
1

RDIS: Tolerating Many Stuck-At Faults in
Resistive Memory

Rakan Maddah, Member, IEEE, Rami Melhem, Fellow, IEEE, and Sangyeun Cho, Senior Member, IEEE

Abstract—With their potential for high scalability and density, resistive memories are foreseen as a promising technology that
overcomes the physical limitations confronted by charge-based DRAM and flash memory. Yet, a main burden towards the successful
adoption and commercialization of resistive memories is their low cell reliability caused by process variation and limited write endurance.
Typically, faulty and worn-out cells are permanently stuck at either ‘0’ or ‘1’. To overcome the challenge, a robust error correction scheme
that can recover from many hard faults is required.
In this paper, we propose and evaluate RDIS, a novel scheme to efficiently tolerate memory stuck-at faults. RDIS allows for the correct
retrieval of data by recursively determining and efficiently keeping track of the positions of the bits that are stuck at a value different
from the ones that are written, and then, at read time, by inverting the values read from those positions. RDIS is characterized by a
very low probability of failure that increases slowly with the relative increase in the number of faults. Moreover, RDIS tolerates many
more faults than the best existing scheme—by up to 95% on average at the same overhead level.

Index Terms—Hard Faults; Phase Change Memory; Fault Tolerance; Reliability;

F

1 INTRODUCTION

Phase Change Memory (PCM) is receiving due attention as an
alternative memory technology to DRAM and flash memory.
The latter are hindered by physical limitations putting their
scalablity into jeopardy [1], [2], [3]. Instead of representing
information as the presence or absence of electrical charges,
PCM encodes bits in different physical states of chalcogenide
alloy that consists of Ge, Sb and Te. Data is stored in PCM
devices in the form of either a low resistance crystalline
state (SET) or a high resistance amorphous state (RESET).
Early evaluations (e.g., [4], [5], [6]) demonstrate that PCM
can compete favorably with DRAM (main memory) in terms
of performance and can beat DRAM in terms of power
consumption.

Unfortunately, each PCM cell can endure only a limited
number of SET/RESET cycles [7], [8], [9]. There are two
major factors in this matter: imperfect process control with a
very deep sub-micron technology and repeated writes to a cell
(i.e., write cycling). Prior architecture and systems research
focus on the latter because manufacturers will ship chips
with a minimum guaranteed write endurance. As a cell gets
written, the heating and cooling process to program the cell
at a desired resistance level leads to frequent expansions and
contractions of the material. Consequently, the heating element
detaches from the chalcogenide material after sustaining 106

to 108 [10], [11], [12], [13] writes on average, which results in
a stuck-at hard fault at either ‘0’ or ‘1 that can be subsequently
read but not reprogrammed [8], [14].

In order to make PCM a viable memory technology for
high volume manufacturing, mitigating the write endurance
problem is essential. It is believed that both aggressive wear
leveling and proactive error masking techniques are necessary.
Wear leveling spreads writes to the entire memory capacity

• R. Maddah and R. Melhem are with the Department of Computer Science,
University of Pittsburgh, 210 S. Bouquet, Pittsburgh, PA 15260.
E-mail: {rmaddah,melhem@cs.pitt.edu}

• S. Cho is with the Memory Division of Samsung Electronics Co. while on
leave of absence from the University of Pittsburgh.
E-mail: {cho@cs.pitt.edu}

to evenly wear memory cells (e.g., through periodic, pseudo-
randomization of write addresses) [5], [6], [15], [16]. Tech-
niques to suppress unnecessary bit-level writes were pro-
posed [4], [6], [17], [18]. However, due to process variation,
memory cells are expected to wear out at different rates, which
compromises the chip’s lifetime. Therefore, error masking
techniques are required to overcome cell failures.

