
RDIS: A Recursively Defined Invertible Set Scheme
to Tolerate Multiple Stuck-At Faults

in Resistive Memory
Rami Melhem, Rakan Maddah and Sangyeun Cho

Computer Science Department
University of Pittsburgh

Pittsburgh, PA 15260 USA
{melhem,rmaddah,cho}@cs.pitt.edu

Abstract—With their potential for high scalability and density,
resistive memories are foreseen as a promising technology that
overcomes the physical limitations confronted by charge-based
DRAM and flash memory. Yet, a main burden towards the
successful adoption and commercialization of resistive memories
is their low cell reliability caused by process variation and
limited write endurance. Typically, faulty and worn-out cells are
permanently stuck at either ‘0’ or ‘1’. To overcome the challenge,
a robust error correction scheme that can recover from many
hard faults is required.

In this paper, we propose and evaluate RDIS, a novel scheme
to efficiently tolerate memory stuck-at faults. RDIS allows for the
correct retrieval of data by recursively determining and efficiently
keeping track of the positions of the bits that are stuck at a
value different from the ones that are written, and then, at
read time, by inverting the values read from those positions.
RDIS is characterized by a very low probability of failure that
increases slowly with the relative increase in the number of faults.
Moreover, RDIS tolerates many more faults than the best existing
scheme—by up to 95% on average at the same overhead level.

Keywords-Error Correction Code; Hard Faults; Phase Change
Memory; Fault Tolerance; Reliability;

I. INTRODUCTION

Resistive memories are receiving due attention as the scal-
ing of DRAM and flash memory is hindered by physical
limitations [1]–[3]. For example, the use of phase-change
memory (PCM), spin-transfer torque memory (STT-RAM),
and memristor in a platform’s memory and storage hierarchy
has been explored recently [4]–[12]. Among many resistive
memory types, PCM has attracted significant preference in the
research community because it is believed to be the closest to
mass production; Micron and Samsung are producing working
samples of 128 Mbit to 8 Gbit capacity as of 2012 [13]–[15].
Early evaluations (e.g., [6]–[8]) demonstrate that PCM can
compete favorably with DRAM (main memory) in terms of
performance and beat DRAM in terms of power consumption.

However, a major weakness of resistive memories (espe-
cially PCM and memristor), impeding their fast commercial-
ization, is the low cell-level reliability [16]–[18]. There are two
major factors in this matter: imperfect process control with a
very deep sub-micron technology and repeated writes to a cell

∗This work is supported in part by NSF grants CCF-1064976, CCF-
1059283 and CNS-1012070.

(i.e., write cycling). Prior architecture and systems research
focus on the latter because manufacturers will ship chips with
a minimum guaranteed write endurance. For example, the
reported write endurance of PCM and memristor is 106 to
108 [13], [19]–[21]. A few failure mechanisms exist [22]–
[24], and once activated, they interfere with write operations.
Hence, weak cells and worn-out cells are typically “stuck-at”
a particular value, either ‘0’ or ‘1’ [17], [23].

To address the write endurance problem, it is believed that
both aggressive wear leveling and proactive error masking
techniques are necessary. Wear leveling spreads writes to
the entire memory capacity to evenly wear memory cells
(e.g., through periodic, pseudo-randomization of write ad-
dresses) [7], [8], [25], [26]. Techniques to suppress unneces-
sary bit-level writes were proposed [6], [8], [9], [27]. However,
due to process variation, memory cells are expected to wear
out at different rates, which compromises the chip’s lifetime.
Accordingly, error masking techniques are required to over-
come cell failures.

Error correction code (ECC) such as SEC-DED (single error
correction, double error detection) has been successfully used
to protect main memory. However, traditional hamming code
based ECC is designed for a general fault model and its
overhead is unnecessarily large for the stuck-at fault model.
This is especially true when the probability of having multiple
bit errors is high, as is the case with resistive memories. For
example, imagine that many cells in a memory block have
reached their write endurance limit simultaneously. To cope
with many faults, we must employ a correspondingly stronger
ECC, which would incur excessively large space and computa-
tion overheads. In fact, for NAND flash memory, also suffering
write endurance limitation, it is required to correct 40 or more
bits per 512-byte block [28]. Subsequently, recently proposed
error masking techniques for resistive memories [16]–[18]
combine clever microarchitectural and coding ideas to cut
down overheads.

In this paper, we propose RDIS (recursively defined in-
vertible set), a novel low-overhead error correction scheme

to recover from hard errors.1 RDIS allows for the correct
retrieval of data in the presence of stuck-at faults by keeping
track of the bits that are stuck at a value different from the
ones that are written, and then, at read time, by inverting the
values read for those bits. For a write operation, each cell in a
data block is either: “non-faulty” (NF), stuck at the opposite
of the value being written (“stuck-at-wrong” or SA-W), or
stuck at the same value written (“stuck-at-right” or SA-R).
For example, trying to write ‘0’ in a cell stuck at ‘1’ makes
the cell SA-W. The underlying idea of RDIS is to identify and
encode a subset S—out of all cells forming a data block to be
updated—containing all the SA-W cells. Later, the members of
S are read inverted, which retrieves the data as it was intended
to be written originally. RDIS initiates the computation of S
after detecting write failure through applying a read-after-write
verification operation.

Although it can only guarantee the recovery from three
faults, RDIS has a desirable property of effectively recovering
from many more faults beyond what it guarantees. Intrinsi-
cally, RDIS enjoys a low probability of failure that increases
at a very slow rate with the relative increase in the number
of fault occurrences. By comparison, current state-of-the-art
schemes either cannot recover from a single fault beyond a
guaranteed number of faults (e.g., ECC [29] and ECP [16]) or
can recover additional faults but with a low probability (e.g.,
SAFER [17]). Our evaluation shows that RDIS can tolerate
95% more faults on average than SAFER when the protected
block size is 1 KB. Given its ability to recover many faults
with high probability, RDIS is a very good fit for resistive
memories that will experience a growing number of faults over
the course of use.

We formally prove the fault tolerance properties of RDIS
and by exploring a potential hardware implementation, we find
that the required additional logic is surprisingly simple. It is
worth mentioning that RDIS error correction capabilities are
not limited to main memory. RDIS is capable of tolerating
faults significantly within block sizes ranging from cache line
size to secondary storage block sector size, while incurring a
low overhead. Accordingly, we present a study of RDIS error
correction capability at different block sizes.

The remainder of this paper is organized as follows. Sec-
tion II will first summarize the related work. Section III and
Section IV will then give the details of the proposed RDIS
scheme by formally describing the concepts and the coverage
of the scheme. We also discuss hardware implementation im-
plications. Experimental evaluation of RDIS will be presented
in Section V, and finally, Section VI will conclude the paper.

II. PRIOR RELATED WORK

The exploration of ECC can be traced many years back [29].
Among many ECC schemes, SEC-DED is widely used to
protect DRAM in main memory. Since DRAM errors are
typically transient and occur infrequently, SEC-DED is ade-
quate in most situations. On the other hand, resistive memories
have different failure mechanisms and are subject to multiple

1The principles of RDIS are not limited to resistive memories. RDIS is
particularly relevant for resistive memories because it can correct many errors
with high probability.

bit faults that occur gradually with the lifetime of a chip.
Consequently, it is necessary to deploy a multi-bit error
correction scheme. Hamming code based BCH code [30] is
one such scheme. Yet, codes based on BCH are complex and
expensive to implement [28], [31]. As a matter of fact, the
complexity increases linearly with the number of faults to be
tolerated [31].

