.

The per-core private cache area and size are given by:

AL2p =
AL2

N
, SL2p =

SL2

N
(5)

This work uses the square root rule of thumb [14, 15] to de-

fine mpi(). Given mpi(1) (misses per instruction with a

1MB cache), the following captures the rule:

mpi(SL2p) = mpi(1) ·

√

1

SL2p

(6)

From equations (4), (5) and (6),

CPI = CPIpr + mpi(1) ·
√

A1 · N
Acache

· mp
M

(7)

3.2. Shared L2 Cache

Uniform Cache Architecture (UCA). The CPI of one core

in a CMP with N processor cores sharing an L2 cache [15]

is

CPI = CPIsh + mpi(SL2sh) ·mp
M

(8)

where CPIsh is the CPI with an infinite shared L2 cache

and SL2sh is the effective cache capacity (<SL2) seen by

each core. CPIsh is usually larger than CPIpr because pri-

vate caches have a lower latency. SL2sh is likely larger than

SL2p because there are cache blocks being shared by multi-

ple cores and a core may borrow caching space from another

core that does not require a large cache capacity. If a cache

block is shared by Nsh cores on average [4], we have

SL2sh =
SL2

N − Nsh + 1
=

Acache

A1 · (N − Nsh + 1)
(9)

One can set Nsh to be a constant value or a more general

function (e.g., λ · N ) based on system characterization.



With an UCA design processor cores experience the same

latency to the L2 caches. On the other hand, they may see

contentions in the network and the cache ports, especially

when there are many cores. We introduce this contention

factor in our CPI calculation. For instance, the time spent on

contention can be expressed as a linear function β · (N − 1).
β is computed from the ratio of memory operations to in-

structions, the L1 cache miss rate, and the probability of

having to pay the bandwidth penalty. With this assumption

and equations (6), (8) and (9) we have

CPI = CPIsh + β · (N − 1) + mpi(SL2sh) ·mp
M

(10)

Non-Uniform Cache Architecture (NUCA). The NUCA

approach relaxes the uniform latency constraint in multi-

bank cache designs and typically employs a scalable

switched network such as the 2-D mesh [16]. With R rows

and C columns, the maximum hop distance in a 2-D mesh

network is (R + C − 2) and the average hop distance is
1
3(R + C). Assuming R = C , the average hop distance be-

comes 2
3

√
N where N is the core count. If tr is the single-

hop network traversal latency, the expected on-chip network

traverse latency in a NUCA chip will be 2
3

√
N · tr . Assum-

ing that this network traversal latency is dominant over the

network bandwidth penalty in a NUCA design:

CPI = CPIsh + γ ·
2

3

√
N · tr + mpi(SL2sh) · mp

M
(11)

where γ is computed from the ratio of memory operations to

instructions and the L1 cache miss rate. Notice the similar-

ity in (10) and (11); their difference comes mainly from the

assumptions about the property of the network.

3.3. Hybrid L2 Cache

A hybrid cache tries to capture the strengths of a private

cache (smaller hit latency) and a shared cache (larger capac-

ity) [16]. We model a hybrid L2 cache by computing the la-

tency penalty offered by a private cache and any latency sav-

ings by additional capacity borrowed from other caches on

chip. As in the private caching scheme, each core gets a pri-

vate cache whose size is SL2p. When a cache miss occurs in

the private cache, one may find a cache block in some other

cache slices on chip. Effectively, each core gets a “larger”

cache than SL2p. We introduce a parameter σ to specify this

effective cache size relative to SL2p. Importantly, we have

two disparate cache hit latencies now; on a remote cache hit,

we pay a higher latency penalty than the local private cache.

Assuming the same 2-D mesh network we used in the shared

NUCA cache discussion.

