
Scalable Multi-Cache Simulation Using GPUs

Michael Moeng, Sangyeun Cho, and Rami Melhem

Department of Computer Science

University of Pittsburgh

{moeng,cho,melhem}@cs.pitt.edu

Abstract—Software simulation is the primary tool used for

evaluation of processor design. Simulation offers better accuracy

than analytical models and is an important evaluation step before

actually fabricating a chip. Unfortunately, simulator speeds are

slow—a conventional cycle-accurate simulator will be unable to

keep up with increasing core counts in modern processor design.

Parallel simulation is one method for improving simulation

speeds. Two major areas of parallel simulation research are

multithreaded simulators and FPGAs as simulation accelerators.

Multithreaded simulators can only extract coarse-grained

parallelism and must sacrifice accuracy in order to scale well.

FPGA-based simulators can extract fine-grained parallelism, but

are expensive and difficult to program.

We propose using GPUs for architectural simulation, which can

take advantage of a high degree of fine-grained parallelism. In

addition, they are inexpensive and easier to program compared

to FPGAs. To demonstrate our ideas, we implement a trace-

driven many-cache simulator using NVIDIA's CUDA toolkit.

GPU-accelerated cache simulation displays remarkable scaling

with number of simulated caches when compared to serial CPU-

only simulation.

Keywords-Simulation; Parallel Architecture; Cache; General-

Purpose GPU; CUDA

I. INTRODUCTION

Architecture simulation is the process of simulating a target
machine's execution using a host machine. Simulation is
crucial in the design of new microprocessors. Simulation
allows computer architects to create a processor or alter an
existing design before embarking on the expensive fabrication
process. In addition, a simulator can be easily modified to
monitor behavior that might be difficult to expose after
fabrication.

Two of the key metrics used to evaluate simulators are
performance—how fast the simulator executes simulated
instructions; and accuracy—how closely the simulator models
its target machine architecture. Simulation performance is
unacceptable in the context of chip multiprocessors (CMPs).
To achieve perfect accuracy, simulation occurs serially on a
single host core. Parallel simulation is necessary in order to
continue developing chips with higher core counts, and using a
parallel simulator running on a host CMP is a growing area of
research [2,3,4,6].

Multithreaded simulation using a host CMP is far from
ideal. Speedups are limited by the number of host cores. This
tends to be less than the number of cores on the target machine
being simulated, especially if an architect is interested in
manycore chip design. Furthermore, host threads must

synchronize with one another in order to maintain correct
relative timing between simulated cores. This synchronization
is costly, forcing simulators to sacrifice some accuracy for
reasonable speedups [2,3,5,6].

Another growing area of simulation development is the use
of Field-Programmable Gate Arrays (FPGAs) as co-processors
[7,8,9,10]. FPGAs have become popular because they can take
advantage of the fine-grained parallelism between hardware
structures. Some limitations of FPGAs include cost and a
constrained area. The limited area on an FPGA can be dealt
with by reusing FPGA structures [8], but this limits the total
parallelism that can be achieved.

We propose the use of Graphics Processing Units (GPUs)
to accelerate manycore architecture simulation. NVIDIA’s
CUDA technology allows a programmer to write code using
the C++ syntax and run the code on a GPU [15,16]. Graphics
processing is an endlessly parallelizable task, and Graphics
Processing Units are built to have a high degree of fine-grained
parallelism, high memory bandwidth, and relatively fast
communication with the corresponding CPU. We believe these
properties make General Purpose GPU processing a strong
candidate for simulating the timing partition of a manycore
simulator (the CPU would simulate the functional partition). A
similar partitioning is used in [7], except using an FPGA to
accelerate timing simulation for a single core.

We demonstrate our idea by implementing a trace-based
cache simulator. Trace-driven simulation is similar to a
functional/timing partitioned simulator, with the trace acting as
the functional partition. As an example of the parallel scaling
available on GPUs, Figure 1 illustrates an ideal case—
simulating L1 private caches with no shared data†. Simulation
with GPUs shows only a minor increase in simulation time
while CPU-only simulation slows down super-linearly with the
number of caches. Our experimental details are in Section V.

The remainder of our paper discusses our GPU-based cache
simulator and obstacles faced while implementing the
simulator in order to deal with non-ideal cases. Specifically, we
focus on dealing with cache coherence for a multithreaded
workload and two-level cache hierarchies using shared and
private L2 organizations.

Section II covers relevant techniques used to improve
simulation performance. Section III describes the architecture
of a GPU and the programming model used for CUDA. In
Section IV we outline our cache simulator and describe
implementation issues. Section V details our experimental
setup, while Section VI covers our results. Section VII
concludes and touches on several ways we plan to expand this
work.

† See Section V for details

Figure 2. Diagram of Functional/Timing partitioned simulation.

Functional Partition

Simulated Application

Binary

Program

Counters

Memory

space state

Timing Events

Event Results

Timing Partition

Clock Cycle

Cache state Branch Predict

Pipeline

Network

Figure 1. Simulation time as we vary the number of simulated

caches, normalized to 16 caches in CPU-only simulation.