There are three recent proposals that target specifically
masking errors in resistive memories with higher auxiliary
storage efficiency than traditional ECC techniques. First, Error
Correcting Pointer (ECP) [16] provides a limited number of
programmable “correction entries”. A correction entry holds
a pointer (address) to a faulty cell within the protected block
and a “patch” cell that replaces the faulty one. When a faulty
cell is detected, a new correction entry is allocated to cover the
cell. A memory block is de-commissioned when the number of
faulty cells exceeds that of the correction entries. In essence,
ECP provides cell-level spares to each block.

SAFER (Stuck-at-Fault Error Recovery) [17] dynamically
partitions a protected data block into a number of groups so
that each group contains at most one faulty cell. When the
value of the faulty cell is different from the intended value
to be written, all cells in the the group are written and read
inverted. If the data block is to be partitioned into n groups,
then SAFER allows log2 n “repartitions”. Repartitioning is
done whenever a new fault is detected. Therefore, SAFER
guarantees the recovery from log2 n+1 faults. Any additional
fault is tolerated only if it occurs in a fault-free group.
Otherwise, the block has to be retired. SAFER was shown
to provide stronger error correction than ECC or ECP at the
same overhead level.

Free-p (Fine-grained Remapping with ECC and Embedded-
Pointers) [18] combines error correction and redundancy, and
as such, has two protection layers. First, it uses an ECC to
mask faults within a data block. Second, when a block be-
comes defective, Free-p embeds a pointer within the defective
block so that a redundant, non-faulty block can be quickly
identified without having to access a separate remapping table.
Free-p employs ECC to correct up to four hard errors in a data
block of cache line size and relies on the OS to perform block
remapping. We note that the block remapping idea of Free-p
is orthogonal to RDIS. Hence, RDIS could be used to replace
ECC in Free-p.

III. RDIS
This section describe RDIS intuitively using Set Theory. We
begin with the idea of invertible sets and how to specify an
invertible set given a set of faulty memory cells in a block.
We then focus on an algorithm to compute necessary auxiliary
information to correctly store and retrieve user information.
Finally, we discuss a hardware embodiment of RDIS before
we close this section.

A. Basic idea
RDIS applies to a block of memory/storage cells. Let’s assume
that the block has N cells, c(0), . . ., c(N − 1), and they store
binary information b(0), . . ., b(N −1). Each cell c(i) is either
non-faulty (NF), stuck at ‘0’ (SA-0), or stuck at ‘1’ (SA-1).
Furthermore, RDIS uses a different classification of the faulty

SA-R

SA-R

SA-R

SA-R

SA-R SA-W
SA-W

SA-W

SA-W

C

C1

C2

SA-W

SA-W

SA-W

SA-W
SA-R

SA-R

SA-R

SA-R

SA-R

SA-R

SA-R SA-W
SA-W

SA-W

SA-W

C

C1

C2

SA-W

SA-W
SA-R

SA-R

SA-W
SA-W

S2

Fig. 1: The invertible set S = (C1 − C2) ∪ S2.

cells, depending on the value that is to be written in those
cells. Specifically, when bit b(i) is to be stored in a faulty cell
c(i), then c(i) is stuck at the right value (SA-R) if it is SA-0
and b(i) = 0 or it is SA-1 and b(i) = 1. Similarly, c(i) is stuck
at the wrong value (SA-W) if it is SA-0 and b(i) = 1 or it is
SA-1 and b(i) = 0. Using this classification, each cell c(i) can
be in one of three classes: NF, SA-R (when the information to
store in the faulty cell is identical to the stuck value), or SA-W
(when the information to store in the faulty cell is different
from the stuck value).
H-bit auxiliary information is used to allow the correct

retrieval of the N stored bits. The value of H will be specified
later. For clarity of discussion, we assume that the auxiliary
information is maintained in a separate fault-free storage.
Alternatively, the auxiliary information can be stored in the
same faulty medium as the data but adequately protected by
some other technique (see Section V-C for further discussions).

Denoting the memory cells c(0), . . ., c(N − 1) by C, the
main idea of RDIS is to use the auxiliary H bits to identify
a subset S ⊂ C such that every SA-W cell is in S and every
SA-R cell is in C − S. In other words, S contains all the
SA-W cells of C and none of its SA-R cells. We call S an
“invertible” subset of C. When the N bits of information are
stored, any cell c(i) in C − S will store b(i) intact, while
any cell in S will store the complement of b(i). Subsequently,
when the information is read, the content of any cell in S
is complemented, thus allowing the correct retrieval of all N
bits.

A simple way of expressing S is to keep a list of pointers
to the SA-W cells. This requires log2N bits of auxiliary
information for each cell and hence, to tolerate a maximum
of F faults, H = F × log2N bits of auxiliary information is
needed. RDIS introduces a different, yet systematic method for
constructing and representing S by allowing it to include NF
(not faulty) cells in addition to SA-W cells. Clearly, if a cell
c(i) is not faulty, then it is possible to store (and correctly
retrieve) the complement of b(i) in c(i). Conceptually, the
set S is constructed by computing a sequence of subsets
C2 ⊂ C1 ⊂ C such that:
• All the SA-W cells that are in C, and possibly some

SA-R cells, are included in C1;
• All the SA-R cells that are in C1, and possibly some

SA-W cells, are included in C2; and
• With a very large probability, the size of C2 is much

smaller than the size of C.
Figure 1 illustrates the idea of the construction of C1 and

C2. Note that any of C, C1, and C2 can contain NF cells as
well. However, by definition, C1 − C2 does not contain any
SA-R cells. Clearly, if C1 does not contain any SA-R cells,
then the construction of C2 is not needed since we can set
S = C1.

We consider two cases. First, if C2 does not contain any
SA-W cells, then the invertible set S that we are looking for
is S = C1 − C2 since we are sure that C1 − C2 contains all
the SA-W cells of C and none of its SA-R cells. The second
case occurs if C2 contains some SA-W cells. In this case, we
recursively apply the same process to find an invertible set S2

of C2 which includes all its SA-W cells and none of its SA-R
cells. Therefore, S = C1 − (C2 − S2) = (C1 − C2) ∪ S2.
Figure 1 shows the invertible set S of C as a shaded area.

B. Specifying an invertible subset
One way to identify S, is to arrange the N bits/cells into
a logical two-dimensional array of n rows and m columns,2
and accordingly, re-label the information bits as b(i, j) and
the storage cells as c(i, j), where i = 0, . . . , n − 1 and j =
0, . . . ,m− 1. In this section, we will use the example of the
8×8 array shown in Figure 2(a) to illustrate the process of
specifying the invertible set. As depicted, C contains 7 SA-W
and 7 SA-R faults.

RDIS maintains n +m auxiliary binary flags VX1(i), i =
0, . . . , n − 1 and VY1(j), j = 0, . . . ,m − 1. These flags are
set such that:
• VX1(i) = 1 if row i of C contains at least one SA-W

cell (otherwise VX1(i) = 0); and
• VY1(j) = 1 if column j of C contains at least one SA-W

cell (otherwise VY1(j) = 0).
Let n1 be the number of rows in the n ×m array C that

have VX1 = 1 and let m1 be the number of columns of C
that have VY1 = 1. Moreover, define C1 as the subset of cells
{c(i, j)|(VX1(i) = 1) and (VY1(j) = 1)}. In other words,
C1 is the n1 × m1 subarray of C that contains: (1) SA-W
cells and (2) cells that lie at the intersection of a row that
contains a SA-W cell and a column that contains a SA-W cell
(these can be either NF or SA-R). In our example, the values
of VX1 and VY1 are shown in Figure 2(a). The SA-W cells of
C are confined to rows 2, 4, 5, 7 and columns 1, 3, 4, 6, and
hence, these rows and columns form the subarray C1 shown
in Figure 2(b).