Error correction code (ECC) such as SEC-DED (single error
correction, double error detection) has been successfully used
to protect main memory. However, a traditional hamming code
based ECC is designed for a general fault model and its
overhead is unnecessarily large for the stuck-at fault model.
This is especially true when the probability of having multiple
bit errors is high, as is the case with resistive memories.
For example, imagine that many cells in a memory block
have reached their write endurance limit simultaneously. To
cope with many faults, we must employ a correspondingly
stronger ECC, which would incur excessively large space
and computation overheads. Moreover, the change in the data
pattern written within a block requires a recomputation of
the parity information for the ECC. In fact, a change for a
single bit in the data could induce a change of several parity
bits. Accordingly, the parity bits are vulnerable to wear out
earlier than the data bits. Subsequently, recently proposed
error masking techniques for resistive memories [7], [8], [9]
combine clever microarchitectural and coding ideas to reduce
overhead.

In this paper, we propose RDIS (recursively defined in-
vertible set), a novel low-overhead error correction scheme
to recover from hard errors.1 RDIS allows for the correct
retrieval of data in the presence of stuck-at faults by keeping
track of the bits that are stuck at a value different from the
ones that are written, and then, at read time, by inverting the
values read for those bits. For a write operation, each cell in a
data block is either: “non-faulty” (NF), stuck at the opposite
of the value being written (“stuck-at-wrong” or SA-W), or
stuck at the same value written (“stuck-at-right” or SA-R).

1. The principles of RDIS are not limited to resistive memories. RDIS is
particularly relevant for resistive memories because it can correct many errors
with high probability.

2

For example, trying to write ‘0’ in a cell stuck at ‘1’ makes
the cell SA-W. The underlying idea of RDIS is to identify and
encode a subset S—out of all cells forming a data block to be
updated—containing all the SA-W cells. Later, the members of
S are read inverted, which retrieves the data as it was intended
to be written originally. RDIS initiates the computation of S
after detecting write failure through applying a read-after-write
verification operation.

Although it can only guarantee the recovery from three
faults, RDIS has a desirable property of effectively recovering
from many more faults beyond what it guarantees. Intrinsi-
cally, RDIS enjoys a low probability of failure that increases
at a very slow rate with the relative increase in the number
of fault occurrences. By comparison, current state-of-the-art
schemes either cannot recover from a single fault beyond a
guaranteed number of faults (e.g., ECC [19] and ECP [7]) or
can recover additional faults but with a low probability (e.g.,
SAFER [8]). Our evaluation shows that RDIS can tolerate 95%
more faults on average than SAFER when the protected block
size is 1 KB. Given its ability to recover many faults with high
probability, RDIS is a very good fit for resistive memories that
will experience a growing number of faults over the course of
use.

We formally prove the fault tolerance properties of RDIS
by stating all necessary and sufficient conditions that make
RDIS holds. It is worth mentioning that RDIS error correction
capabilities are not limited to main memory. RDIS is capable
of tolerating faults within block sizes ranging from cache line
size to secondary storage block sector size, while incurring a
low overhead. Accordingly, we present a study of RDIS error
correction capability at different block sizes. Furthermore,
we present techniques that allow RDIS to recover from fault
patterns that it cannot mask. Our evaluation shows that those
techniques significantly increase the error correction capability
of RDIS.

The remainder of this paper is organized as follows. Sec-
tion 2 first summarizes the related work. Section 3, Section 4
and Section 5 then give the details of the proposed RDIS
scheme by formally describing the concepts and the coverage
of the scheme as well as discuss hardware implementation
implications. Section 6 presents a technique to reduce the
space overhead for RDIS. Section 7 discusses the application
of RDIS in the context of multilevel cells. Section 8 presents
techniques that allow RDIS to squeeze more lifetime for mem-
ory devices. Experimental evaluation of RDIS is presented in
Section 9, and finally, Section 10 concludes the paper.

2 PRIOR RELATED WORK
The exploration of ECC can be traced many years back [19].
Among many ECC schemes, SEC-DED is widely used to
protect DRAM in main memory. Since DRAM errors are
typically transient and occur infrequently, SEC-DED is ade-
quate in most situations. On the other hand, resistive memories
have different failure mechanisms and are subject to multiple
bit faults that occur gradually with the lifetime of a chip.
Consequently, it is necessary to deploy a multi-bit error
correction scheme. Hamming code based BCH code [20] is
one such scheme. Yet, codes based on BCH are complex and
expensive to implement [21], [22]. As a matter of fact, the
complexity increases linearly with the number of faults to be
tolerated [21].

