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Abstract—Software simulation is the primary tool used for 

evaluation of processor design. Simulation offers better accuracy 

than analytical models and is an important evaluation step before 

actually fabricating a chip. Unfortunately, simulator speeds are 

slow—a conventional cycle-accurate simulator will be unable to 

keep up with increasing core counts in modern processor design.  

Parallel simulation is one method for improving simulation 

speeds. Two major areas of parallel simulation research are 

multithreaded simulators and FPGAs as simulation accelerators. 

Multithreaded simulators can only extract coarse-grained 

parallelism and must sacrifice accuracy in order to scale well. 

FPGA-based simulators can extract fine-grained parallelism, but 

are expensive and difficult to program.  

We propose using GPUs for architectural simulation, which can 

take advantage of a high degree of fine-grained parallelism. In 

addition, they are inexpensive and easier to program compared 

to FPGAs. To demonstrate our ideas, we implement a trace-

driven many-cache simulator using NVIDIA's CUDA toolkit. 

GPU-accelerated cache simulation displays remarkable scaling 

with number of simulated caches when compared to serial CPU-

only simulation. 

Keywords-Simulation; Parallel Architecture; Cache; General-

Purpose GPU; CUDA 

I.  INTRODUCTION 

Architecture simulation is the process of simulating a target 
machine's execution using a host machine. Simulation is 
crucial in the design of new microprocessors. Simulation 
allows computer architects to create a processor or alter an 
existing design before embarking on the expensive fabrication 
process. In addition, a simulator can be easily modified to 
monitor behavior that might be difficult to expose after 
fabrication.  

Two of the key metrics used to evaluate simulators are 
performance—how fast the simulator executes simulated 
instructions; and accuracy—how closely the simulator models 
its target machine architecture. Simulation performance is 
unacceptable in the context of chip multiprocessors (CMPs). 
To achieve perfect accuracy, simulation occurs serially on a 
single host core. Parallel simulation is necessary in order to 
continue developing chips with higher core counts, and using a 
parallel simulator running on a host CMP is a growing area of 
research [2,3,4,6]. 

Multithreaded simulation using a host CMP is far from 
ideal. Speedups are limited by the number of host cores. This 
tends to be less than the number of cores on the target machine 
being simulated, especially if an architect is interested in 
manycore chip design.  Furthermore, host threads must 

synchronize with one another in order to maintain correct 
relative timing between simulated cores. This synchronization 
is costly, forcing simulators to sacrifice some accuracy for 
reasonable speedups [2,3,5,6]. 

Another growing area of simulation development is the use 
of Field-Programmable Gate Arrays (FPGAs) as co-processors 
[7,8,9,10]. FPGAs have become popular because they can take 
advantage of the fine-grained parallelism between hardware 
structures. Some limitations of FPGAs include cost and a 
constrained area. The limited area on an FPGA can be dealt 
with by reusing FPGA structures [8], but this limits the total 
parallelism that can be achieved. 

We propose the use of Graphics Processing Units (GPUs) 
to accelerate manycore architecture simulation. NVIDIA’s 
CUDA technology allows a programmer to write code using 
the C++ syntax and run the code on a GPU [15,16]. Graphics 
processing is an endlessly parallelizable task, and Graphics 
Processing Units are built to have a high degree of fine-grained 
parallelism, high memory bandwidth, and relatively fast 
communication with the corresponding CPU. We believe these 
properties make General Purpose GPU processing a strong 
candidate for simulating the timing partition of a manycore 
simulator (the CPU would simulate the functional partition). A 
similar partitioning is used in [7], except using an FPGA to 
accelerate timing simulation for a single core. 

We demonstrate our idea by implementing a trace-based 
cache simulator. Trace-driven simulation is similar to a 
functional/timing partitioned simulator, with the trace acting as 
the functional partition. As an example of the parallel scaling 
available on GPUs, Figure 1 illustrates an ideal case—
simulating L1 private caches with no shared data†. Simulation 
with GPUs shows only a minor increase in simulation time 
while CPU-only simulation slows down super-linearly with the 
number of caches. Our experimental details are in Section V. 

The remainder of our paper discusses our GPU-based cache 
simulator and obstacles faced while implementing the 
simulator in order to deal with non-ideal cases. Specifically, we 
focus on dealing with cache coherence for a multithreaded 
workload and two-level cache hierarchies using shared and 
private L2 organizations. 

Section II covers relevant techniques used to improve 
simulation performance. Section III describes the architecture 
of a GPU and the programming model used for CUDA. In 
Section IV we outline our cache simulator and describe 
implementation issues. Section V details our experimental 
setup, while Section VI covers our results. Section VII 
concludes and touches on several ways we plan to expand this 
work.  