CPI = CPIpr + mpi(SL2p) ·
2

3

√
N · tr

+ mpi(σ · SL2p) ·mp
M

(12)

The actual value of σ is determined by the hybrid cache

scheme and the workload used. For instance, Zhang and

Asanović [16] show that their hybrid scheme can often cut

the off-chip miss rate of the private caching scheme by half.

4. Model with On-Chip L2 and L3 Caches

For a conventional inclusive cache hierarchy, there needs to

be enough area given to the L3 cache–at least 2× or more

than the L2 cache [2]. We introduce a parameter α to di-

vide the available cache area between the L2 and L3 caches

(AL2 = α · Acache, AL3 = (1 − α) · Acache).

4.1. Private L2 cache and shared L3 cache

In order to expose the effect of on-chip L3 cache, we split the

finite cache CPI penalty in (4) into L2 and L3 components.

CPI = CPIpr + mpi(SL2p) · mp
L3

+ mpi(SL3sh) · mp
M

(13)

where SL2p is now α ·Acache/A1 and SL3sh is the effective

per-core capacity of the L3 cache. Thus we have

SL3sh =
(1 − α) · Acache

A1 · (N − NshL3
+ 1)

(14)

where NshL3
is the average number of sharers per L3 block.

4.2. Shared L2 Cache and shared L3 cache

Uniform Cache Architecture (UCA). We re-write (10) as

CPI = CPIsh + β · (N − 1)

+ mpi(SL2sh) · mp
L3

+ mpi(SL3sh) · mp
M

(15)

In the above SL2sh is the value in (9) scaled by α and SL3sh

is same as (14).

Non-Uniform Cache Architecture (NUCA). We re-write

(11) as

CPI = CPIsh + γ ·
2

3

√
N · tr

+ mpi(SL2sh) · mp
L3

+ mpi(SL3sh) · mp
M

(16)

where SL2sh and SL3sh are identical to those of UCA.

4.3. Hybrid L2 cache and shared L3 cache

After taking into account the effect of L3 cache and extend-

ing equation (12) we have

CPI = CPIpr

+ mpi(SL2p) ·
2

3

√
N · tr

+ mpi(σ · SL2p) · mp
L3

+ mpi(SL3sh) ·mp
M

(17)

where SL2p and SL3sh are defined as in Section 4.1.

4.4. Off-chip L3 cache

Our discussions so far have been limited to processor de-

signs with and without on-chip L3 caches and have not con-

sidered off-chip L3 cache. However, our model can be easily



0

5

10

15

20

25

10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(I

P
C

)

The number of processors

Analytical model
Simulation

Figure 1. Comparing the outcomes of the proposed

model (NUCA) and the simulation. The collapse point

was between 40 and 48.

extended to handle the case. Because the off-chip L3 cache

capacity is not dependent on the core count or the L2 cache

capacity of the processor chip, we can simply introduce a

new parameter to directly specify the off-chip L3 cache ca-

pacity and factor in its impact on the latency penalty. As-

suming a private on-chip L2 cache scheme, we have

CPI = CPIpr + mpi(SL2p) · mp
L3

+ mpi(SL3) · mp
M

(18)

where SL2p is simply SL2/N as in (5). We do not show the

formulas for the shared and hybrid schemes here.

5. Validation

We validated our analytical model by comparing its esti-

mated IPC predictions with elaborate simulation results. We

used the TPTS simulator [17] to model a multicore proces-

sor chip with in-order cores. We construct synthetic paral-

lel workloads by running multiple copies of a single-thread

program and treating some of the memory pages as “shared”

pages between threads. Benchmarks were drawn from the

SPEC2k CPU suite, including art, gcc, facerec, and ammp.

After obtaining the basic parameters (L1 cache miss rate and

base CPI) from simulation, we used the analytical model to

estimate the IPC. Simulations were then repeated with dif-

ferent core counts to generate sample points for comparison.