Since C1 is defined to include all the SA-W cells of C, any
cell that is in C − C1 is either NF or SA-R, and thus can
hold the correct value of the corresponding information bit.
However, the cells that are in C1 may be NF, SA-W, or SA-R.
If C1 does not contain any SA-R cell (i.e., C1 contains only
NF or SA-W cells), then S = C1. If, however, C1 contains
some SA-R cells (as is the case in Figure 2(b)), then, we need
to find a subset, S1 of C1, which includes all its SA-R cells
and none of its SA-W cells. This will allow us to specify
an invertible subset of C as S = C1 − S1. To obtain S1, we
apply the same procedure used to extract C1 from C, but after
reversing the roles of SA-R and SA-W. Specifically, we define
the binary flags

2Introducing more than two dimensions is certainly possible, but is beyond
the scope of this paper.

0
0
1
0
1
1
0
1

0
0
0
0
1
0
0
1
 VY1 = 0 1 0 1 1 0 1 0 VY2 = 0 0 0 1 1 0 1 0

VX1 VX2
Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

j

i

(a) Array C (used to compute VX1 and VY1).

0
0
1
0
1
1
0
1

0
0
0
0
1
0
0
1
 VY1 = 0 1 0 1 1 0 1 0 VY2 = 0 0 0 1 1 0 1 0

VX1 VX2 Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

(b) Subarray C1 (used to compute VX2 and VY2).

0
0
1
0
1
1
0
1

0
0
0
0
1
0
0
1
 VY1 = 0 1 0 1 1 0 1 0 VY2 = 0 0 0 1 1 0 1 0

VX1 VX2
Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

j

i

(c) Subarray C2 (used to compute VX3 and VY3).

0
0
1
0
1
1
0
1
 VY1 = 0 1 0 1 1 0 1 0

VX1 Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

j

i

(d) Subarray C3 (all entries in VX4 and VY4 are
zeroes).

0
0
1
0
2
1
0
3
 VY = 0 1 0 2 3 0 3 0

Stuck at wrong
Stuck at right

Cell in the invertible set S

VX

Not faulty

(e) Invertible subset S = (C1 − C2) ∪ C3.

0
0
1
0
2
1
0
3
 VY = 0 1 0 2 3 0 3 0

Stuck at wrong
Stuck at right

Cell in the invertible set S

VX

Not faulty

Fig. 2: An example for constructing the invertible set.

• VX2(i) = 1 if row i of C1 contains at least one SA-R
cell (otherwise VX2(i) = 0); and

• VY2(j) = 1 if column j of C1 contains at least one SA-R
cell (otherwise VY2(j) = 0).

Let n2 be the number of row of C1 that have VX2 = 1 and
let m2 be the number of columns of C1 that have VY2 = 1.
Moreover, define C2 as the subset of cells {c(i, j)|(VX2(i) =
1) and (VY2(j) = 1)}. In other words, C2 is the n2 × m2

subarray of C1 that contains: (1) SA-R cells and (2) cells that
lie at the intersection of a row that contains a SA-R cell and a
column that contains a SA-R cell. In the example of Figure 2,
we form subarray C2 to include all the SA-R cells that are in
C1. In Figure 2(c), C2 is composed of rows 4, 7 and columns
3, 4, 6. By construction any cell that is in C1−C2 is either NF
or SA-W. Moreover, if C2 does not contain any SA-W cell,
then S1 = C2 and we can form the invertible set S = C1−C2.

Unfortunately, we cannot guarantee that C2 does not contain
any SA-W cell. Fortunately, however, if C2 6= C1 (i.e., C2 is
a proper subset of C1), then we can apply the same procedure
used to extract C1 from C to compute the subset S2 of C2

that contains all its SA-W cells and then set S = (C1−C2)∪
S2. The iterative process can continue to compute consecutive
subarrays C3, . . . , Ck. After k iterations, we can have one of
three cases:

1. k is odd and Ck contains only SA-W cells. In this case,

the invertible set S is defined as

S = (C1 − C2) ∪ (C3 − C4) ∪ . . . ∪ (Ck−2 − Ck−1) ∪ Ck.

2. k is even and Ck contains only SA-R cells. In this case
the invertible set S is defined as

S = (C1 − C2) ∪ (C3 − C4) ∪ . . . ∪ (Ck−1 − Ck).

3. The progress stalls because Ck = Ck−1, in which case
the set of faults cannot be masked.

Back to the example of Figure 2, the array C2 shown in
Figure 2(c) includes all the SA-R cells that are in C1 but
also contains two SA-W cells. Hence, we form subarray C3 to
include all the SA-W cells that are in C2 (see Figure 2(d)). The
process terminates with k = 3 because C3 does not include
any SA-R cells, and thus, S = (C1 − C2) ∪ C3 contains all
the SA-W cells that are in C and none of its SA-R cells (see
Figure 2(e)).

C. Overhead of auxiliary information

The subarrays C1, C2, . . . are completely specified by the
binary flags VX1(i), VX2(i), . . ., i = 0, . . . , n−1 and VY1(j),
VY2(j), . . ., j = 0, . . . ,m−1. In other words, these flags form
the auxiliary information that has to be maintained to retrieve
the correct values stored in the N cells. Note that if VXu(i) =
0 for some u, then VXv(i) = 0 for any v > u. Similarly, if
VYw(i) = 0 for some w, then VYv(i) = 0 for any v > w.

Hence, the flags can be compressed into two sets of counters
(see Figure 2(e)): VX(i) =

∑u
k=1 VXk(i) for i = 0, . . . , n−1;

and VY(j) =
∑w

k=1 VYk(j) for j = 0, . . . ,m− 1.
The auxiliary information needed to reconstruct S, thus,

consists of the (n+m) counters VX(i) and VY(j). If each of
these counters can count up to K, then the number of bits, H ,
needed to keep the auxiliary information is H = (n +m) ×
dlog2(K + 1)e. Note that by limiting the maximum value of
each counter to K, we assume that the recursive construction
of S will terminate in K steps. If that is not the case, then the
process will fail and the given faults cannot be tolerated.

D. Storing and retrieving information
In order to store and retrieve user data, VX and VY must
be computed first. Let us present an algorithm to do that
assuming that the locations and nature of faults are known.
This information can be kept in a separate storage (e.g., SRAM
cache) or discovered on line by a write-read-check process (as
described later). Given the fault information and the data that
is to be written, we can associate with each cell, c(i, j), a state
that is represented by two bits φ(i, j) and σ(i, j) as follows:
• φ(i, j) = 1 and σ(i, j) = 0→ cell c(i, j) is SA-R.
• φ(i, j) = 1 and σ(i, j) = 1→ cell c(i, j) is SA-W.
• φ(i, j) = 0 and σ(i, j) = 0 → cell c(i, j) is NF or the

fault was successfully handled.
To compute the values of the counters VXi for i =

0, . . . , n − 1 and VYj j = 0, . . . ,m − 1;, Algorithm 1 is
applied. In each iteration, k, of the algorithm (line 2), the
subarray which contains SA-W cells is formed (by computing
the flags VXk and VYk - lines 3 to 10). Then, the state of
every cell that is not in this subarray is set to (φ = 0 and σ
= 0) since it is either NF or is SA-R (lines 16 and 17). In
preparation for the next iteration, the algorithm then changes
the states of every faulty cell in the identified subarray such
that SA-W cells become SA-R and SA-R cells become SA-W
(lines 18 and 19). The algorithm assumes that the counters
VX(i) and VY(j)are initially set to zero.

The way the counters VX(i) and VY(j) are computed
implies that if cell c(i, j) is in Ck and not in Ck+1 then at
least one of the two counters VX(i) or V Y (j) is equal to k
while the other one is larger than or equal to k. Given this
observation, Algorithm 2 can be used to store the data bits.

Similarly, when retrieving the data, the bit read from cell
c(i, j) is complemented if the minimum of VX(i) and VY(j)
is an odd number. Building a hardware circuit to perform this
operation is straightforward, especially when the maximum
value of VX and VY is small. The next subsection will present
an embodiment of RDIS in hardware.