II. BACKGROUND

The process of simulating a target machine can be broken
into several components. Figure 2 shows the major parts shared
by most cycle-accurate simulators. Functional simulation
executes an application binary using the target machine’s
instruction set, dealing with control flow, system calls, and IO
requests. Timing simulation models the hardware structures of
interest to an architect. These can be core components such as a
pipeline, or uncore components such as an on-chip network.

Much of the simulation state used in functional simulation,
most notably data values, are not used during timing
simulation. Similarly, much information obtained during
timing—such as specific cache tags—are not needed by the
functional simulator. This clean division of data results in
many simulators being developed with a functional/timing
partition, such as [3,6,7]. The functional partition does
functional simulation and generates events relevant to the
timing partition. The timing partition calculates how long these
events take to resolve and notifies the functional partition if it
needs to deviate from regular functional simulation (such as
simulating the wrong path of a branch).

A. Accelerating Functional Simulation

Direct execution is a technique for improving simulation
performance by performing functional simulation directly on a
host machine and is used in [3]. This can be achieved using
binary instrumentation [13]. Instructions in the application
binary are instrumented to generate events which are simulated
by the timing partition. Direct execution can greatly speed up

functional simulation and is orthogonal to our work.
Functional simulation generates a stream of events that are

sent to the timing partition, such as memory access addresses.
Many events tend to not change even when the machine
configuration is changed. Trace-driven simulation [11,12] takes
advantage of this by putting all static information sent to the
timing partition into a trace file. The information is collected
once using a functional simulator and a trace of events is
generated. Events in the trace can be simulated multiple times
for different target machine configurations to amortize the cost
of trace generation. Much like direct execution, trace-driven
simulation is orthogonal to our overall work and we use trace-
driven simulation in this work to evaluate our ideas.

B. Multithreaded Simulation

Multithreaded Simulation has been used by computer
architects for some time, and is gaining popularity as CMPs
become the norm [2,3,4,5,6]. In general, a simulator will be
divided into threads, each of which is assigned one or more
cores to simulate. Difficulties arise when these threads residing
on different cores need to communicate if the workload
involves a shared memory space or because the cores access
shared resources. All target cores need to be synchronized so
they access resources in the same order as they would in a real
machine. Using looser synchronization (where simulated cores
progress at slightly different rates) reduces simulation accuracy
but improves performance.

There are several popular techniques used to loosely
synchronize simulated cores in parallel simulation. Quantum-
based synchronization [5] periodically synchronizes all threads.
Slack-based synchronization [2] keeps track of the slowest-
progressing thread and ensures that no thread gets too far ahead
of the slower thread. Point-to-point synchronization [3] forces
each thread to periodically select a single other, random thread
and ensure their progress is approximately the same. Our
method of synchronization most closely matches quantum-
based synchronization.

C. Acceleration with Coprocessors

Han et al. introduced a GPU-based cache simulator in [1],
but assign sets to threads to leverage parallel speedups on the
GPU. The GPU first sorts trace accesses by set, and each set is
processed independently. This means simulator processes
cache accesses out of order temporally, so only hit/miss
information can be gathered. Our work processes requests to
each cache in order, which is essential if caches are to interact
with one another for timing simulation. We extract our

0
1
2
3
4
5
6
7
8
9

10
11
12

16 32 48 64 80 96 112 128

Si
m

u
la

ti
o

n
 T

im
e

Simulated Caches
CPU GPU

Figure 3. Diagram of thread / block organization

within a CUDA kernel.

 Kernel

Block 0

Block 1

Block 0

Thread 0 Thread 1 Thread 2 Thread 3

parallelism through multiple caches rather than multiple sets.
This means our single-cache simulation speed is significantly
slower; however, more total caches can be simulated, which is
a good fit for multicore/manycore timing simulation. In
addition, [1] simulates a single L1 or single L1/L2 pair. We
focus on the simulating multiple caches which interact with
each other.

GPU acceleration has been proposed for low level circuit
simulation. In [18], Chatterjee, DeOrio, and Bertacco first
transform a circuit netlist into CUDA code before simulating
the circuit. Gates are grouped into layers so CUDA threads can
simulate gates from the same layer in parallel; only simulating
gates if input values have changed. In [19], Nanjundappa et al.
parallelize simulation of circuits modeled in SystemC. As with
[18], the authors first transform code describing the circuit into
CUDA code. Each step, all hardware modules with new inputs
are simulated and their outputs are propagated.

Both [18] and [19] target low level circuit simulation,
which is much slower but much more detailed than
architectural simulation. Architectural simulation is more
useful for evaluation of new architectures. Low level circuit
simulation is also somewhat easier to parallelize on a GPU than
architectural simulation. First, the time needed to simulate a
layer can be balanced between threads (we know how many
gates are in the layer). Second, the same instructions are
executed each step by all gates, which reduces warp
divergences, an important CUDA concept we discuss in
Section III. In [20], Perumalla covers general discrete event
simulation on GPUs, and discuss challenges when using
specialized GPUs as opposed to general purpose CPUs for
parallel discrete event simulation.