There are three recent proposals that target specifically
masking errors in resistive memories with higher auxiliary
storage efficiency than traditional ECC techniques. First, ECP

(Error Correcting Pointer) [7] provides a limited number of
programmable “correction entries”. A correction entry holds
a pointer (address) to a faulty cell within the protected block
and a “patch” cell that replaces the faulty one. When a faulty
cell is detected, a new correction entry is allocated to cover the
cell. A memory block is de-commissioned when the number of
faulty cells exceeds that of the correction entries. In essence,
ECP provides cell-level spares to each block.

SAFER (Stuck-at-Fault Error Recovery) [8] dynamically
partitions a protected data block into a number of groups so
that each group contains at most one faulty cell. When the
value of the faulty cell is different from the intended value
to be written, all cells in the the group are written and read
inverted. If the data block is to be partitioned into n groups,
then SAFER allows log2 n “repartitions”. Repartitioning is
done whenever a new fault is detected. Therefore, SAFER
guarantees the recovery from log2 n+1 faults. Any additional
fault is tolerated only if it occurs in a fault-free group.
Otherwise, the block has to be retired. SAFER was shown
to provide stronger error correction than ECC or ECP at the
same overhead level.

Free-p (Fine-grained Remapping with ECC and Embedded-
Pointers) [9] combines error correction and redundancy, and as
such, has two protection layers. First, it uses an ECC to mask
faults within a data block. Second, when a block becomes
defective, Free-p embeds a pointer within the defective block
so that a redundant, non-faulty block can be quickly identified
without having to access a separate remapping table. Free-
p employs ECC to correct up to four hard errors in a data
block of cache line size and relies on the OS to perform block
remapping. We note that the block remapping idea of Free-p
is orthogonal to RDIS. Hence, RDIS could be used to replace
ECC in Free-p.

PAYG (Pay-As-You-Go) [23] is a resilient architecture
proposed to decrease the storage overhead of auxiliary bits
information required by error correction schemes (e.g. ECP
and SAFER) targeting the recovery from stuck-at faults. Essen-
tially, PAYG moves from a uniform allocation of auxiliary bits
across the protected memory blocks to a dynamic on demand
allocation. PAYG exploits the variability in lifetime that the
memory blocks exhibit and assigns additional auxiliary bits to
weaker blocks. We note that RDIS is compatible with PAYG.
The auxiliary bits of RDIS could be allocated in a similar way
to what is proposed in PAYG.

3 RDIS
This section describe RDIS intuitively using Set Theory. We
begin with the idea of invertible sets and how to specify
an invertible set given a set of faulty memory cells in a
block. We then focus on an algorithm that computes the
necessary auxiliary information to correctly store and retrieve
user information. Finally, we discuss a hardware embodiment
of RDIS before we close this section.

3.1 Basic idea
RDIS applies to a block of memory/storage cells. Let’s assume
that the block has N cells, c(0), . . ., c(N − 1) that store
binary information b(0), . . ., b(N −1). Each cell c(i) is either
non-faulty (NF), stuck at ‘0’ (SA-0), or stuck at ‘1’ (SA-1).
Furthermore, RDIS uses a different classification of the faulty
cells, depending on the value that is to be written in those
cells. Specifically, when bit b(i) is to be stored in a faulty cell
c(i), then c(i) is stuck at the right value (SA-R) if it is SA-0

3

SA-R

SA-R

SA-R

SA-R

SA-R SA-W
SA-W

SA-W

SA-W

C

C1

C2

SA-W

SA-W

SA-W

SA-W
SA-R

SA-R

SA-R

SA-R

SA-R

SA-R

SA-R SA-W
SA-W

SA-W

SA-W

C

C1

C2

SA-W

SA-W
SA-R

SA-R

SA-W
SA-W

S2

Fig. 1: The invertible set S = (C1 − C2) ∪ S2.

and b(i) = 0 or it is SA-1 and b(i) = 1. Similarly, c(i) is
stuck at the wrong value (SA-W) if it is SA-0 and b(i) = 1
or it is SA-1 and b(i) = 0. Using this classification, each cell
c(i) can be in one of three classes: NF, SA-R, or SA-W.
H-bit auxiliary information is used to allow the correct

retrieval of the N stored bits. The value of H will be specified
later. For clarity of discussion, we assume that the auxiliary
information is maintained in a separate fault-free storage.
Alternatively, the auxiliary information can be stored in the
same faulty medium as the data but adequately protected by
some other technique (see Section 9.3 for further discussions).