 

† See Section V for details 



 

Figure 2.   Diagram of Functional/Timing partitioned simulation. 
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Figure 1.  Simulation time as we vary the number of simulated  

caches, normalized to 16 caches in CPU-only simulation. 

II. BACKGROUND 

The process of simulating a target machine can be broken 
into several components. Figure 2 shows the major parts shared 
by most cycle-accurate simulators. Functional simulation 
executes an application binary using the target machine’s 
instruction set, dealing with control flow, system calls, and IO 
requests. Timing simulation models the hardware structures of 
interest to an architect. These can be core components such as a 
pipeline, or uncore components such as an on-chip network.  

Much of the simulation state used in functional simulation, 
most notably data values, are not used during timing 
simulation. Similarly, much information obtained during 
timing—such as specific cache tags—are not needed by the 
functional simulator. This clean division of data results in 
many simulators being developed with a functional/timing 
partition, such as [3,6,7]. The functional partition does 
functional simulation and generates events relevant to the 
timing partition. The timing partition calculates how long these 
events take to resolve and notifies the functional partition if it 
needs to deviate from regular functional simulation (such as 
simulating the wrong path of a branch). 

A. Accelerating Functional Simulation 

Direct execution is a technique for improving simulation 
performance by performing functional simulation directly on a 
host machine and is used in [3]. This can be achieved using 
binary instrumentation [13]. Instructions in the application 
binary are instrumented to generate events which are simulated 
by the timing partition. Direct execution can greatly speed up 

functional simulation and is orthogonal to our work. 
Functional simulation generates a stream of events that are 

sent to the timing partition, such as memory access addresses. 
Many events tend to not change even when the machine 
configuration is changed. Trace-driven simulation [11,12] takes 
advantage of this by putting all static information sent to the 
timing partition into a trace file. The information is collected 
once using a functional simulator and a trace of events is 
generated. Events in the trace can be simulated multiple times 
for different target machine configurations to amortize the cost 
of trace generation. Much like direct execution, trace-driven 
simulation is orthogonal to our overall work and we use trace-
driven simulation in this work to evaluate our ideas. 

B. Multithreaded Simulation 

Multithreaded Simulation has been used by computer 
architects for some time, and is gaining popularity as CMPs 
become the norm [2,3,4,5,6]. In general, a simulator will be 
divided into threads, each of which is assigned one or more 
cores to simulate. Difficulties arise when these threads residing 
on different cores need to communicate if the workload 
involves a shared memory space or because the cores access 
shared resources.  All target cores need to be synchronized so 
they access resources in the same order as they would in a real 
machine. Using looser synchronization (where simulated cores 
progress at slightly different rates) reduces simulation accuracy 
but improves performance. 

There are several popular techniques used to loosely 
synchronize simulated cores in parallel simulation. Quantum-
based synchronization [5] periodically synchronizes all threads. 
Slack-based synchronization [2] keeps track of the slowest-
progressing thread and ensures that no thread gets too far ahead 
of the slower thread. Point-to-point synchronization [3] forces 
each thread to periodically select a single other, random thread 
and ensure their progress is approximately the same. Our 
method of synchronization most closely matches quantum-
based synchronization. 

C. Acceleration with Coprocessors 

Han et al. introduced a GPU-based cache simulator in [1], 
but assign sets to threads to leverage parallel speedups on the 
GPU. The GPU first sorts trace accesses by set, and each set is 
processed independently. This means simulator processes 
cache accesses out of order temporally, so only hit/miss 
information can be gathered. Our work processes requests to 
each cache in order, which is essential if caches are to interact 
with one another for timing simulation. We extract our 

0
1
2
3
4
5
6
7
8
9

10
11
12

16 32 48 64 80 96 112 128

Si
m

u
la

ti
o

n
 T

im
e

Simulated Caches
CPU GPU



 

Figure 3.  Diagram of thread / block organization  

within a CUDA kernel. 
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parallelism through multiple caches rather than multiple sets. 
This means our single-cache simulation speed is significantly 
slower; however, more total caches can be simulated, which is 
a good fit for multicore/manycore timing simulation. In 
addition, [1] simulates a single L1 or single L1/L2 pair. We 
focus on the simulating multiple caches which interact with 
each other. 