FPGAs allow hardware structures to be directly
programmed into them. This results in fast simulation for
several reasons. First, a hardware structure simulated on an
FPGA takes many fewer FPGA clock cycles to simulate a
target machine cycle than a general-purpose processor. Second,
multiple hardware structures placed on an FPGA can quickly
communicate and thus may be simulated in parallel without
dealing with synchronization issues multithreaded simulation
faces. Finally, FPGAs increase their transistor count with
Moore’s Law, which gives them better expected scalability for
CMP simulation. In contrast, single-threaded simulation does
not scale, as extra transistors gained through Moore’s Law are
mostly used for extra cores. These insights led to the RAMP
project [9], which focuses on using FPGAs to accelerate CMP
simulation.

The FAST simulator [7] is a single core simulator which
performs functional simulation on a host machine. An FPGA
performs a detailed timing simulation of a target machine’s
pipeline, branch predictor, and memory hierarchy. An FPGA
can simulate a highly detailed pipeline very quickly. The
drawbacks to using an FPGA include difficulty in developing
the simulator and long communication latency with the host
(compared to conventional single-threaded simulation). A
significant part of the FAST project deals with the long latency
between the functional and timing partitions. This involves
roll-backs when the timing partition generates an event that is
not part of pure functional simulation, such as simulating
instructions for a mispredicted branch.

HAsim [8] deals with area constraints of FPGAs. An FPGA
quickly runs out of space when simulating a CMP if one tries
to replicate hardware structures for each core. HAsim reuses

hardware structures in order to accurately simulate the entire
CMP. By overlapping some of the computation when
simulating multiple cores, simulation throughput improves
somewhat as the number of simulated cores increases.
However, beyond 4 target cores HAsim experiences a roughly
linear slowdown with simulated core count.

III. NVIDIA’S CUDA

In 2006 NVIDIA introduced its CUDA technology [15],
which uses NVIDIA GPUs for general purpose computation
usually performed by CPUs. In this section, we describe
enough of GPU architectures and the CUDA programming
model to explain our work; for more information on CUDA,
readers should refer to [16].

In the CUDA programming model, work is sent from the
host (CPU+main memory) to the device (GPU). Host memory
is explicitly transferred to the device; GPU code is started by
calling a kernel function. Each kernel function runs under a
Single Instruction, Multiple Data (SIMD) paradigm. Each
kernel is broken into a number of blocks, each of which has a
number of threads. Threads within a block can communicate
using a dedicated shared memory and have access to a fast
barrier primitive. Figure 3 is a diagram showing the
organization of threads and blocks in a kernel. On the GPU,
each block in the kernel is executed on one of the GPUs vector
multiprocessor. Multiple blocks can be co-scheduled on a
multiprocessor and share its resources.

Threads from a block are grouped by the GPU scheduler
and run together as a warp of 32 threads. These threads should
be executing the exact same instructions because they are
running together on a vector multiprocessor. When threads in
the same warp follow different control paths, each control path
must be executed serially—threads from a single control path
take up the multiprocessor while threads in other control paths
sit idle. This warp divergence severely impacts performance,
and should be avoided whenever possible.

CUDA’s memory hierarchy includes global, local, and
shared memory. Both global and local memory map to a
GPU’s graphics RAM; global memory is accessible by all
threads in the kernel and local memory is thread-private.
Shared memory is block-private—all threads within a block
have access to shared memory allocated for that block. We
used a Fermi card in our experiments, which features a L1/L2
cache hierarchy that caches global and local memory requests.
The L1 cache uses the same type of memory as shared
memory, which is why shared memory is not cached. Threads
in different blocks may only communicate through global
memory. CUDA provides atomic instructions to allow for
consistent memory accesses.

Note that CUDA syntax calls code running on the CPU
―host code‖ and code running on the GPU ―device code‖.
Because this somewhat conflicts with simulation syntax of host

Figure 4. Diagram of Logical Simulation Flow.

 CPU

Host Memory

Trace File

Trace

Chunk
Memory

Transfer

GPU

L1 Kernel

L2 Kernel

GPU Memory

machine and target machine, we will use CPU and GPU
instead of standard CUDA syntax.

IV. GPU CACHE SIMULATION

In this section we describe how we perform cache
simulation using a GPU. Each cache processes a sequence of
memory accesses stored in a trace file. Simulation occurs in
intervals: a chunk of each trace is read from file; then memory
accesses in that chunk are simulated. The process to fetch
memory accesses is the same for both the CPU-only simulation
we use as a baseline and for the GPU-based simulation. Below
we describe the changes made to accommodate simulation
using CUDA.

We start by describing the logical simulation flow,
illustrated in Figure 4. After reading a chunk of trace files into
memory, trace data (addresses, instruction timestamps, and
access types) are transferred to GPU memory. Once memory
transfer completes, the ―L1 kernel‖ is started. During its
execution, the L1 kernel outputs miss addresses to a buffer
residing in device memory. Once the L1 kernel completes, the
―L2 kernel‖ is started, which processes the L1 miss addresses.
After the L2 kernel finishes, statistics for both the L1 and L2
are copied back to the host and simulation moves to the next
interval.