Figure 1 shows the result for the benchmark ammp and the

NUCA cache type. Overall, we observe that our model is

in good agreement with the simulation. We found that af-

ter a specific core count, however, the agreement ends and

the result of simulation drops down much more drastically

than that of our model. The “collapse point” was at about

48 cores for NUCA and UCA, and about 40 cores for Pri-

vate and Hybrid. This occurs because the square root rule of

thumb [14, 15] is not accurate if the cache becomes smaller

than a certain size. We do not pursue to develop a more ac-

curate cache miss model, which is beyond the scope of this

paper. The average RMS error before the collapse point was

Parameter Description Value

CPIpr CPI with infinite private L2 cache 1.36

CPIsh CPI with infinite shared L2 cache 1.54

mp
M

Memory access penalty 400

mp
L3

L3 cache access penalty (on-chip/off-chip) 15/80

mpi(1) Misses per instruction (1MB cache) 0.006

tr Network traversal latency per hop 4

σ Cache expansion factor (hybrid cache) 1.2

α Cache area division (L2 vs. L3) factor <1

β Bandwidth penalty factor (UCA) 0.024

γ Bandwidth penalty factor (NUCA) 0.03

λ Degree of cache block sharing 0.5

Table 2. Model parameters.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(I

P
C

)

The number of processors

private L2
UCA L2

NUCA L2
Hybrid L2

Figure 2. IPC with on-chip L2 cache (no L3 cache).

found to be small: 5.2 % (NUCA), 4.2 % (UCA), 5.5 %
(Private) and 6.5 % (Hybrid).

6. Case Study

In this section, we present a case study that uses the pre-

sented analytical model. We employ a hypothetical bench-

mark to clearly reveal the properties of different cache orga-

nizations and the capability of our model. Table 2 shows our

base parameters obtained experimentally from the SPEC2k

CPU benchmark suite. We study L2 cache configurations

with and without an L3 cache, both on-chip and off-chip.

The main metric is system IPC (throughput). In all exper-

iments in this section, we change the number of processor

cores and show how that affects the throughput. With the

given chip area (342 mm2), core size (5 mm2), and the 1MB

cache area (4 mm2), a CMP chip can hold at most 68 cores

(with no caches) and at most 86 MB of cache capacity (with

no cores).

Comparing private, shared, and hybrid caches. Figure 2

presents the result for the private cache scheme, the shared

cache scheme (UCA and NUCA), and the hybrid cache

scheme without an L3 cache. Their performance peaks at

the core count of 45 (private), 48 (UCA), 50 (NUCA), and

47 (hybrid), respectively. It is shown that the shared scheme

can exploit more cores as it provides relatively more caching

capacity than the private and the hybrid scheme. Given the

parameter set, however, the hybrid cache exhibits the best



0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(I

P
C

)

The number of processors

Private L2
UCA L2

NUCA L2
Hybrid L2

Figure 3. IPC with on-chip L2, L3 cache (α = 0.2).

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(I

P
C

)

The number of processors

alpha=0.1
alpha=0.2
alpha=0.3
alpha=0.4
alpha=0.5
alpha=0.6
alpha=0.7
alpha=0.8

Figure 4. Effect of changing α, private L2 and shared L3.

performance among all the schemes. The hybrid cache ben-

efited from low local hit latency (same as that of the private

cache) and more on-chip cache hits in remote cache slices.

The peak performance of each scheme was: 11.05 (hybrid),

10.85 (NUCA), 10.43 (private), and 9.60 (UCA) in the de-

creasing order. After reaching the peak, the throughput of

the CMP drops quickly as we add more cores. This is be-

cause the caching space given to each core is reduced and

the performance benefit of adding more cores is quickly off-

set by the increase in cache misses. Due to the similarity in

their IPC formula, the private scheme and the hybrid scheme

have a similar performance curve. By the same token, the

UCA and the NUCA schemes show a similar curve as well.