E. Realizing RDIS in hardware
The block diagram of Figure 3(a) depicts the overall system
implementation in hardware. A conventional memory chip
would include the main storage, data buffer, and write/read
hardware. RDIS adds new components to compute and store
auxiliary information (VX and VY) based on fault informa-
tion. It also modifies the write/read hardware. The logic-level
hardware implementation of computing auxiliary information
(Algorithm 1) is shown in Figure 3(b) and the modified write
path (Algorithm 2) in Figure 3(c). While it is not our goal

Algorithm 1: Computing VX and VY.
1 begin
2 for k ← 1 to K do
3 for i← 0 to n− 1 do
4 VXk(i)← σ(i, 0)+ . . .+σ(i,m− 1); // Boolean OR

5 if VXk(i) = 1 then
6 VX(i)← VX(i) + 1;

7 for j ← 0 to m− 1 do
8 VYk(j)← σ(0, j)+ . . .+σ(n−1, j); // Boolean OR

9 if VYk(j) = 1 then
10 VY(j)← VY(j) + 1;

11 if ∀i, j VXk(i) = 0 and VYk(j) = 0 then
12 EXIT; // successful completion

13 /* prepare for next iteration */
14 for i← 0 to n− 1 do
15 for j ← 0 to m− 1 do
16 if VXk(i) = 0 or VYk(j) = 0 then
17 set φ(i, j)← 0; σ(i, j)← 0;

18 else if φ(i, j) = 1 then
19 set σ(i, j)← σ(i, j); // Bit complement

20 if ∃i, j VXk(i) > 0 or VYk(j) > 0 then
21 FAIL; // Given faults can’t be masked

Algorithm 2: Storing data bits.
1 begin
2 for i← 0 to n− 1 do
3 for j ← 0 to m− 1 do
4 if min(VX(i),VY(j)) is even then
5 Store b(i, j) in c(i, j);

6 else
7 Store b(i, j) in c(i, j);

to present a fully optimized hardware design in this section,
we find our intuitive hardware implementation surprisingly
simple.

The design in Figure 3(b) spends K cycles to compute VX
and VY and maintains two single-bit registers φ and σ. These
registers are arranged (logically) into a two-dimensional array
that mimics the array of storage cells. In each cycle a global
OR operation in each row i computes VXk(i) and a global
OR operation in each column j computes VYk(j). The value
of VXk(i) is then distributed to each cell in row i and the
value of VYk(j) is distributed to each cell in column j. A
local circuit (also illustrated with a truth table) then updates
the values of the registers φ and σ. To compute VX(i) and
VY(j), a counter is added to each row, i, and each column
j (not shown in the figure). The signal VXk(j) is used to
increment the counter VX(i) and the signal VYk(j) is used to
increment the counter VY(j). Finally, the logic design (also in
a truth table) of Figure 3(c) uses the VX(i) and VY(j) counter
values to determine if a particular user data bit b(i, j) has to
be inverted or not before it is sent to c(i, j).

main storage

data buffer

Compute VX, VY

(Fig. 3(b))

compute
φ and σ

write/read
hardware(Fig. 3(c))

aux. storage
(VX and VY)

fault
info.

write data

read data

address

c(0,m-1)
state

…

…

VXk(i)

VYk(j)

VXk(i) VYk(j) φ σ φnext σnext

0 δ δ δ 0 0

δ 0 δ δ 0 0

δ δ 0 δ 0 0

1 1 1 0 1 1

1 1 1 1 1 0
δ = don’t care bit

min(VX(i),VY(j)) is even
 flip data bit

1 iff VY(j) ≥ VX(i) (truth table in the right)

b(i,j) to c(i,j)

0
1

0
1 VX(i) VY(j)

00 01 11 10

00 δ 0 0 0

01 1 δ 0 0

11 1 1 δ 1

10 1 1 0 δ

VX(i)

VY(j)

(a) (b)

(c)

φ

σ

clock

c(0,0)
state

c(1,0)
state

c(n-1,0)
state

c(0,1)
state

Fig. 3: (a) A block diagram showing a complete system for writing/reading. (b) Logic to compute auxiliary data (for a cell) and its truth
table. (c) Logic to determine write data bit (when K = 3) and its truth table.

The proposed hardware implementation infers that the major
complexity lies on the write path as RDIS needs to compute
the invertible set. The read path is augmented with a simple
decoding logic. A recent PCM prototype [20] has a relatively
sparse pipeline stages that can easily incorporate the required
logic. Write data are typically buffered (e.g., the LPDDR2-
NVM interface used in [14]) before being written to the
memory cells in an iterative manner. Hence, the computation
of the invertible set is done while the data is buffered and is
off the critical write path.

As described above, RDIS depends on the knowledge of the
fault information (location and stuck-at value). While a read-
after-write operation discovers all SA-W cells, it cannot distin-
guish between the NF and SA-R cells. The latter information
can be obtained by testing storage cells on the intersection of a
row and column both containing a SA-W cell. Specifically, to
test a cell c(i, j), we first read the value, v, stored in that cell,
write the complement of v into the cell and read it again. If the
value read is not the complement of v, then the cell is SA-R.
Otherwise, the cell is NF. One way of avoiding the overhead of
error detection before each write operation is to keep a cache
which contains information about the faults. Such a cache was
proposed in [17] where it was shown that a 128K-entry cache
is enough to capture most of the fault information in an 8 Gbit
memory. The same cache design can be used in RDIS.

F. Putting it all together

Let us close this section by summing up the overall flow
of execution that RDIS follows to detect and mask faults.
After writing a block of data, a read operation is performed
to verify if data was written correctly. The read verification
operation discovers all SA-W cells, if any. Subsequently, SA-
R cells are discovered as pointed out in Section III-E. Once
the fault information is collected, the computation of the
invertible set is executed (refer to Algorithm 1, Algorithm 2
and Figure 3(b)). We note that if the read verification does not
discover faults, then data was written correctly and no further
action is required. By comparison, ECC always computes the
auxiliary information regardless of whether faults occurred or
not.

As pointed out in Section III-E, the overhead to obtain
the fault information can be eliminated through caching of
the fault information (in the “fault information” box of Fig-
ure 3(a)). However, the read-after-write operation must always
be performed, similar to ECP and SAFER, to detect any new
fault that occurs during the writing.

Finally, certain memory blocks may have to be “retired”
if they are no longer reliably written. While it is an issue
orthogonal to the goal and scope of this work, such retirement-
based bad memory block management is commonly used
in storage devices [32], [33] and is becoming increasingly
important for main memory as well [34], [35].

IV. COVERAGE OF RDIS
The previous section described the basic idea of RDIS as well
as the necessary algorithms and their hardware implementa-
tion. This section will delve further into the properties of RDIS
by studying specific conditions under which RDIS fails to
cover a given set of faults. There are two such conditions:
(1) the progress stops because for some k, Ck = Ck−1; and
(2) the capacities of the counters VX and VY are exceeded
before the recursion terminates. Each of these two situations
is caused by specific fault patterns as described next.

A. Coverage failure caused by a loop of faulty cells
In this section, let us first consider the case where the progress
of the construction of the invertible set stops because Ck =
Ck−1, for some k. We start with some preliminary definitions.

Definition. A faulty cell, c(i, j) in Ck is row and column
connected (RC-connected) if row i in Ck contains at least one
other faulty cell, c(i, j′), j 6= j′ and column j in Ck contains
at least one other faulty cell c(i′, j), i 6= i′.

For example, cells c(7, 3) in the array of Figure 2(a) is RC-
connected while cell c(0, 2) is not RC-connected.