A. Thread-to-Block Mapping

Each thread in our kernel simulates a cache way. This
allows us to parallelize the address lookup process. Threads
simulating the same cache perform their tag comparisons to
check for a hit simultaneously. The threads then communicate
via shared memory whether there was a hit or not. If no hit
occurred, eviction follows the Least Recently Used (LRU)
policy by checking each way’s position on an LRU list. The
first thread in the cache performs the check for a victim
serially. We experimented with a parallel tree-based reduction
to find a victim, but this had worse results at all associativity
levels we evaluated. Whether or not an eviction occurred, all
threads then update their LRU position in parallel.

To help guide our thread/block mapping, we used the
recommended CUDA Occupancy Calculator [17]. Mapping
just one cache to a block results in better performance with a
small number of simulated caches, but does not scale as well to
a larger cache count. Increasing the number of caches improves
scaling until register or shared memory usage exceeds a
block’s capacity. In addition, caches mapped to the same block
are kept perfectly synchronized (see Part F). The Occupancy
Calculator determined that 64 threads per block allowed for the
maximum parallelism for our GPU. Therefore, for most

experiments, we map 4 caches to each block, with each cache
spawning a number of threads equal to the cache’s
associativity. When simulating 16-way caches, we end up with
64 threads per block.

B. Memory Organization

Cache state is stored in global memory. Initially we copied
tag information to local memory at the start of each kernel, but
leaving tags and other metadata like the LRU position into
global memory helped us deal with cache coherency (see Part
D). Cache parameters such as associativity, cache size, and
block size are initially in global memory and are copied into
local memory to cut down on contention between threads
accessing the same information.

Initially we tried placing tag and LRU position data in
shared memory, but this quickly filled up the maximum shared
memory available to each physical multiprocessor and reduces
the number of caches that can be simulated. In addition, the
L1/L2 caching added to Fermi GPUs means global memory
accesses are nearly as fast as shared memory accesses,
provided they have good locality (which cache tag lookups
tend to have).

C. Concurrent Execution

CUDA supports asynchronous memory transfers. In
addition, CUDA kernels are spawned in a non-blocking
fashion, so CPU code can still be run. We use these features to
speed up execution with the help of CUDA streams. A stream
is a serial sequence of commands that has no ordering
restrictions with respect to other streams. In addition,
asynchronous commands in a CUDA stream can also execute
concurrently with blocking commands running on the CPU.

After a trace chunk is read from a trace file, the transfer of
data from CPU’s memory space to the GPU’s memory space is
started asynchronously before the next trace chunk is read. This
process uses a single stream dedicated to this memory transfer.
More transfer streams did not benefit performance as each
transfer uses the maximum transfer bandwidth.

In addition to using streams for memory transfer, we use
streams to concurrently execute all three major components of
the trace simulation:

 Trace I/O and memory transfer

 GPU kernel simulating the L1 cache

 GPU kernel simulating the L2 cache

These are overlapped in a pipelined manner shown in
Figure 5. Two streams are used—each with its own trace buffer
and L1 miss address buffer. While the L1 kernel reads trace
information from Buffer trace-A and outputs misses to Buffer
miss-A, the trace I/O will be copying the next chunk into trace-
B and the L2 kernel will be processing misses from Buffer
miss-B.

Note that simultaneous execution of kernels is supported
only by newer NVIDIA GPUs (Fermi GPUs). Without
simultaneous kernel execution, the L1 and L2 kernels must be
executed serially. However, kernels still spawn
asynchronously, so the trace file IO and memory transfer can
still execute concurrently with the L1 or L2 kernel.

Figure 5. Diagram of pipelined kernel execution. Coloring denotes which buffer is being used for by kernel.

Vertical dotted lines denote synchronization points.

Trace IO L1 Kernel L2 Kernel

Trace IO L1 Kernel L2 Kernel

Trace IO L1 Kernel L2 Kernel

Time

D. Cache Coherence

For multithreaded workloads, it is necessary to keep caches
coherent. We implement a snooping protocol to gauge the
effect of inter-cache communication on GPU simulation. Each
cache keeps track of a list of other caches snooping on it. When
a write is encountered, the writing cache can check the tags of
other snooping caches because tag and meta state are stored in
global memory. If a match is found, the writing cache can
directly invalidate the block in other caches by atomically
modifying the meta state. An atomic operation is necessary so
multiple caches do not overcount simultaneous invalidations.

When all caches in a multithreaded workload are mapped to
the same block (this is possible when there are 4 or fewer
threads that need to snoop on each other), all caches are kept in
sync by calling CUDA’s fast barrier primitive each cycle. In
this case, direct invalidation results in negligible deviation from
the host. This deviation results from same-cycle writes that
cause race conditions. Inaccuracies arise only when there are
more caches snooping on each other than we can fit onto a
block (more than 4 caches).

E. Shared Memory

Private L2 cache slices receive all misses from a single L1,
so there is no interaction between L1 slices when misses occur.
For shared caches, this is not the case. In order to simulate L2
caches using the shared cache policy, we make use of CUDA’s
atomic instructions. Each L2 cache has an associated miss
address buffer. An L1 kernel thread determines which L2 slice
a miss address belongs to using the lowest bits of the block
address. The kernel then uses an atomic operation to increment
the miss address buffer index for the destination L2 cache
before placing its miss address into the buffer. Each simulated
cache in the L2 kernel has a sequence of memory accesses and
can then process its accesses in the same manner as the L1
kernel.