GPU acceleration has been proposed for low level circuit 
simulation. In [18], Chatterjee, DeOrio, and Bertacco first 
transform a circuit netlist into CUDA code before simulating 
the circuit. Gates are grouped into layers so CUDA threads can 
simulate gates from the same layer in parallel; only simulating 
gates if input values have changed. In [19], Nanjundappa et al. 
parallelize simulation of circuits modeled in SystemC. As with 
[18], the authors first transform code describing the circuit into 
CUDA code. Each step, all hardware modules with new inputs 
are simulated and their outputs are propagated.  

Both [18] and [19] target low level circuit simulation, 
which is much slower but much more detailed than 
architectural simulation. Architectural simulation is more 
useful for evaluation of new architectures. Low level circuit 
simulation is also somewhat easier to parallelize on a GPU than 
architectural simulation. First, the time needed to simulate a 
layer can be balanced between threads (we know how many 
gates are in the layer). Second, the same instructions are 
executed each step by all gates, which reduces warp 
divergences, an important CUDA concept we discuss in 
Section III. In [20], Perumalla covers general discrete event 
simulation on GPUs, and discuss challenges when using 
specialized GPUs as opposed to general purpose CPUs for 
parallel discrete event simulation. 

FPGAs allow hardware structures to be directly 
programmed into them. This results in fast simulation for 
several reasons. First, a hardware structure simulated on an 
FPGA takes many fewer FPGA clock cycles to simulate a 
target machine cycle than a general-purpose processor. Second, 
multiple hardware structures placed on an FPGA can quickly 
communicate and thus may be simulated in parallel without 
dealing with synchronization issues multithreaded simulation 
faces. Finally, FPGAs increase their transistor count with 
Moore’s Law, which gives them better expected scalability for 
CMP simulation. In contrast, single-threaded simulation does 
not scale, as extra transistors gained through Moore’s Law are 
mostly used for extra cores. These insights led to the RAMP 
project [9], which focuses on using FPGAs to accelerate CMP 
simulation.  

The FAST simulator [7] is a single core simulator which 
performs functional simulation on a host machine. An FPGA 
performs a detailed timing simulation of a target machine’s 
pipeline, branch predictor, and memory hierarchy. An FPGA 
can simulate a highly detailed pipeline very quickly. The 
drawbacks to using an FPGA include difficulty in developing 
the simulator and long communication latency with the host 
(compared to conventional single-threaded simulation). A 
significant part of the FAST project deals with the long latency 
between the functional and timing partitions. This involves 
roll-backs when the timing partition generates an event that is 
not part of pure functional simulation, such as simulating 
instructions for a mispredicted branch. 

HAsim [8] deals with area constraints of FPGAs. An FPGA 
quickly runs out of space when simulating a CMP if one tries 
to replicate hardware structures for each core. HAsim reuses 

hardware structures in order to accurately simulate the entire 
CMP.  By overlapping some of the computation when 
simulating multiple cores, simulation throughput improves 
somewhat as the number of simulated cores increases.  
However, beyond 4 target cores HAsim experiences a roughly 
linear slowdown with simulated core count.  

III. NVIDIA’S CUDA 

In 2006 NVIDIA introduced its CUDA technology [15], 
which uses NVIDIA GPUs for general purpose computation 
usually performed by CPUs. In this section, we describe 
enough of GPU architectures and the CUDA programming 
model to explain our work; for more information on CUDA, 
readers should refer to [16]. 

In the CUDA programming model, work is sent from the 
host (CPU+main memory) to the device (GPU). Host memory 
is explicitly transferred to the device; GPU code is started by 
calling a kernel function. Each kernel function runs under a 
Single Instruction, Multiple Data (SIMD) paradigm. Each 
kernel is broken into a number of blocks, each of which has a 
number of threads. Threads within a block can communicate 
using a dedicated shared memory and have access to a fast 
barrier primitive. Figure 3 is a diagram showing the 
organization of threads and blocks in a kernel. On the GPU, 
each block in the kernel is executed on one of the GPUs vector 
multiprocessor. Multiple blocks can be co-scheduled on a 
multiprocessor and share its resources. 

Threads from a block are grouped by the GPU scheduler 
and run together as a warp of 32 threads. These threads should 
be executing the exact same instructions because they are 
running together on a vector multiprocessor. When threads in 
the same warp follow different control paths, each control path 
must be executed serially—threads from a single control path 
take up the multiprocessor while threads in other control paths 
sit idle. This warp divergence severely impacts performance, 
and should be avoided whenever possible.  