Denoting the set of memory cells c(0), . . ., c(N − 1) by
C, the main idea of RDIS is to use the auxiliary H bits to
identify a subset S ⊂ C such that every SA-W cell is in S
and every SA-R cell is in C − S. In other words, S contains
all the SA-W cells of C and none of its SA-R cells. We call S
an “invertible” subset of C. When the N bits of information
are stored, any cell c(i) in C − S will store b(i) intact, while
any cell in S will store the complement of b(i). Subsequently,
when the information is read, the content of any cell in S
is complemented, thus allowing the correct retrieval of all N
bits.

A simple way of expressing S is to keep a list of pointers
to the SA-W cells. This requires log2N bits of auxiliary
information for each cell and hence, to tolerate a maximum
of F faults, H = F × log2N bits of auxiliary information
is needed. RDIS introduces a different, yet systematic method
for constructing and representing S by allowing it to include
NF (not faulty) cells in addition to SA-W cells. Clearly, if a
cell c(i) is not faulty, then it is possible to store (and correctly
retrieve) the complement of b(i) in c(i). Conceptually, the set
S is constructed by computing the two subsets C2 ⊂ C1 ⊂ C
such that:

• All the SA-W cells that are in C, are included in C1.
• All the SA-R cells that are in C1, are included in C2.

Fig. 1 illustrates the idea of the construction of C1 and C2.
Note that any of C, C1, and C2 can contain NF cells as well.
However, by definition, C1 − C2 does not contain any SA-R
cells. Clearly, if C1 does not contain any SA-R cells, then the
construction of C2 is not needed since we can set S = C1.

Next, we consider two cases. First, if C2 does not contain
any SA-W cells, then the invertible set S that we are looking
for is S = C1−C2 since we are sure that C1−C2 contains all
the SA-W cells of C and none of its SA-R cells. The second
case occurs if C2 contains some SA-W cells. In this case, we
recursively apply the same process to find an invertible set S2

of C2 which includes all its SA-W cells and none of its SA-R
cells. Therefore, S = C1−(C2−S2) = (C1−C2)∪S2. Fig. 1
shows the invertible set S of C as a shaded area.

3.2 Specifying an invertible subset
One way to identify S is to arrange the N bits/cells into a
logical two-dimensional array of n rows and m columns,2
and accordingly, re-label the information bits as b(i, j) and
the storage cells as c(i, j), where i = 0, . . . , n − 1 and
j = 0, . . . ,m − 1. In this section, we will use the example
of the 8×8 array shown in Fig. 2(a) to illustrate the process
of specifying the invertible set. As depicted, C contains 7 SA-
W and 7 SA-R faults.

RDIS maintains n +m auxiliary binary flags VX1(i), i =
0, . . . , n − 1 and VY1(j), j = 0, . . . ,m − 1. These flags are
set such that:
• VX1(i) = 1 if row i of C contains at least one SA-W

cell (otherwise VX1(i) = 0); and
• VY1(j) = 1 if column j of C contains at least one SA-W

cell (otherwise VY1(j) = 0).
Let n1 be the number of rows in the n ×m array C that

have VX1 = 1 and let m1 be the number of columns of C
that have VY1 = 1. Moreover, define C1 as the subset of cells
{c(i, j)|(VX1(i) = 1) and (VY1(j) = 1)}. In other words,
C1 is the n1 × m1 subarray of C that contains: (1) SA-W
cells and (2) cells that lie at the intersection of a row that
contains a SA-W cell and a column that contains a SA-W cell
(these can be either NF or SA-R). In our example, the values
of VX1 and VY1 are shown in Fig. 2(a). The SA-W cells of
C are confined to rows 2, 4, 5, 7 and columns 1, 3, 4, 6, and
hence, these rows and columns form the subarray C1 shown
in Fig. 2(b).