A significant issue with this approach occurred when trying
to synchronize threads at the end of the L1 kernel. This was
necessary in order to add a delimiter marking the end of the
miss address buffer for each L2 slice. The scheduler currently
used for CUDA cores does not swap out spinning threads, so
implementing a barrier using global memory will often result
in deadlock. Once a kernel terminates, however, threads are
guaranteed to be synchronized. We used a short cleanup kernel

to add this delimiter, avoiding the need for cross-block
synchronization within the L1 kernel.

F. Synchronization

Both techniques used in Parts D and E (although especially
Part D) rely on threads in a kernel proceeding at approximately
the same rate to be accurate. This is not a problem for caches in
the same block, because for each trace item we execute
CUDA’s block-wide barrier so all caches mapped to the block
are synchronized. However, as discussed above, inter-block
barriers within a kernel are impractical. For inter-block
synchronization, we turn to quantum-based synchronization
[5]. CUDA kernels are a natural fit for quantum
synchronization, because in between kernels all threads are
automatically synchronized. We vary the size of a trace chunk
in order to evaluate the effect of quantum size on our
simulation. Because threads within a block are synchronized
every access, our quantum synchronization is hierarchical—
quantum size for caches in the same block is 1, and quantum
size for caches In different blocks is the trace chunk size. Much
like classic quantum-based synchronization, processing fewer
trace elements in a kernel (using a smaller quantum) results in a
worse performance but better accuracy.

V. EXPERIMENTAL SETUP

All our experiments are performed on a machine detailed in
Table I. We implemented our own trace-driven cache simulator
running on the CPU to serve as a baseline. Execution times are
collected with the UNIX time command. We use a low-mid
range GPU, a GeForce GTS 450, for our experiments. Fermi
cards have an L1/L2 cache hierarchy that can be configured to
take up a portion of the shared memory. We found giving the
GPU 48KB cache and 16KB shared performed slightly better
than 16KB cache and 48KB shared; however, it was important
to set both the L1 and L2 kernels to the same cache
configuration.

Although our host machine has less RAM than a typical
server, our simulator’s working set size is much smaller than
2GB—the main memory is never taxed. For our machine, we
empirically found a chunk size of 2048 to work well for both
CPU and GPU simulation. Later we evaluate the effect of a
varied trace chunk size.

A. Target Machine

We evaluate three timing models. The first is one level of
L1 caches. The next two are L1/L2 cache hierarchies using
Private L2 caches (where addresses are mapped to the same
cache tile as the L1), and Shared L2 caches (where addresses
are mapped to tiles based on the lower bits of the block
address). Unless otherwise stated, L1 caches are 16-way; L2
caches are always 16-way. We implement snoop-based
coherence, where each cache keeps a list of snoopers and
invalidates written cache blocks for copies residing in other
caches on the snoop list. Table II lists our other target
parameters. We assume the caches are connected as a 2D mesh,
although we do not simulate the on-chip network in this work.
Because our simulated caches interact with one another, direct
comparison with [1] is impossible.

TABLE I. HOST MACHINE

Host Machine Specifications

Processor Intel Core2 Duo

Clock Rate 3.0 GHz

Memory 2GB

Operating System Ubuntu 10.04

GPU Specifications

Model GeForce GTS 450

Multiprocessors 4

CUDA Cores 192 cores

Clock Rate 925 MHz

Graphics Memory 1GB

CUDA Version 3.20

TABLE II. TARGET TIMING MODEL

Target Timing Model Specifications

Block Size 64 Bytes

Associativity 16-way

Replacement Policy Least Recently Used (LRU)

L1 Size (per slice) 64kB

L2 Size (per slice) 512kB

Timing models L1, Private, Shared

B. Workloads

We use a combination of workloads derived from a few of
the PARSEC benchmarks: blackscholes, streamcluster, and
canneal [14], using the large simulation inputs. Traces are
generated by instrumenting the benchmarks with PIN [13].
Each trace item contains the memory address, memory access
type, and dynamic instruction count.

During simulation, each cache or cache tile simulates 10
million accesses. During trace generation, each benchmark is
fast forwarded until all working threads are spawned. Each
thread spawned for the benchmark writes to its own trace file.
Table III lists the benchmark combinations we evaluate in this
work, including the number of trace files generated for each
workload and the number of instructions fast forwarded (in
millions). Workloads G, H, and I are used to evaluate accuracy
in Part E.

Because we simulate a large number of caches, trace files
are reused. In these cases, an offset is specified that is greater
than the number of accesses in a trace chunk. A new file
pointer is opened for a repeated trace, and is offset by an
amount equal to the offset. For example, if we simulate 32

caches and have 4 trace files, each file is reused 8 times. If we
use Trace T eight times, we open eight file pointers; the first is
not offset, the second is offset by OFFSET, the third is offset
by 2 × OFFSET, and so on. In addition, we mimic virtual
address translation by putting addresses into a numbered
address space. Addresses from multithreaded traces share
address spaces; but repeated traces and multiprogrammed
traces have different address spaces.