CUDA’s memory hierarchy includes global, local, and 
shared memory. Both global and local memory map to a 
GPU’s graphics RAM; global memory is accessible by all 
threads in the kernel and local memory is thread-private. 
Shared memory is block-private—all threads within a block 
have access to shared memory allocated for that block. We 
used a Fermi card in our experiments, which features a L1/L2 
cache hierarchy that caches global and local memory requests. 
The L1 cache uses the same type of memory as shared 
memory, which is why shared memory is not cached. Threads 
in different blocks may only communicate through global 
memory. CUDA provides atomic instructions to allow for 
consistent memory accesses. 

Note that CUDA syntax calls code running on the CPU 
―host code‖ and code running on the GPU ―device code‖. 
Because this somewhat conflicts with simulation syntax of host 



 

 

Figure 4.  Diagram of Logical Simulation Flow. 
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machine and target machine, we will use CPU and GPU 
instead of standard CUDA syntax. 

IV. GPU CACHE SIMULATION 

In this section we describe how we perform cache 
simulation using a GPU. Each cache processes a sequence of 
memory accesses stored in a trace file. Simulation occurs in 
intervals: a chunk of each trace is read from file; then memory 
accesses in that chunk are simulated. The process to fetch 
memory accesses is the same for both the CPU-only simulation 
we use as a baseline and for the GPU-based simulation. Below 
we describe the changes made to accommodate simulation 
using CUDA. 

We start by describing the logical simulation flow, 
illustrated in Figure 4. After reading a chunk of trace files into 
memory, trace data (addresses, instruction timestamps, and 
access types) are transferred to GPU memory. Once memory 
transfer completes, the ―L1 kernel‖ is started. During its 
execution, the L1 kernel outputs miss addresses to a buffer 
residing in device memory. Once the L1 kernel completes, the 
―L2 kernel‖ is started, which processes the L1 miss addresses. 
After the L2 kernel finishes, statistics for both the L1 and L2 
are copied back to the host and simulation moves to the next 
interval. 

A. Thread-to-Block Mapping 

Each thread in our kernel simulates a cache way. This 
allows us to parallelize the address lookup process. Threads 
simulating the same cache perform their tag comparisons to 
check for a hit simultaneously. The threads then communicate 
via shared memory whether there was a hit or not. If no hit 
occurred, eviction follows the Least Recently Used (LRU) 
policy by checking each way’s position on an LRU list. The 
first thread in the cache performs the check for a victim 
serially. We experimented with a parallel tree-based reduction 
to find a victim, but this had worse results at all associativity 
levels we evaluated. Whether or not an eviction occurred, all 
threads then update their LRU position in parallel. 

To help guide our thread/block mapping, we used the 
recommended CUDA Occupancy Calculator [17]. Mapping 
just one cache to a block results in better performance with a 
small number of simulated caches, but does not scale as well to 
a larger cache count. Increasing the number of caches improves 
scaling until register or shared memory usage exceeds a 
block’s capacity. In addition, caches mapped to the same block 
are kept perfectly synchronized (see Part F). The Occupancy 
Calculator determined that 64 threads per block allowed for the 
maximum parallelism for our GPU. Therefore, for most 

experiments, we map 4 caches to each block, with each cache 
spawning a number of threads equal to the cache’s 
associativity. When simulating 16-way caches, we end up with 
64 threads per block. 

B. Memory Organization 

Cache state is stored in global memory. Initially we copied 
tag information to local memory at the start of each kernel, but 
leaving tags and other metadata like the LRU position into 
global memory helped us deal with cache coherency (see Part 
D). Cache parameters such as associativity, cache size, and 
block size are initially in global memory and are copied into 
local memory to cut down on contention between threads 
accessing the same information.  

Initially we tried placing tag and LRU position data in 
shared memory, but this quickly filled up the maximum shared 
memory available to each physical multiprocessor and reduces 
the number of caches that can be simulated. In addition, the 
L1/L2 caching added to Fermi GPUs means global memory 
accesses are nearly as fast as shared memory accesses, 
provided they have good locality (which cache tag lookups 
tend to have).  

C. Concurrent Execution 

CUDA supports asynchronous memory transfers. In 
addition, CUDA kernels are spawned in a non-blocking 
fashion, so CPU code can still be run. We use these features to 
speed up execution with the help of CUDA streams. A stream 
is a serial sequence of commands that has no ordering 
restrictions with respect to other streams. In addition, 
asynchronous commands in a CUDA stream can also execute 
concurrently with blocking commands running on the CPU. 

After a trace chunk is read from a trace file, the transfer of 
data from CPU’s memory space to the GPU’s memory space is 
started asynchronously before the next trace chunk is read. This 
process uses a single stream dedicated to this memory transfer. 
More transfer streams did not benefit performance as each 
transfer uses the maximum transfer bandwidth.  