Definition. A loop of faulty cells (or “loop of faults”) is a
sequence of 2q faults (q > 1) where every two consecutive
faults in the sequence are, alternatively, in the same row or in
the same column. More specifically, a loop of faulty cells is of
the form c(i1, j1), c(i2, j1), c(i2, j2), c(i3, j2), . . ., c(iq, jq),
c(i1, jq).

Definition. A loop of faults c(i1, j1), c(i2, j1), c(i2, j2),
c(i3, j2), . . ., c(iq, jq), c(i1, jq) is alternatively-stuck (or “A-
stuck”) if the faults in the loop alternate between SA-R and
SA-W. That is, faulty cells c(i1, j1), c(i2, j2), . . ., c(iq, jq),
are stuck at a value, while faulty cells c(i2, j1), c(i3, j2), . . .,
c(i1, jq), are stuck at the opposite value.

For example, the loop in Figure 4(a) includes the sequence
of faulty cells c(2, 6), c(4, 6), c(4, 4), c(6, 4), c(6, 0), c(3, 0),
c(3, 1), c(2, 1). Moreover, this loop is A-stuck since cells
c(2, 6), c(4, 4), c(6, 0), c(3, 1) are SA-W while cells c(4, 6),
c(6, 4), c(3, 0), c(2, 1) are SA-R.

Theorem 1. The process of constructing the invertible set
stops with Ck = Ck−1 for some k, if the original array of
cells, C, contains a loop of faults that is A-stuck.

Proof. Assume that C contains the A-stuck loop of faults,
c(i1, j1), c(i2, j1), c(i2, j2), c(i3, j2), . . ., c(iq, jq), c(i1, jq).
By definition, each of rows i1, i2, . . ., iq contains two faults,
one SA-R and one SA-W, and each of columns j1, j2, . . ., jq
contains two faults, one SA-R and one SA-W. Hence, C1 will
include rows i1, i2, . . ., iq and columns j1, j2, . . ., jq , meaning
that it will include the loop of faults. Similarly, we argue that
C2 and any subsequent subarray will include the same loop
of faults. Given that the number of faulty cells in C is finite,
then the construction of Ck ⊂ Ck−1 will eventually terminate
with Ck = Ck−1 for some k. �

Theorem 2. The process of constructing the invertible set
terminates with CK being empty for some K if the original
array of cells, C, does not contain a loop of faults.

Proof. First, we observe that if k is odd (a similar argument
applies if k is even) and array, Ck, contains some faulty cells
but does not contain a loop of faults, then at least one of the
faulty cells in Ck, say c(i, j), is not RC-connected. Second,
we observe that if c(i, j) is SA-R then during the construction
of Ck+1, either VXk+1(i) = 0 or VYk+1(j) = 0. This is
because either row i does not have a faulty cell besides c(i, j)
or column j does not have a faulty cell besides c(i, j). This
leads to the exclusion of c(i, j) from Ck+1. If, on the other
hand, c(i, j) is SA-W then it will be included in Ck+1 but will
lead to VXk+2(i) = 0 or VYk+2(j) = 0 and thus excluded
from Ck+2. That is, Ck+2 is a strict subset of Ck. Moreover,
given that Ck does not contain a loop of faults, then Ck+2

does not contain a loop of faults either and the process of
excluding faults from consecutive subarray continues until an
empty CK is reached. �

B. Coverage failure caused by limited counter capacity

Theorem 2 implies that the process of constructing the invert-
ible set eventually terminates successfully if the fault pattern
does not include a loop of faults. However, even in the absence
of a loop of faults, the process of constructing the invertible
set may fail because of the limited capacity of the counters VX
and VY. Specifically, if the maximum capacity of the counters
is K and CK contains both SA-W and SA-R cells, then the
construction of the invertible set will fail. We explore the fault
configuration that leads to this failure next.

Definition. A row-column alternating sequence (“RCA se-
quence”) of 2q − 1 faulty cells (q > 1) is a loop of 2q faulty
cells after excluding one node.

The above definition implies that every two consecutive
faults in an RCA sequence are, alternatively, in the same row
or in the same column. If the two first cells in the sequence are
in the same column, then the sequence is of the form c(i1, j1),
c(i2, j1), c(i2, j2), c(i3, j2), . . ., c(iq−1, jq), c(iq, jq), while
if the first two cells are in the same row, the sequence is of
the form c(i1, j1), c(i1, j2), c(i2, j2), c(i2, j3), . . ., c(iq, jq−1),
c(iq, jq). The notation in the following definition encompasses
both cases.

Definition. an RCA sequence of 2q − 1 faulty cells, c1, c2,
. . ., c2q−1, is said to be alternatively-stuck (or “A-stuck”) if
the first fault in the sequence is SA-W and subsequent faults
alternate between SA-R and SA-W. That is, cells c1, c3, . . .,
c2q−1 are SA-W, while cells c2, c4, . . ., c2q−2 are SA-R.

For example, Figure 4(b) shows an RCA sequence of 7
faults which is obtained by removing cell c(2, 1) from the
loop of faults shown in Figure 4(a). This RCA sequence is
A-stuck. The step-like RCA sequence in 4(b) is isomorphic to
the RCA sequence and is obtained by interchanging columns
0 and 2, rows 4 and 5, rows 4 and 6 and rows 2 and 7. The
proofs of the following theorems are more intuitive if RCA
sequences are envisioned as step-like. In general, any RCA
sequence can be transformed to a step-like one by a series of
row/column interchanges.

Stuck at wrong Stuck at right

0
0
1
1
1
0
1
0
 VYk = 1 1 0 0 1 0 1 0

VXk

Ck Ck+1

0
0
1
1
1
0
1
0
 VYk+1 = 1 1 0 0 1 0 1 0

VXk+1

(a)

Step-like RCA Sequence RCA Sequence

Stuck at wrong Stuck at right

Switch columns 0 and 2, rows 4/5, row 4/6, row2/7

(b)

Fig. 4: (a) A loop of faults which cannot be masked (VXk = VXk−1 and VYk = VYk−1). (b) Two isomorphic RCA sequences of faults
that cannot be masked in three iterations.

Theorem 3. The process of constructing the invertible set fails
to terminate after K iterations (with CK containing only SA-
R cells or only SA-W cells) if the original array of cells, C,
contains an RCA sequence of at least 2K+1 faults and this
sequence is A-stuck.

Proof. Assume that C contains an RCA sequence c1, c2, ...,
c2q+1 which is A-Stuck. By construction, C1 contains all the
cells in that sequence. However, consider any of the cells ci,
i = 2,...,2q. If cell ci is SA-R, then it is located in a row that
contains a SA-W cell and in a column that contains a SA-W
cell. Hence, this cell will be included in the subarray C2. A
similar argument applies if ci is SA-W and consequently C2

will contain the RCA sequence c2, c3, ..., c2q . Applying this
argument recursively leads to the conclusion that if q ≥ K,
then the subarray CK will contain the RCA sequence cK , ...,
c2q+1−(K−1). In other words, if the RCA sequence contains
at least 2K + 1 cells, then CK will contain at least the three
cells cK , cK+1 and cK+2. Being three consecutive cells in an
RCA sequence, at least one of the cells is SA-R and another
is SA-W, which proves the theorem. �

Theorem 4. The invertible set can be constructed in at most K
iterations if the longest RCA sequence of faults in the original
array of cells, C, contains at most 2K − 1 faults.