TABLE III. WORKLOADS

Label
Benchmark

Trace

Files

Fast Forward

(instructions)

A streamcluster 1 150M

B
streamcluster 1 150M

blackscholes 1 600M

C streamcluster 4 150M

D blackscholes 4 600M

E
streamcluster 4 150M

blackscholes 4 600M

F

streamcluster 4 150M

blackscholes 4 600M

canneal 4 5500M

G streamcluster 8 150M

H blackscholes 8 600M

I canneal 8 5500M

VI. EXPERIMENTAL RESULTS

A. Single-level Caches

Figure 6 shows execution times for L1 simulations where
only the L1 kernel is running. We show results for 32, 64, and
96 simulated caches—normalized to 32 caches under CPU
simulation. CPU-only simulation slows down superlinearly
with cache count—average execution time increases by 3.4x
from 32 to 96 caches. GPU accelerated execution time
increases by just 1.1x. GPU performance is the worst in
workload F—this workload is the most heterogeneous and
must deal with cache coherency. Out of all our workloads, this
behavior causes the most warp divergences—threads following
different execution paths; such divergences have a negative
effect on parallelism for CUDA multiprocessors.

Figure 6. Execution time when simulating L1 for 32, 64, and 96 caches. First

three bars for each workload represent CPU-only simulation with increasing

cache count; next three bars represent GPU simulation.

0

0.5

1

1.5

2

2.5

3

3.5

4

A B C D E F

Si
m

u
la

ti
o

n
 T

im
e

Workload

CPU 32

CPU 64

CPU 96

GPU 32

GPU 64

GPU 96

B. Hierarchical Caches

Figure 7 shows execution times for Private simulation
where L1 misses are passed to the L2 on the same tile. As in
Part A, results are normalized to 32 tiles in CPU-only
simulation. Parallel scaling is worse at 96 simulated tiles. The
slowdown when scaling from 32 to 96 tiles increases from 10%
(L1) to 34% (Private). Worse scaling for L1/L2 simulation
means 96 L1/L2 tiles exceeds the limit of parallel
improvements possible for our 192-core GPU.

Figure 8 shows execution times for Shared simulation,
where an address belongs to a tile based on the lowest bits of
its block address. A consequence of using shared L2 cache
slices is a single slice can receive a disproportionate number of
the L1 misses. This can cause a heavy load imbalance for GPU
simulation, as seen especially in workload D. This highlights
the fact that a more efficient cache hierarchy can also result in
faster simulation. Performance for Shared is governed by the
degree of load imbalance, which is why GPU performance is
erratic. Long execution times mean more cache accesses were
directed to the same cache slice. Because we take the mod of a
miss access’s block address to get its destination tile, mappings
change with core counts. Some mappings, such as the mapping
that occurs at 64 caches, cause heavier load imbalances than
others. We performed some profiling of this load imbalance for
64 caches—for a trace chunk size of 2048 accesses to each L1,
a single L2 slice can receive over 10k misses during one
kernel.

Figure 7. Execution time when simulating Private for 32, 64, and 96 tiles.

Figure 8. Execution time when simulating Shared for 32, 64, and 96 tiles.

Figure 9. Average performance improvement of concurrent over serialized

execution. Results are for L1, Private, and Shared.

C. Concurrent Execution

To measure the impact of using overlapping CUDA
streams, we measure performance for L1, Private, and Shared
with and without concurrent execution. When CUDA streams
are disabled, simulation follows the same flow as the logical
from Figure 4. Performance improvements for concurrent over
serialized simulation are shown in Figure 9. The benefits from
concurrent execution increase as we simulate more caches,
because there is more data to transfer to the GPU. The
exception is for Private simulation with 96 tiles. As we saw in
Part B, for 96 L1/L2 tiles the GPU has saturated its cores and
execution is already being partially serialized—lessening the
benefit of concurrently executing the L1 and L2 kernels.
Shared simulation benefits very little from concurrent
execution, because load imbalance to heavily accessed L2
slices serializes much of the simulation process.

D. Caches per Block

We perform a study on the effect of the number of caches
mapped to each CUDA block. Mapping more caches to a block
results in:

 Better scaling to high cache counts (provided other
resources are not taxed)

 Better accuracy (less inter-thread communication)

 Worse performance with low cache counts

We found four caches per block to give the best overall
performance. Beyond four, our GPU was limited in other areas
(registers). It is possible that more caches per block would be
suitable for some studies, however. Caches on the same block
can synchronize within a kernel launch, which makes error
negligible if all caches that interact with one another fit onto
the same CUDA block.

To illustrate the effect of cache-to-block mapping on
performance, Figure 10 shows execution time—averaged
across all workloads—for different numbers of caches per
CUDA block for L1 simulation. At 32 simulated caches,
mapping only one cache to each CUDA block improves
performance by 80% over 4 caches per block, because there are
fewer warp divergences. Specifically, mapping one cache to a
CUDA block removes warp divergences caused when some

0

0.5

1

1.5

2

2.5

3

3.5

4

A B C D E F

Si
m

u
la

ti
o

n
 T

im
e

Workload

CPU 32

CPU 64

CPU 96

GPU 32

GPU 64

GPU 96

0

0.5

1

1.5

2

2.5

3

3.5

4

A B C D E F

Si
m

u
la

ti
o

n
 T

im
e

Workload

CPU 32

CPU 64

CPU 96

GPU 32

GPU 64

GPU 96

0%

10%

20%

30%

40%

50%

60%

70%

80%

32 64 96

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t

Simulated Cache Tiles

L1

Private

Shared

Figure 10. Average execution time when simulating L1, normalized to CPU

simulation of 16 caches. Lines show performance scaling when mapping

1, 2, or 4 caches to each CUDA block.

threads in the same block are resolving a miss while others are
resolving a hit.