In addition to using streams for memory transfer, we use 
streams to concurrently execute all three major components of 
the trace simulation:  

 

 Trace I/O and memory transfer 

 GPU kernel simulating the L1 cache 

 GPU kernel simulating the L2 cache 
 

These are overlapped in a pipelined manner shown in 
Figure 5. Two streams are used—each with its own trace buffer 
and L1 miss address buffer. While the L1 kernel reads trace 
information from Buffer trace-A and outputs misses to Buffer 
miss-A, the trace I/O will be copying the next chunk into trace-
B and the L2 kernel will be processing misses from Buffer 
miss-B. 

Note that simultaneous execution of kernels is supported 
only by newer NVIDIA GPUs (Fermi GPUs). Without 
simultaneous kernel execution, the L1 and L2 kernels must be 
executed serially. However, kernels still spawn 
asynchronously, so the trace file IO and memory transfer can 
still execute concurrently with the L1 or L2 kernel. 



 

 

Figure 5.  Diagram of pipelined kernel execution. Coloring denotes which buffer is being used for by kernel.  

Vertical dotted lines denote synchronization points. 
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D. Cache Coherence 

For multithreaded workloads, it is necessary to keep caches 
coherent. We implement a snooping protocol to gauge the 
effect of inter-cache communication on GPU simulation. Each 
cache keeps track of a list of other caches snooping on it. When 
a write is encountered, the writing cache can check the tags of 
other snooping caches because tag and meta state are stored in 
global memory. If a match is found, the writing cache can 
directly invalidate the block in other caches by atomically 
modifying the meta state. An atomic operation is necessary so 
multiple caches do not overcount simultaneous invalidations.  

When all caches in a multithreaded workload are mapped to 
the same block (this is possible when there are 4 or fewer 
threads that need to snoop on each other), all caches are kept in 
sync by calling CUDA’s fast barrier primitive each cycle. In 
this case, direct invalidation results in negligible deviation from 
the host. This deviation results from same-cycle writes that 
cause race conditions. Inaccuracies arise only when there are 
more caches snooping on each other than we can fit onto a 
block (more than 4 caches). 

E. Shared Memory 

Private L2 cache slices receive all misses from a single L1, 
so there is no interaction between L1 slices when misses occur. 
For shared caches, this is not the case. In order to simulate L2 
caches using the shared cache policy, we make use of CUDA’s 
atomic instructions. Each L2 cache has an associated miss 
address buffer. An L1 kernel thread determines which L2 slice 
a miss address belongs to using the lowest bits of the block 
address. The kernel then uses an atomic operation to increment 
the miss address buffer index for the destination L2 cache 
before placing its miss address into the buffer. Each simulated 
cache in the L2 kernel has a sequence of memory accesses and 
can then process its accesses in the same manner as the L1 
kernel. 

A significant issue with this approach occurred when trying 
to synchronize threads at the end of the L1 kernel. This was 
necessary in order to add a delimiter marking the end of the 
miss address buffer for each L2 slice. The scheduler currently 
used for CUDA cores does not swap out spinning threads, so 
implementing a barrier using global memory will often result 
in deadlock. Once a kernel terminates, however, threads are 
guaranteed to be synchronized. We used a short cleanup kernel 

to add this delimiter, avoiding the need for cross-block 
synchronization within the L1 kernel. 

F. Synchronization 

Both techniques used in Parts D and E (although especially 
Part D) rely on threads in a kernel proceeding at approximately 
the same rate to be accurate. This is not a problem for caches in 
the same block, because for each trace item we execute 
CUDA’s block-wide barrier so all caches mapped to the block 
are synchronized. However, as discussed above, inter-block 
barriers within a kernel are impractical. For inter-block 
synchronization, we turn to quantum-based synchronization 
[5]. CUDA kernels are a natural fit for quantum 
synchronization, because in between kernels all threads are 
automatically synchronized. We vary the size of a trace chunk 
in order to evaluate the effect of quantum size on our 
simulation. Because threads within a block are synchronized 
every access, our quantum synchronization is hierarchical—
quantum size for caches in the same block is 1, and quantum 
size for caches In different blocks is the trace chunk size. Much 
like classic quantum-based synchronization, processing fewer 
trace elements in a kernel (using a smaller quantum) results in a 
worse performance but better accuracy. 