Proof. We prove the theorem by induction. Specifically, we
prove three Lemmas: the first establishes the base of the
induction, while the other two deal with the induction steps.
The proofs of the lemmas are based on the observation that the
first and last cells in an RCA sequence are not RC-connected.
Lemma 1: If the longest RCA sequence in C is c1, c2, ..., cq ,
then the longest RCA sequence in C1 is c1+u, ..., cq−v , where
u, v ≥ 0 and both c1+u and cq−v are SA-W. This is because,
by construction, any faulty cell that is not RC-connected in
C1 should be SA-W.
Lemma 2: For k = 1, 3,..., if the longest RCA sequence in
Ck is c1, c2, . . ., cq , where c1 and cq are SA-W, then the
longest RCA sequence in Ck+1 is c1+u, . . ., cq−v , where
u, v > 0 and both c1+u and cq−v are SA-R. This is because, by
construction, any faulty cell in Ck+1 that is not RC-connected
should be SA-R.
Lemma 3: For k = 2, 4,..., if the longest RCA sequence in Ck is
c1, c2, . . ., cq where c1 and cq are SA-R, then the longest RCA
sequence in Ck+1 is c1+u, . . ., cq−v , where u, v > 0 and both

c1+u and cq−v are SA-W. This is because, by construction,
any faulty cell that is not RC-connected in Ck+1 should be
SA-W.

The above three lemmas prove that for k = 1, 2, . . . , if the
longest RCA sequence in Ck includes q cells, then the longest
RCA sequence in Ck+1 includes q− 2 cells. Therefore, if the
longest RCA sequence in C has 2K−1 cells then the longest
RCA sequence in CK has one cell (SA-W if K is even and
SA-R if K is odd). This proves that CK includes only one
type of faulty cells (SA-R or SA-W). �

C. Defective blocks of storage cells

Consider a storage block of n × m cells of which F cells
are faulty and assume that RDIS is used for masking the
faults with the maximum counter capacity of K. Theorem 1-4
identify the only two types of fault patterns that can cause the
failure of RDIS to mask the faults: loops of faults and RCA
sequence of length 2K + 1. Hence, we call a block of cells
defective if it contains a loop of faults or an RCA sequence
of at least 2K + 1 faults.

If a block of cells with F faults is not defective, then it
can be used to write/read any combination of information
bits. For a small number of faults, it is possible to compute
the probability of having a defective block analytically. For
example, three faults cannot form a loop of faults. With four
faults, the probability of having a loop of faults in an n×m
block is given by

(
n
2

)
·
(
m
2

)
/
(
n·m
4

)
. Applying this formula, we

find that the probability of having a defective fault pattern
given four faults is 0.0012 when n = m = 8 and 0.00008
when n = m = 16. The next section gives a detailed
evaluation of the probability of a block being defective in the
presence of F faults.

V. EVALUATION

In this section, we rely on Monte Carlo simulation to study the
various parameters that affect RDIS as well as to compare it to
other schemes. We assume that all cells within a storage block
have equal probability of failure. To test if a n ×m storage
block having F faulty cells is defective, this block is modeled
as a bipartite graph of (n+m) nodes, one for each row and
one for each column. If a cell c(i, j) is faulty, then an edge
connects the nodes representing row i and column j. A simple
variation of depth first search algorithm (DFS) is used to detect
the occurrence of a loop. To detect RCA sequences, we keep

0

10

20

30

40

50

60

70

80

90

100

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

A
v

g
.

#
 o

f
fa

u
lt

s
 t

o
le

ra
te

d
 RDIS-3 RDIS-7 RDIS-max

O
v

e
rh

e
a
d

 (
%

)

0

10

20

30

40

50

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

Block size

Fig. 5: Average number of faults tolerated within a block and the
corresponding overhead.

track of the longest recursion depth executed by DFS while
attempting to detect a loop. In other words, our algorithm
either detects the existence of a loop, if any, or returns the
length of the longest RCA sequence.

In [18], [22], [26], it was shown that stuck-at faults are
the dominating failure source. Disturbance and resistance drift
failures are prominent in multi-level PCM [36] not targeted by
RDIS. Accordingly, we only simulate stuck-at faults.

A. Sensitivity to RDIS Parameters

The block size to be protected, and the overhead of auxiliary
counters are the main parameters that affect RDIS. In this
section, we study the performance of RDIS in light of these
parameters. We simulate RDIS with 5 different block sizes
of varying overhead. In addition, each block size is simulated
with three variations of RDIS. The first limits the capacity of
the auxiliary counters to 3, the second to 7 and the last to
the number required to tolerate the maximum possible RCA
sequence. Hereafter, we denote these three variations as RDIS-
3, RDIS-7 and RDIS-max. For each block size, we report the
average number of faults that can be tolerated as well as the
probability of failure with F faults for F = 1, 2, Given a
block of size n ×m, the corresponding overhead is (n · s +
m ·s)/(n ·m), where s is the size of each auxiliary counter in
bits. For example, a 128-byte data block arranged as a 32×32
bit array incurs a 12.5% overhead for s = 2. It is to be noted
that for a fixed s, the overhead percentage decreases with the
increase in the size of the protected storage block.

Figure 5 shows the average number of faults that can be
tolerated for various block sizes and the overhead of the
three RDIS configurations. The overhead for RDIS-max is
calculated based on the maximum length of an RCA sequence
that can occur within a block. Specifically, for n ×m block,
the maximum length of an RCA sequence is n + m − 1
(imagine a step-like RCA sequence starting at c(0, 0) and
ending at c(n − 1,m − 1)), and thus a counter of size
s = dlog2((n+m− 1)/2)e bits is sufficient for recovery
according to Theorem 4. From the results shown in Figure 5,
it can be inferred that the average number of faults tolerated

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
of faults

Pr
ob

. h
av

in
g

a
de

fe
ct

iv
e

pa
tte

rn

1,024-bit block

RDIS-3

RDIS-7

RDIS-max

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70
of faults

2,048-bit block

RDIS-3

RDIS-7

RDIS-max

Pr
ob

. h
av

in
g

a
de

fe
ct

iv
e

pa
tte

rn

Fig. 6: Probability of failure with F faults.

within each block increases with the overhead. Hence, the
choice of auxiliary counters capacity for RDIS represents a
trade-off between the number of faults that can be tolerated
and the overhead. RDIS-3 is shown to correct many errors
robustly at the smallest overhead.

The main advantage of RDIS is the large probability to
tolerate a relatively large number of faults. Figure 6 shows
that given F faults, the probability of forming a loop or
RCA sequence increases at low pace with the increase of F .
Accordingly, RDIS is capable of tolerating a high number of
faults beyond what it guarantees. Even though we show the
results for blocks of 1,024 bits and 2,048 bits, other block
sizes exhibit the same trend and are omitted for brevity. These
results show that RDIS-3 is capable of tolerating a notable
number of faults while incurring an affordable overhead. As
a matter of fact, the relative increase in the number of faults
tolerated by increasing the counters capacity beyond three is
not proportional to the increase in the overhead. Consequently,
we consider only RDIS-3 in the rest of our evaluation.

4.6

6.2

9.3

12.5

18.7

0

2

4

6

8

10

12

14

16

18

20

0

20

40

60

80

100

120

140

160

180

200

1 × 8,192 bits 2 × 4,096 bits 4 × 2,048 bits 8 × 1,024 bits 16 × 512 bits

A
v

g
.

#
 o

f
fa

u
lt

s
 t

o
le

ra
te

d

of sub-blocks × sub-block size

O
v

e
rh

e
a
d

 (
%

)

Fig. 7: Average number of faults tolerated in 1 KB memory block
(bar) and the corresponding overhead (line).

As indicated earlier, varying the counters capacity is one
way of affecting the trade-off between the number of faults
tolerated and the overhead. Another way of affecting this trade-
off is through protecting a memory block as a combination of

smaller sub-blocks while fixing the counters capacity. Figure 7
shows the average number of tolerated faults in 1 KB of
memory. We protect a block of 1 KB of memory through
dividing it into smaller sub-blocks. Each sub-block is protected
with RDIS-3. The 1 KB block is considered defective as
soon as any of its sub-blocks becomes defective. Such an
approach leads to a significant increase in the average number
of tolerated faults as depicted in Figure 7.