Since C1 is defined to include all the SA-W cells of C, any
cell that is in C − C1 is either NF or SA-R, and thus can
hold the correct value of the corresponding information bit.
However, the cells that are in C1 may be NF, SA-W, or SA-R.
If C1 does not contain any SA-R cell (i.e., C1 contains only
NF or SA-W cells), then S = C1. If, however, C1 contains
some SA-R cells (as is the case in Fig. 2(b)), then, we need
to find a subset, S1 of C1, which includes all its SA-R cells
and none of its SA-W cells. This will allow us to specify
an invertible subset of C as S = C1 − S1. To obtain S1, we
apply the same procedure used to extract C1 from C, but after
reversing the roles of SA-R and SA-W. Specifically, we define
the binary flags
• VX2(i) = 1 if row i of C1 contains at least one SA-R

cell (otherwise VX2(i) = 0); and
• VY2(j) = 1 if column j of C1 contains at least one SA-R

cell (otherwise VY2(j) = 0).
Let n2 be the number of rows of C1 that have VX2 = 1 and

let m2 be the number of columns of C1 that have VY2 = 1.
Moreover, define C2 as the subset of cells {c(i, j)|(VX2(i) =
1) and (VY2(j) = 1)}. In other words, C2 is the n2 × m2

subarray of C1 that contains: (1) SA-R cells and (2) cells that
lie at the intersection of a row that contains a SA-R cell and
a column that contains a SA-R cell. In the example of Fig. 2,
we form subarray C2 to include all the SA-R cells that are in
C1. In Fig. 2(c), C2 is composed of rows 4, 7 and columns 3,
4, 6. By construction, any cell that is in C1−C2 is either NF
or SA-W. Moreover, if C2 does not contain any SA-W cell,
then S1 = C2 and we can form the invertible set S = C1−C2.

Unfortunately, we cannot guarantee that C2 does not contain
any SA-W cell. Fortunately, however, if C2 6= C1 (i.e., C2 is
a proper subset of C1), then we can apply the same procedure
used to extract C1 from C to compute the subset S2 of C2

2. Introducing more than two dimensions is certainly possible, but is beyond
the scope of this paper.

4

0
0
1
0
1
1
0
1

0
0
0
0
1
0
0
1
 VY1 = 0 1 0 1 1 0 1 0 VY2 = 0 0 0 1 1 0 1 0

VX1 VX2
Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

j

i

(a) Array C (used to compute VX1 and VY1).

0
0
1
0
1
1
0
1

0
0
0
0
1
0
0
1
 VY1 = 0 1 0 1 1 0 1 0 VY2 = 0 0 0 1 1 0 1 0

VX1 VX2
Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

j

i

(b) Subarray C1 (used to compute VX2 and VY2).

0
0
1
0
1
1
0
1

0
0
0
0
1
0
0
1
 VY1 = 0 1 0 1 1 0 1 0 VY2 = 0 0 0 1 1 0 1 0

VX1 VX2
Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

j

i

(c) Subarray C2 (used to compute VX3 and VY3).

0
0
1
0
1
1
0
1

0
0
0
0
1
0
0
1
 VY1 = 0 1 0 1 1 0 1 0 VY2 = 0 0 0 1 1 0 1 0

VX1 VX2
Cell c(0,0)

0
0
0
0
0
0
0
1
 VY3 = 0 0 0 0 1 0 1 0

VX3

j

i

(d) Subarray C3 (all entries in VX4 and VY4 are
zeroes).

0
0
1
0
2
1
0
3
 VY = 0 1 0 2 3 0 3 0

Stuck at wrong
Stuck at right

Cell in the invertible set S

VX

Not faulty

(e) Invertible subset S = (C1 − C2) ∪ C3.

0
0
1
0
2
1
0
3
 VY = 0 1 0 2 3 0 3 0

Stuck at wrong
Stuck at right

Cell in the invertible set S

VX

Not faulty

Fig. 2: An example for constructing the invertible set.

that contains all its SA-W cells and then set S = (C1−C2)∪
S2. The iterative process can continue to compute consecutive
subarrays C3, . . . , Ck. After k iterations, we can have one of
three cases:

1. k is odd and Ck contains only SA-W cells. In this case,
the invertible set S is defined as

S = (C1 − C2) ∪ (C3 − C4) ∪ . . . ∪ (Ck−2 − Ck−1) ∪ Ck.