V. EXPERIMENTAL SETUP 

All our experiments are performed on a machine detailed in 
Table I. We implemented our own trace-driven cache simulator 
running on the CPU to serve as a baseline. Execution times are 
collected with the UNIX time command.  We use a low-mid 
range GPU, a GeForce GTS 450, for our experiments. Fermi 
cards have an L1/L2 cache hierarchy that can be configured to 
take up a portion of the shared memory. We found giving the 
GPU 48KB cache and 16KB shared performed slightly better 
than 16KB cache and 48KB shared; however, it was important 
to set both the L1 and L2 kernels to the same cache 
configuration.  

Although our host machine has less RAM than a typical 
server, our simulator’s working set size is much smaller than 
2GB—the main memory is never taxed. For our machine, we 
empirically found a chunk size of 2048 to work well for both 
CPU and GPU simulation. Later we evaluate the effect of a 
varied trace chunk size. 



A. Target Machine 

We evaluate three timing models. The first is one level of 
L1 caches. The next two are L1/L2 cache hierarchies using 
Private L2 caches (where addresses are mapped to the same 
cache tile as the L1), and Shared L2 caches (where addresses 
are mapped to tiles based on the lower bits of the block 
address). Unless otherwise stated, L1 caches are 16-way; L2 
caches are always 16-way. We implement snoop-based 
coherence, where each cache keeps a list of snoopers and 
invalidates written cache blocks for copies residing in other 
caches on the snoop list. Table II lists our other target 
parameters. We assume the caches are connected as a 2D mesh, 
although we do not simulate the on-chip network in this work. 
Because our simulated caches interact with one another, direct 
comparison with [1] is impossible. 

TABLE I.  HOST MACHINE 

Host Machine Specifications 

Processor Intel Core2 Duo 

Clock Rate 3.0 GHz 

Memory 2GB 

Operating System Ubuntu 10.04 

GPU Specifications 

Model GeForce GTS 450 

Multiprocessors 4 

CUDA Cores 192  cores 

Clock Rate 925 MHz 

Graphics Memory 1GB 

CUDA Version 3.20 

TABLE II.  TARGET TIMING MODEL 

Target Timing Model Specifications 

Block Size 64 Bytes 

Associativity 16-way 

Replacement Policy Least Recently Used (LRU) 

L1 Size (per slice) 64kB 

L2 Size (per slice) 512kB 

Timing models L1, Private, Shared 

 

B. Workloads 

We use a combination of workloads derived from a few of 
the PARSEC benchmarks: blackscholes, streamcluster, and 
canneal [14], using the large simulation inputs. Traces are 
generated by instrumenting the benchmarks with PIN [13]. 
Each trace item contains the memory address, memory access 
type, and dynamic instruction count. 

During simulation, each cache or cache tile simulates 10 
million accesses. During trace generation, each benchmark is 
fast forwarded until all working threads are spawned. Each 
thread spawned for the benchmark writes to its own trace file. 
Table III lists the benchmark combinations we evaluate in this 
work, including the number of trace files generated for each 
workload and the number of instructions fast forwarded (in 
millions). Workloads G, H, and I are used to evaluate accuracy 
in Part E.  

Because we simulate a large number of caches, trace files 
are reused. In these cases, an offset is specified that is greater 
than the number of accesses in a trace chunk. A new file 
pointer is opened for a repeated trace, and is offset by an 
amount equal to the offset. For example, if we simulate 32 

caches and have 4 trace files, each file is reused 8 times. If we 
use Trace T eight times, we open eight file pointers; the first is 
not offset, the second is offset by OFFSET, the third is offset 
by 2 × OFFSET, and so on. In addition, we mimic virtual 
address translation by putting addresses into a numbered 
address space. Addresses from multithreaded traces share 
address spaces; but repeated traces and multiprogrammed 
traces have different address spaces. 

TABLE III.  WORKLOADS 

Label 
Benchmark 

Trace 

Files 

Fast Forward 

(instructions) 

A streamcluster 1  150M 

B 
streamcluster 1 150M 

blackscholes 1 600M 

C streamcluster 4 150M 

D blackscholes 4 600M 

E 
streamcluster 4 150M 

blackscholes 4 600M 

F 

streamcluster 4 150M 

blackscholes 4 600M 

canneal 4 5500M 

G streamcluster 8 150M 

H blackscholes 8 600M 

I canneal 8 5500M 

 

VI. EXPERIMENTAL RESULTS 

A. Single-level Caches  

Figure 6 shows execution times for L1 simulations where 
only the L1 kernel is running. We show results for 32, 64, and 
96 simulated caches—normalized to 32 caches under CPU 
simulation. CPU-only simulation slows down superlinearly 
with cache count—average execution time increases by 3.4x 
from 32 to 96 caches. GPU accelerated execution time 
increases by just 1.1x. GPU performance is the worst in 
workload F—this workload is the most heterogeneous and 
must deal with cache coherency. Out of all our workloads, this 
behavior causes the most warp divergences—threads following 
different execution paths; such divergences have a negative 
effect on parallelism for CUDA multiprocessors.  