Effect of on-chip L3 cache. We have previously observed

that the hybrid scheme, taking advantage of low cache hit

latency and larger effective caching capacity, performed bet-

ter than the private and the shared scheme. How would the

picture change if we have an on-chip L3 cache? Figure 3

presents the performance curves of the same cache organi-

zations, this time with an L3 cache. It is shown that the dis-

tance between performance peaks has narrowed. Their per-

formance peaks at the core count of 46 (private), 47 (UCA),

48 (NUCA), and 46 (hybrid), respectively. Moreover, the

private cache scheme and the hybrid cache scheme notice-

ably outperform the shared schemes. This is because the rel-

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(I

P
C

)

The number of processors

Priv. L2 w/o on-chip L3
NUCA L2 —
Hybrid L2 —

Priv. L2 w on-chip L3
NUCA L2 —

Figure 5. Comparison of cache organizations with and

without on-chip L3 cache (α = 0.2).

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(I

P
C

)

The number of processors

Priv. L2 w/o L3
NUCA L2 —
Hybrid L2 —

Priv. L2 w off-chip L3
NUCA L2 —
Hybrid L2 —

Figure 6. IPC with and without off-chip L3 cache.

atively high miss rate of the private and hybrid cache scheme

is compensated by the L3 cache and its on-chip cache hit rate

matches that of the shared schemes. Under the given param-

eter set, the performance difference of the private and the

hybrid schemes was negligible. Because the hybrid cache

management is more complex than that of the private cache,

the private cache becomes more favorable in the presence

of the on-chip L3 cache. How much area we allocate to L2

and L3 caches becomes an interesting design question now.

Figure 4 depicts how α, the parameter that governs the area

allocation between the L2 and L3 caches, changes processor

throughput. In this experiment, we use the private scheme

at L2. It is shown that among the values we assigned to

α, 0.2 produces the best throughput. The throughput con-

tinuously improves as we change α from 0.8 down to 0.2.

Below α = 0.2 (at α = 0.1), however, the performance

starts to degrade. At the bottom line, it is suggested that we

need to allocate much larger area for L3 (80% of Acache)

than L2 to hit the right point in the trade-off between more

L2 hits (fast access) and more L3 hits (higher on-chip hit

rate). Figure 5 presents the throughput of a few selected

cache schemes with and without on-chip L3 cache. Among

all the schemes we examined, the (private L2 + shared L3)

scheme performed the best, followed by the hybrid L2 cache



0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(I

P
C

)

The number of processors

32 MB
64 MB

128 MB
256 MB
512 MB

1024 MB
2048 MB
4096 MB
8192 MB

Figure 7. Impact of the off-chip L3 cache size. The pri-

vate scheme is used in the on-chip L2 cache.

scheme. In the case of the shared scheme (NUCA), adding

an L3 cache degrades the performance. Again, what is re-

vealed in this comparison is that taking the best of the private

and the shared strategies results in high performance. We ob-

serve that the performance benefit of having the two levels of

cache memory is limited; the hybrid L2 cache scheme per-

formed close to the (private L2 + shared L3) scheme. One

reason for this limitation is the inclusiveness we maintain

between the L2 and L3 caches. Even though we allocate a

large capacity at L3, much of the space is used to keep the

duplicate copies of data in the L2 caches. Given this, a pos-

sible optimization for the two-level on-chip cache hierarchy

is to introduce non-inclusiveness between L2 and L3 caches.

In fact, Dorsey et al. [8] describe such a non-inclusive cache

design. We leave exploring such a design as a future work.

Effect of off-chip L3 cache. Figure 6 shows the same curves

with and without an off-chip L3 cache of 128 MB. The pri-

vate and the hybrid schemes benefit from the off-chip L3

cache the most and their maximum throughput improvement

amounts to 52%. The core count at the performance peak is

much larger, close to 60 in all the schemes. As with the

on-chip L3 cache, the private and the hybrid cache schemes

are favored over the shared cache scheme. Finally, Figure 7

shows how the off-chip L3 cache size affects the system

throughput. It is observed that at a large core count (>40) the

L3 cache size has a large impact on the system throughput.