B. Comparison with existing schemes
In this section, we evaluate the performance of RDIS against
other schemes. Specifically, we compare RDIS-3 with SAFER
which was shown in [17] to be superior to ECP and ECC.
The overhead of SAFER depends on the number of groups
that a block is partitioned into.3 Hence, RDIS-3 is compared
with two SAFER configurations that have an overhead just
smaller and just larger than RDIS-3. Two metrics are used for
comparison: (1) the probability of failure with F faults; and
(2) the average number of faults that can be tolerated in a
storage block.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

of faults

SAFER 256

SAFER 128

2,048-bit block

RDIS-3

Pr
ob

. o
f f

ai
lu

re

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

of faults

1,024-bit block

RDIS-3 SAFER 64

Pr
ob

. o
f f

ai
lu

re

Fig. 8: RDIS vs. SAFER: Probability of failure with F faults.

Both RDIS and SAFER can probabilistically tolerate more
faults than what they guarantee. With n groups, SAFER
(denoted by SAFER n) guarantees the tolerance of log2 n+1
faults while RDIS can always tolerate three faults. Any
additional fault is tolerated by both schemes with a certain
probability. Figure 8 shows the probability of failure of a
storage block after F faults. Though SAFER guarantees the
tolerance of more faults than RDIS, the probability of failure
after what it guarantees increases at a high rate. On the
contrary, the probability of failure for RDIS increases at a
substantially low rate. In addition, the probability of failure
for RDIS in the interval of faults that SAFER guarantees is
remarkably low as depicted in Table I, even when compared

3The overhead of SAFER when used to protect a block of N bits using n
groups is: (dlog2 ne × dlog2dlog2Nee) + d(log2dlog2 ne+ 1)e+ n.

with the higher overhead version of SAFER. Though we show
the results for two different block sizes for brevity, the same
trend is manifested with other block sizes.

0

10

20

30

40

50

60

70

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 2

5
6

R
D

IS
-3

S
A

F
E

R
 5

1
2

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

A
v

g
.

#
 o

f
fa

u
lt

s
 t

o
le

ra
te

d

0

5

10

15

20

25

30

35

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 2

5
6

R
D

IS
-3

S
A

F
E

R
 5

1
2

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

O
v

e
rh

e
a
d

 (
%

)

Block size

Fig. 9: RDIS vs. SAFER: Average number of tolerated faults and
the corresponding overhead.

The advantage of RDIS over SAFER, when it comes to
the low probability of failure, is manifested by the average
number of faults that each scheme can tolerate as shown in
Figure 9. The results show a significant advantage for RDIS
over SAFER. For example, RDIS-3 is capable of tolerating
18% more faults than SAFER 128 with a 512-bit block size
and 95% more faults than SAFER 512 with a 8,192-bit block.
Note that this increase in the average number of faults tolerated
is realized with lower overhead.

The presented results demonstrate that RDIS is capable
of tolerating a large number of faults on average and is
characterize by a probability of failure that increases at a low
rate with the increase in the number of faults. With a block
size of at least 1,024 bits, the overhead of RDIS is within the
12.5% standard.

C. Protecting auxiliary data

Similarly to SAFER, RDIS cannot recover from faults in the
auxiliary bits. Specifically, it is assumed that the storage of
those bits is error free. The ECP scheme [16] is different
in that regard in the sense that it can protect the cells that
replace faulty cells. To this end, we can use ECP to protect the
auxiliary counters of RDIS-3 against faults. For this, we can
allocate π pointers to protect the auxiliary bits. We simulated
RDIS-3 with various values of π and concluded that π = 5
is a suitable value since it maintains the high number of
faults tolerated when counters are assumed to be fault-free.

Faults # 4 5 6 7 8 9 10 11 12 13

1 Kbits
SAFER 128 0 0 0 0 0 0.055 0.11 0.17 0.23 0.30

RDIS-3 6×10−6 3×10−5 8×10−5 2×10−4 4×10−4 0.00008 0.0015 0.0025 0.0045 0.0074

2 Kbits
SAFER 256 0 0 0 0 0 0 0.03 0.06 0.09 0.13

RDIS-3 2×10−6 5×10−6 1×10−5 4×10−5 1×10−4 2×10−4 0.00033 0.00057 0.00093 0.0015

TABLE I: RDIS vs. SAFER: Probability of failure.

Hereafter, we denote the scheme that protects the auxiliary
bits of RDIS-3 (can be applied to any version of RDIS) as
RDIS-3PX.

1,024-bit block

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Pr
ob

. o
f f

ai
lu

re

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Pr
ob

. O
f f

ai
lu

re

2,048-bit block

of faults

of faults

RDIS-3PX

RDIS-3PX

ECP 20

ECP 16

Fig. 10: RDIS-3PX vs. ECP: Probability of failure with F faults.

Subsequently, we compare RDIS-3PX against ECP itself.
We assign to ECP the minimum number of pointers, n, that
makes its overhead larger than RDIS-3PX and denote the
scheme by ECP n.4 For various block sizes, we study the
probability of failure with F faults as well as the average
number of tolerated faults achieved by each scheme. When
it comes to the probability of failure with F faults, Figure
10 shows that ECP cannot recover from faults beyond the
provided number of correction pointers. To the contrary, RDIS
is capable of remarkably tolerating faults beyond what it guar-
antees. Furthermore, RDIS exhibits a notably low probability
of failure within the error free window of ECP. Again, these
results are manifested in the average number of faults that both
schemes can tolerate as depicted in Figure 11. For example,
RDIS tolerates up to 81% more faults with block size of 8,192
bits. It is to be noted that RDIS’ average number of faults

4The overhead of ECP n when used to protect a block of N bits using n
pointers is: n(dlog2Ne+ 1) + 1.

0

10

20

30

40

50

60

Av
g.

 #
 o

f f
au

lts
 to

le
ra

te
d

0

10

20

30

O
ve

rh
ea

d
(%

)

Block size

R
D

IS
-3

P
X

E
C

P
 1

6

E
C

P
 2

0

E
C

P
 2

4

E
C

P
 3

1

R
D

IS
-3

P
X

R
D

IS
-3

P
X

R
D

IS
-3

P
X

E
C

P
 1

4

R
D

IS
-3

P
X

R
D

IS
-3

P
X

E
C

P
 1

6

E
C

P
 2

0

E
C

P
 2

4

E
C

P
 3

1

R
D

IS
-3

P
X

R
D

IS
-3

P
X

R
D

IS
-3

P
X

E
C

P
 1

4

R
D

IS
-3

P
X

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

Fig. 11: RDIS-3PX vs. ECP: Average number of tolerated faults and
the corresponding overhead.

tolerated corresponds to faults occurring both in the protected
block and the auxiliary bits.

The presented results make it clear that RDIS can tolerate
more faults with higher probability than previously proposed
schemes using the same assumptions and fault model. It is
particularly suited for large blocks of 128 bytes or more.

VI. CONCLUSIONS

The limited write endurance is the major weakness of emerg-
ing resistive memories. Accordingly, robust error recovery
schemes are required to mask off hard errors and prolong
the lifetime of a resistive memory chip. In this paper, we
have presented and evaluated RDIS, a recursively defined
invertible set scheme to tolerate multiple stuck-at hard faults.
Our extensive evaluation shows that RDIS achieves a very
low probability of failure on hard fault occurrences, which
increases slowly with the relative increase in the number of
faults. This characteristic allows RDIS to effectively recover
from a large number of faults. For example, RDIS can recover
from 46 hard faults on average when the block size is 512
bytes (storage sector size) while incurring a low overhead of
6.2%. Furthermore, we have shown that realizing RDIS in
hardware is fairly straightforward and is off the critical data
access path.

Given its high error tolerance potential, RDIS fits the need
to recover from many faults in emerging resistive memories.