However, as the number of simulated caches increase the
GPU reaches its limit for active blocks. With fewer caches per
block, the GPU saturates faster. Therefore, scaling is better
when there are more caches per block. At 1 or 2 caches per
block, we see jumps in execution time corresponding to block
execution being serialized, but at 4 caches per block execution
time increases only marginally up to 96 simulated caches.

E. Accuracy

We evaluate GPU simulation’s impact on accuracy for
cache coherency and for the shared cache organization. For
cache coherency, we measure the number of invalidated blocks
for multithreaded workloads with more snooping caches than
will fit onto a single CUDA block. For a shared L2
organization, we record L2 miss counts. Accuracy metrics are
compared against CPU-only simulation.

To evaluate invalidation-error, we evaluate multithreaded
schemes running L1 simulation. We simulate 64 caches
running workloads G, H and I; these workloads use more
threads sharing a memory space than there are caches mapped
to a CUDA block and therefore have nontrivial error rates.
Figures 11, 12, and 13 show accuracy (measured in number of
invalidated cache blocks) and performance tradeoffs for
varying quantum sizes (measured in trace items per kernel
launch). Performance is relative to GPU performance at a
chunk size of 2048; CPU performance for a chunk size of 2048
is plotted for reference. Quantum-based synchronization works
well to control invalidation count error with moderate
overheads for Workload G and I. Workload H has low error
rates for all chunk sizes. As an aside, trace chunk size had no
significant impact on CPU-only simulation performance for the
chunk sizes we used.

Cache coherency error encompasses all error for private L1
and private L2 caches. Error for shared caches comes from the
ordering of misses sent from all L1 caches. To evaluate error
when simulating shared L2 caches, we compare L2 miss counts
with CPU-only execution. Figure 14 shows error in miss counts
for each workload using the default trace chunk size of 2048.
Error rates are very low, below 1% for all workloads, although
in the future we’d like to examine other metrics to evaluate the
accuracy of our shared cache implementation.

Figure 11. Error (left axis, solid line) and Performance (right axis, dotted line)
when simulating L1 with varied trace chunk size for workload G.

Figure 12. Error (left axis, solid line) and Performance (right axis, dotted line)

when simulating L1 with varied trace chunk size for workload H.

Figure 13. Error (left axis, solid line) and Performance (right axis, dotted line)

when simulating L1 with varied trace chunk size for workload I.

0

0.5

1

1.5

2

2.5

3

16 32 48 64 80 96

Si
m

u
la

ti
o

n
 T

im
e

Simulated Caches

1

2

4
0%

20%

40%

60%

80%

100%

0%

2%

4%

6%

8%

10%

12%

8 32 128 512 2048

P
e

rf
o

rm
an

ce

In
va

lid
at

io
n

 E
rr

o
r

Chunk Size

Error Performance CPU

0%

20%

40%

60%

80%

100%

0%

2%

4%

6%

8%

10%

12%

8 32 128 512 2048

P
e

rf
o

rm
an

ce

In
va

lid
at

io
n

 E
rr

o
r

Chunk Size

Error Performance CPU

0%

20%

40%

60%

80%

100%

0%

2%

4%

6%

8%

10%

12%

8 32 128 512 2048

P
e

rf
o

rm
an

ce

In
va

lid
at

io
n

 E
rr

o
r

Chunk Size

Error Performance CPU

Figure 14. Error in L2 miss counts when simulating Shared.

F. Absolute Performance, Associativity

Figure 15 shows our simulator’s absolute performance,
measured in Million Memory Accesses per Second (MMAPS),
when simulating 96 tiles. We measure performance for Private
and Shared simulation. In addition, we also vary L1
associativities when simulating L1. For L1 and Private
Simulation, GPU simulation can simulate over 15 million
accesses per second. For Shared, GPU simulation still
maintains over 5 million accesses per second.

VII. CONCLUSIONS

Using GPUs for the timing partition of architectural
simulation can achieve much better scaling with core count
than other techniques used to simulate multicore or manycore
systems. Multithreaded simulation is limited because CPUs on
host machines have lower core counts than a researcher is
interested in. FPGAs are similarly constrained as
programmable gates are less area efficient. Because GPUs are
designed with very high core counts, parallel simulation using
GPUs can stay ahead of Moore’s Law. To prove this
hypothesis, we implemented a trace-driven cache simulator
running on a GPU, which outstrips CPU-only simulation when
we are interested in many caches.

As future work, we plan to implement an on-chip network
simulator in CUDA. Furthermore, we plan to move from trace-
driven cache simulation to more detailed trace-driven
simulation similar to TPTS [11] or execution-driven simulation
where the functional simulation takes place on a host
machine’s CPU much like the FAST simulator [7].