Doubling the cache size from 32MB boosts the throughput

by at least 10% until the cache size reaches 256 MB. Be-

yond 256 MB, however, the throughput gain is diminishing

quickly. Considering the cost, 0.5∼2 GB of L3 cache capac-

ity gives a reasonable system throughput.

7. Conclusion

In this paper, we presented a simple and effective analytical

model to study the trade-off between the core count and the

cache capacity in a CMP under a finite die area constraint.

Our model differentiates shared, private, and hybrid cache

organizations. The presented model enables one to quickly

study how key chip area allocation parameters affect the sys-

tem performance. The model input includes: CMP chip area,

core size, core count, miss rate for the 1MB cache, and L2

cache miss penalty. To evaluate the effectiveness of our ap-

proach, we performed a case study where we use a set of pa-

rameter values derived from a hypothetical benchmark. The

result shows that different cache organizations have different

optimal core and cache area breakdown points. For instance,

the shared cache organization leads to more cores at its peak

performance point than the private and hybrid cache. An-

other finding is that when there is a shared L3 cache, the

private and the hybrid schemes produce more performance

than the shared schemes.

As future work we plan to incorporate accurate area mod-

els for various on-chip networks and a CMP power model.

We plan to extend our model to study asymmetric CMPs.

Acknowledgment

This work was supported in part by NSF grant CCF-0702236

and an A. Richard Newton Graduate Scholarship from the

45th Design Automation Conf. (DAC), 2008. Authors thank

the anonymous reviewers for their constructive comments.

References

[1] ITRS (International Technology Roadmap for Semiconductors),

http://www.itrs.net/reports.html.

[2] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and D. Newell,

“Performance, area and bandwidth implications on large-scale cmp

cache design,” HPCA, 2007.

[3] J. Huh, D. Burger, and S. W. Keckler, “Exploring the design space of

future cmps,” PACT, 2001.

[4] A. R. Alameldeen, Using compression to improve chip multiprocessor

performance. PhD thesis, 2006.

[5] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”

Computer, vol. 41, pp. 33–38, July 2008.

[6] U. M. Nawathe, “An 8-core 64-thread 64bit power-efficient sparc

soc,” ISSCC, 2007.

[7] J. Friedrich, “Design of the power6 microprocessor,” ISSCC, 2007.

[8] J. Dorsey, “An integrated quad-core opteron processor,” ISSCC, 2007.

[9] N. Sakran, “The implementation of the 65nm dual-core 64b merom

processor,” ISSCC, 2007.

[10] A. B. Kahng, “Design challenges at 65nm and beyond,” DATE, 2007.

[11] P. G. Emma, “Understanding some simple processor-performance

limits,” IBM J. Res. Dev., vol. 41, no. 3, pp. 215–232, 1997.

[12] R. E. Matick, T. J. Heller, and M. Ignatowski, “Analytical analysis

of finite cache penalty and cycles per instruction of a multiprocessor

memory hierarchy using miss rates and queuing theory,” IBM J. Res.

Dev., vol. 45, no. 6, pp. 819–842, 2001.

[13] X. Zhao, K. Sammut, F. He, and S. Qin, “Split private and shared l2

cache architecture for snooping-basedcmp,” ICIS, pp. 900–905,2007.

[14] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann, 3rd ed., 2003.

[15] K. A. Bowman, A. R. Alameldeen, S. T. Srinivasan, and C. B. Wilker-

son, “Impact of die-to-die and within-die parameter variations on the

throughput distribution of multi-core processors,” ISLPED, 2007.

[16] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity

while hiding wire delay in tiled chip multiprocessors,” ISCA, 2005.

[17] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee, and M. Mo-

eng, “TPTS: A novel framework for very fast manycore processor

architecture simulation.,” ICPP, 2008.