 

 

Figure 6.  Execution time when simulating L1 for 32, 64, and 96 caches. First 

three bars for each workload represent CPU-only simulation with increasing 

cache count; next three bars represent GPU simulation. 
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B. Hierarchical Caches  

Figure 7 shows execution times for Private simulation 
where L1 misses are passed to the L2 on the same tile. As in 
Part A, results are normalized to 32 tiles in CPU-only 
simulation. Parallel scaling is worse at 96 simulated tiles. The 
slowdown when scaling from 32 to 96 tiles increases from 10% 
(L1) to 34% (Private). Worse scaling for L1/L2 simulation 
means 96 L1/L2 tiles exceeds the limit of parallel 
improvements possible for our 192-core GPU.  

Figure 8 shows execution times for Shared simulation, 
where an address belongs to a tile based on the lowest bits of 
its block address. A consequence of using shared L2 cache 
slices is a single slice can receive a disproportionate number of 
the L1 misses. This can cause a heavy load imbalance for GPU 
simulation, as seen especially in workload D. This highlights 
the fact that a more efficient cache hierarchy can also result in 
faster simulation. Performance for Shared is governed by the 
degree of load imbalance, which is why GPU performance is 
erratic. Long execution times mean more cache accesses were 
directed to the same cache slice. Because we take the mod of a 
miss access’s block address to get its destination tile, mappings 
change with core counts. Some mappings, such as the mapping 
that occurs at 64 caches, cause heavier load imbalances than 
others. We performed some profiling of this load imbalance for 
64 caches—for a trace chunk size of 2048 accesses to each L1, 
a single L2 slice can receive over 10k misses during one 
kernel.  

 

 

Figure 7.  Execution time when simulating Private for 32, 64, and 96 tiles.  

 

 

Figure 8.  Execution time when simulating Shared for 32, 64, and 96 tiles. 

 

Figure 9.  Average performance improvement of concurrent over serialized 

execution. Results are for L1, Private, and Shared. 

C. Concurrent Execution 

To measure the impact of using overlapping CUDA 
streams, we measure performance for L1, Private, and Shared 
with and without concurrent execution. When CUDA streams 
are disabled, simulation follows the same flow as the logical 
from Figure 4. Performance improvements for concurrent over 
serialized simulation are shown in Figure 9. The benefits from 
concurrent execution increase as we simulate more caches, 
because there is more data to transfer to the GPU. The 
exception is for Private simulation with 96 tiles. As we saw in 
Part B, for 96 L1/L2 tiles the GPU has saturated its cores and 
execution is already being partially serialized—lessening the 
benefit of concurrently executing the L1 and L2 kernels. 
Shared simulation benefits very little from concurrent 
execution, because load imbalance to heavily accessed L2 
slices serializes much of the simulation process.  

D. Caches per Block 

We perform a study on the effect of the number of caches 
mapped to each CUDA block. Mapping more caches to a block 
results in: 

 

 Better scaling to high cache counts  (provided other 
resources are not taxed) 

 Better accuracy (less inter-thread communication) 

 Worse performance with low cache counts 
 

We found four caches per block to give the best overall 
performance. Beyond four, our GPU was limited in other areas 
(registers). It is possible that more caches per block would be 
suitable for some studies, however. Caches on the same block 
can synchronize within a kernel launch, which makes error 
negligible if all caches that interact with one another fit onto 
the same CUDA block.  

To illustrate the effect of cache-to-block mapping on 
performance, Figure 10 shows execution time—averaged 
across all workloads—for different numbers of caches per 
CUDA block for L1 simulation. At 32 simulated caches, 
mapping only one cache to each CUDA block improves 
performance by 80% over 4 caches per block, because there are 
fewer warp divergences. Specifically, mapping one cache to a 
CUDA block removes warp divergences caused when some  

 

0

0.5

1

1.5

2

2.5

3

3.5

4

A B C D E F

Si
m

u
la

ti
o

n
 T

im
e

Workload

CPU 32

CPU 64

CPU 96

GPU 32

GPU 64

GPU 96

0

0.5

1

1.5

2

2.5

3

3.5

4

A B C D E F

Si
m

u
la

ti
o

n
 T

im
e

Workload

CPU 32

CPU 64

CPU 96

GPU 32

GPU 64

GPU 96

0%

10%

20%

30%

40%

50%

60%

70%

80%

32 64 96

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t

Simulated Cache Tiles

L1

Private

Shared



 

Figure 10.  Average execution time when simulating L1, normalized to CPU 

simulation of 16 caches. Lines show performance scaling when mapping  

1, 2, or 4 caches to each CUDA block. 

threads in the same block are resolving a miss while others are 
resolving a hit. 