We believe that RDIS provides a very robust memory substrate
to a system and allows system designers to focus their efforts
on effective integration and management of resistive memory
capacity at higher levels, for better overall system performance
and reliability.

REFERENCES

[1] K. Kim, “Technology for sub-50nm DRAM and NAND flash manufac-
turing,” 2005, pp. 323–326.

[2] ITRS, http://public.itrs.net, 2007.
[3] R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next storage

system technology,” IBM Journal of Research and Development, vol. 52,
no. 4.5, pp. 439–447, July 2008.

[4] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam,
“Phase-change random access memory: A scalable technology,” IBM
Journal of Research and Development, vol. 52, no. 4.5, pp. 465–479,
July 2008.

[5] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and
DRAM main memory system,” in Design Automation Conference, 2009.
DAC ’09. 46th ACM/IEEE, july 2009, pp. 664–669.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” SIGARCH Comput. Archit.
News, vol. 37, pp. 2–13, June 2009.

[7] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, dec.
2009, pp. 14–23.

[8] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” SIGARCH
Comput. Archit. News, vol. 37, pp. 14–23, June 2009.

[9] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique to
improve PRAM write performance, energy and endurance,” in Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, dec. 2009, pp. 347–357.

[10] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” ser. FAST’11, February 2011.

[11] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient stt-ram caches,”
ser. HPCA, February 2011, pp. 50–61.

[12] X. Dong and Y. Xie, “Adams: adaptive mlc/slc phase-change memory
design for file storage,” ser. ASPDAC ’11, 2011, pp. 31–36.

[13] I. Micron Technology, “Phase change memory (pcm),” http://www.
micron.com/products/pcm, 2011.

[14] H. Chung, B. H. Jeong, B. Min, Y. Choi, B.-H. Cho, J. Shin, J. Kim,
J. Sunwoo, J. min Park, Q. Wang, Y. jun Lee, S. Cha, D. Kwon, S. Kim,
S. Kim, Y. Rho, M.-H. Park, J. Kim, I. Song, S. Jun, J. Lee, K. Kim,
K. won Lim, W. ryul Chung, C. Choi, H. Cho, I. Shin, W. Jun, S. Hwang,
K.-W. Song, K. Lee, S. whan Chang, W. Y. Cho, J.-H. Yoo, and Y.-H.
Jun, “A 58nm 1.8V 1Gb PRAM with 6.4MB/s Program BW,” in IEEE
ISSCC, February 2011, pp. 500–502.

[15] Y. Choi, I. Song, M.-H. Park, H. Chung, B. C. Sanghoan Chang, J. Kim,
Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee,
Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Want, S. Cha, S. Ahn, H. Horii,
J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J.-H. Yoo, and G. Jeong, “A
20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” in IEEE
ISSCC, February 2012.

[16] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” SIGARCH Comput. Archit.
News, vol. 38, pp. 141–152, June 2010.

[17] N. H. Seong, D. H. Woo, V. Srinivasan, J. Rivers, and H.-H. Lee,
“SAFER: Stuck-At-Fault Error Recovery for Memories,” in Microar-
chitecture (MICRO), 2010 43rd Annual IEEE/ACM International Sym-
posium on, dec. 2010, pp. 115–124.

[18] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. Jouppi,
and M. Erez, “FREE-p: Protecting non-volatile memory against both
hard and soft errors,” in High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on, feb. 2011, pp.
466–477.

[19] S. Kang, W. Y. Cho, B.-H. Cho, K.-J. Lee, C.-S. Lee, H.-R. Oh, B.-G.
Choi, Q. Wang, H.-J. Kim, M.-H. Park, Y. H. Ro, S. Kim, C.-D. Ha,
K.-S. Kim, Y.-R. Kim, D.-E. Kim, C.-K. Kwak, H.-G. Byun, G. Jeong,
H. Jeong, K. Kim, and Y. Shin, “A 0.1 µm 1.8-V 256-Mb Phase-Change
Random Access Memory (PRAM) With 66-MHz Synchronous Burst-
Read Operation,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 1,
pp. 210–218, jan. 2007.

[20] K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, C.-
S. Lee, H.-J. Kim, J.-M. Park, Q. Wang, M.-H. Park, Y.-H. Ro, J.-Y.
Choi, K.-S. Kim, Y.-R. Kim, I.-C. Shin, K.-W. Lim, H.-K. Cho, C.-H.
Choi, W.-R. Chung, D.-E. Kim, Y.-J. Yoon, K.-S. Yu, G.-T. Jeong, H.-S.
Jeong, C.-K. Kwak, C.-H. Kim, and K. Kim, “A 90 nm 1.8 V 512 Mb
Diode-Switch PRAM With 266 MB/s Read Throughput,” IEEE JSSC,
vol. 43, pp. 150–162, January 2008.

[21] K. Bourzac, “Memristor memory readied for production,” http://www.
technologyreview.com/computing/25018/, April 2010.

[22] K. Kim and S. J. Ahn, “Reliability investigations for manufacturable
high density pram,” ser. IRPS, 2005.

[23] S. Lee, J. hyun Jeong, T. S. Lee, W. M. Kim, and B. ki Cheong, “A Study
on the Failure Mechanism of a Phase-Change Memory in Write-Erase
Cycling,” IEEE Electron Device Letters, vol. 30, no. 5, pp. 449–450,
May 2009.

[24] B. Gleixner, F. Pellizzer, and R. Bez, “Reliability characterization of
phase change memory,” ser. NVMTS, October 2009.

[25] M. Qureshi, A. Seznec, L. Lastras, and M. Franceschini, “Practical and
secure PCM systems by online detection of malicious write streams,”
in High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, feb. 2011, pp. 478–489.

[26] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh: prevent
malicious wear-out and increase durability for phase-change memory
with dynamically randomized address mapping,” SIGARCH Comput.
Archit. News, vol. 38, pp. 383–394, June 2010.

[27] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu,
“A Low Power Phase-Change Random Access Memory using a Data-
Comparison Write Scheme,” ser. ISCAS, May 2007, pp. 3014–3017.

[28] W. Wong, “A chat about micron’s clearnand technology,” electronic
design, December 2010.

[29] R. Hamming, “Error Detecting and Error Correcting Codes,” Bell System
Technical Journal, vol. 26, no. 2, pp. 147 – 160, 1950.

[30] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Information and Control, vol. 3, no. 1, pp. 68–79, 1960.

[31] D. Strukov, “The area and latency tradeoffs of binary bit-parallel BCH
decoders for prospective nanoelectronic memories,” in Signals, Systems
and Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on,
nov. 2006, pp. 1183–1187.

[32] C. Park, P. Talawar, D. Won, M. Jung, J. Im, S. Kim, and Y. Choi, “A
high performance controller for nand flash-based solid state disk (nssd),”
in Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW
2006. 21st, feb. 2006.

[33] Y. Cai, E. Haratsch, M. McCartney, and K. Mai, “Fpga-based solid-state
drive prototyping platform,” in Field-Programmable Custom Computing
Machines (FCCM), 2011 IEEE 19th Annual International Symposium
on, may 2011.

[34] D. Tang, P. Carruthers, Z. Totari, and M. Shapiro, “Assessment of the
effect of memory page retirement on system ras against hardware faults,”
in Dependable Systems and Networks, 2006. DSN 2006. International
Conference on, june 2006.

[35] M. Rahman, B. R. Childers, and S. Cho, “Comet: Continuous online
memory test,” in Proceedings of the 17th IEEE Pacific Rim Int’l
Symposium on Dependable Computing (PRDC), December 2011.

[36] N. Papandreou, H. Pozidis, T. Mittelholzer, G. Close, M. Breitwisch,
C. Lam, and E. Eleftheriou, “Drift-tolerant multilevel phase-change
memory,” in Memory Workshop (IMW), 2011 3rd IEEE International,
may 2011, pp. 1–4.