ACKNOWLEDGMENT

This work was supported in part by the US National
Science Foundation under CCF-1064976 and CNS-1059202.

Figure 15. Simulation throughput, measured in Million Memory Accesses per

Second (MMAPS). Shown are L1 configurations at varying associativities, as

well as Private and Shared. All configurations use 96 tiles.

REFERENCES

[1] W. Han, G. Xiaopeng, L. Xiang, and C. Xianqin, ―Using GPU to
Accelerate a Pin-based Multi-level Cache Simulator,‖ Proceedings of the
2010 Spring Simulation Multiconference, 2010.

[2] J. Chen, M. Annavaram, and M. Dubois, ―Slacksim: a platform for
parallel simulations of cmps on cmps,‖ SIGMETRICS Performance
Evaluation Review, vol. 37, no. 2, pp. 77–78, 2009.

[3] J. Miller, H. Kasture, G. Kurian, C. III, N. Beckmann, C. Celio, J.
Eastep, and A. Agarwal, ―Graphite: A distributed parallel simulator for
multicores,‖ in HPCA, January 2010.

[4] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and S. Devadas,
―DARSIM: a parallel cycle-level NoC simulator,‖ in Sixth Workshop on
Modeling, Benchmarking, and Simulation (MoBS), June 2010.

[5] S. S. Mukherjee, S. Reinhardt, B. Falsafi, M. Litzkow, S. Huss-
Lederman, M. D. Hill, J. R. Larus, and D. A. Wood, ―Wisconsin Wind
Tunnel II: A Fast, Portable Parallel Architecture Simulator,‖ IEEE
Concurrency, Vol.8 No. 4, pp. 12-20, 2000.

[6] M. Chidester and A. George, ―Parallel simulation of chip-multiprocessor
architectures,‖ ACM Trans. Model. Comput. Simul., vol. 12, no. 3, pp.
176–200, 2002.

[7] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D. E.
Johnson, J. Keefe, and H. Angepat, ―Fpga-accelerated simulation
technologies FAST: Fast, full-system, cycle-accurate simulators,‖ in
MICRO, 2007.

[8] M. Pellaur, M. Adlery, M. Kinsy, A. Parashary, and J. Emer, ―HAsim:
FPGA-Based High-Detail Multicore Simulation Using Time-Division
Multiplexing,‖ in HPCA, 2011.

[9] D. Patterson, Arvind, K. Asanovi´c, D. Chiou, J. C. Hoe, C. Kozyrakis,
S.-L. Lu, , M. Oskin, J. Rabaey, and J. Wawrzynek. ―RAMP: Research
Accelerator for Multiple Processors.‖ In Proceedings of Hot Chips 18,
Palo Alto, CA, Aug. 2006.

[10] C. Ihrig, R. Melhem and A. Jones. ―Automated Modeling and Emulation
of Interconnect Designs for Many-Core Chip Multiprocessors,‖ DAC,
Anaheim, CA, 2010.

[11] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee, M. Moeng.
―TPTS: A Novel Framework for Very Fast Manycore Processor
Architecture Simulation,‖ Proceedings of the Int'l Conference on
Parallel Processing (ICPP), pp. 446~453, Portland, Oregon, September
2008.

[12] R. A. Uhlig and T. N. Mudge. ―Trace-Driven Memory Simulation: A
Survey,‖ ACM Computing Surveys, 29(2): 128–170, June 1997.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, K. Hazelwood. "Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation," Programming
Language Design and Implementation (PLDI), Chicago, IL, June 2005,
pp. 190-200.

[14] C. Bienia. ―Benchmarking Modern Multiprocessors,‖ Ph.D. Thesis.
Princeton University, January 2011.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

A B C D E F

M
is

s
R

at
e

 E
rr

o
r

Workload

32

64

96

0
5

10
15
20
25
30
35
40
45

A B C D E F

M
M

A
P

S

Workload

L1 4-way

L1 8-way

L1 16-way

L2 Private

L2 Shared

[15] NVIDIA. 2010. CUDA Technology; http://www.nvidia.com/CUDA.

[16] NVIDIA. 2010. CUDA Programming Guide 3.2;
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/d
ocs/CUDA_C_Programming_Guide.pdf

[17] NVIDIA. 2010. CUDA Occupancy Calculator;
http://developer.download.nvidia.com/compute/cuda/3_2_prod/sdk/docs
/CUDA_Occupancy_Calculator.x

[18] D. Chatterjee, A. DeOrio and V. Bertacco. "Event-Driven Gate-Level
Simulation with GP-GPUs," DAC '09, San Francisco, CA, July 2009,
pp. 557-562.

[19] M. Nanjundappa, H. Patel, B. Jose, and S. Shukla. "SCGPSim: A Fast
SystemC Simulator on GPUs," ASP-DAC '10, Taipei, Taiwan, Jan.
2010, pp. 149-154.

[20] K. Perumalla. "Discrete-event Execution Alternatives on General
Purpose Graphical Processing Units (GPGPUs)," PADS '06

http://www.nvidia.com/CUDA
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