However, as the number of simulated caches increase the 
GPU reaches its limit for active blocks. With fewer caches per 
block, the GPU saturates faster. Therefore, scaling is better 
when there are more caches per block. At 1 or 2 caches per 
block, we see jumps in execution time corresponding to block 
execution being serialized, but at 4 caches per block execution 
time increases only marginally up to 96 simulated caches. 

E. Accuracy 

We evaluate GPU simulation’s impact on accuracy for 
cache coherency and for the shared cache organization. For 
cache coherency, we measure the number of invalidated blocks 
for multithreaded workloads with more snooping caches than 
will fit onto a single CUDA block. For a shared L2 
organization, we record L2 miss counts. Accuracy metrics are 
compared against CPU-only simulation. 

To evaluate invalidation-error, we evaluate multithreaded 
schemes running L1 simulation. We simulate 64 caches 
running workloads G, H and I; these workloads use more 
threads sharing a memory space than there are caches mapped 
to a CUDA block and therefore have nontrivial error rates. 
Figures 11, 12, and 13 show accuracy (measured in number of 
invalidated cache blocks) and performance tradeoffs for 
varying quantum sizes (measured in trace items per kernel 
launch). Performance is relative to GPU performance at a 
chunk size of 2048; CPU performance for a chunk size of 2048 
is plotted for reference. Quantum-based synchronization works 
well to control invalidation count error with moderate 
overheads for Workload G and I. Workload H has low error 
rates for all chunk sizes. As an aside, trace chunk size had no 
significant impact on CPU-only simulation performance for the 
chunk sizes we used. 

Cache coherency error encompasses all error for private L1 
and private L2 caches. Error for shared caches comes from the 
ordering of misses sent from all L1 caches. To evaluate error 
when simulating shared L2 caches, we compare L2 miss counts 
with CPU-only execution. Figure 14 shows error in miss counts 
for each workload using the default trace chunk size of 2048. 
Error rates are very low, below 1% for all workloads, although 
in the future we’d like to examine other metrics to evaluate the 
accuracy of our shared cache implementation. 

 

Figure 11.  Error (left axis, solid line) and Performance (right axis, dotted line) 
when simulating L1 with varied trace chunk size for workload G. 

 

 

 

 

Figure 12.  Error (left axis, solid line) and Performance (right axis, dotted line) 

when simulating L1 with varied trace chunk size for workload H. 

 
 

 

 

Figure 13.  Error (left axis, solid line) and Performance (right axis, dotted line) 

when simulating L1 with varied trace chunk size for workload I. 
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Figure 14.  Error in L2 miss counts when simulating Shared.  

 

 
 

F. Absolute Performance, Associativity 

Figure 15 shows our simulator’s absolute performance, 
measured in Million Memory Accesses per Second (MMAPS), 
when simulating 96 tiles. We measure performance for Private 
and Shared simulation. In addition, we also vary L1 
associativities when simulating L1.  For L1 and Private 
Simulation, GPU simulation can simulate over 15 million 
accesses per second. For Shared, GPU simulation still 
maintains over 5 million accesses per second.  

VII. CONCLUSIONS 

Using GPUs for the timing partition of architectural 
simulation can achieve much better scaling with core count 
than other techniques used to simulate multicore or manycore 
systems. Multithreaded simulation is limited because CPUs on 
host machines have lower core counts than a researcher is 
interested in. FPGAs are similarly constrained as 
programmable gates are less area efficient. Because GPUs are 
designed with very high core counts, parallel simulation using 
GPUs can stay ahead of Moore’s Law. To prove this 
hypothesis, we implemented a trace-driven cache simulator 
running on a GPU, which outstrips CPU-only simulation when 
we are interested in many caches. 

As future work, we plan to implement an on-chip network 
simulator in CUDA. Furthermore, we plan to move from trace-
driven cache simulation to more detailed trace-driven 
simulation similar to TPTS [11] or execution-driven simulation 
where the functional simulation takes place on a host 
machine’s CPU much like the FAST simulator [7].  
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Figure 15.  Simulation throughput, measured in Million Memory Accesses per 

Second (MMAPS). Shown are L1 configurations at varying associativities, as 

well as Private and Shared. All configurations use 96 tiles. 
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