2. k is even and Ck contains only SA-R cells. In this case
the invertible set S is defined as

S = (C1 − C2) ∪ (C3 − C4) ∪ . . . ∪ (Ck−1 − Ck).

3. The progress stalls because Ck = Ck−1, in which case
the set of faults cannot be masked.

Back to the example of Fig. 2, the array C2 shown in
Fig. 2(c) includes all the SA-R cells that are in C1 but also
contains two SA-W cells. Hence, we form subarray C3 to
include all the SA-W cells that are in C2 (see Fig. 2(d)). The
process terminates with k = 3 because C3 does not include
any SA-R cells, and thus, S = (C1 − C2) ∪ C3 contains all
the SA-W cells that are in C and none of its SA-R cells (see
Fig. 2(e)).

3.3 Overhead of auxiliary information
The subarrays C1, C2, . . . are completely specified by the
binary flags VX1(i), VX2(i), . . ., i = 0, . . . , n−1 and VY1(j),
VY2(j), . . ., j = 0, . . . ,m−1. In other words, these flags form
the auxiliary information that has to be maintained to retrieve
the correct values stored in the N cells. Note that if VXu(i) =

0 for some u, then VXk(i) = 0 for any k > u. Similarly, if
VYw(i) = 0 for some w, then VYk(i) = 0 for any k > w.
Hence, the flags can be compressed into two sets of counters
(see Fig. 2(e)): VX(i) =

∑u
k=1 VXk(i) for i = 0, . . . , n− 1;

and VY(j) =
∑w

k=1 VYk(j) for j = 0, . . . ,m− 1.
The auxiliary information needed to reconstruct S, thus,

consists of the (n+m) counters VX(i) and VY(j). If each of
these counters can count up to K, then the number of bits, H ,
needed to keep the auxiliary information is H = (n +m) ×
dlog2(K + 1)e. Note that by limiting the maximum value of
each counter to K, we assume that the recursive construction
of S will terminate in K steps. If that is not the case, then the
process will fail and the given faults cannot be tolerated.

3.4 Storing and retrieving information
In order to store and retrieve user data, VX and VY must
be computed first. Let us present an algorithm to do that
assuming that the locations and nature of faults are known.
This information can be kept in a separate storage (e.g., SRAM
cache) or discovered on line by a write-read-check process (as
described later). Given the fault information and the data that
is to be written, we can associate with each cell, c(i, j), a state
that is represented by two bits φ(i, j) and σ(i, j) as follows:
• φ(i, j) = 1 and σ(i, j) = 0→ cell c(i, j) is SA-R.
• φ(i, j) = 1 and σ(i, j) = 1→ cell c(i, j) is SA-W.
• φ(i, j) = 0 and σ(i, j) = 0 → cell c(i, j) is NF or the

fault was successfully handled.
To compute the values of the counters VXi for i =

0, . . . , n − 1 and VYj j = 0, . . . ,m − 1;, Algorithm 1 is

5

Algorithm 1: Computing VX and VY.
1 begin
2 for k ← 1 to K do
3 for i← 0 to n− 1 do
4 VXk(i)← σ(i, 0)+ . . .+σ(i,m− 1); // Boolean OR

5 if VXk(i) = 1 then
6 VX(i)← VX(i) + 1;

7 for j ← 0 to m− 1 do
8 VYk(j)← σ(0, j)+ . . .+σ(n−1, j); // Boolean OR

9 if VYk(j) = 1 then
10 VY(j)← VY(j) + 1;

11 if ∀i, j VXk(i) = 0 and VYk(j) = 0 then
12 EXIT; // successful completion

13 /* prepare for next iteration */
14 for i← 0 to n− 1 do
15 for j ← 0 to m− 1 do
16 if VXk(i) = 0 or VYk(j) = 0 then
17 set φ(i, j)← 0; σ(i, j)← 0;

18 else if φ(i, j) = 1 then
19 set σ(i, j)← σ(i, j); // Bit complement

20 if ∃i, j VXk(i) > 0 or VYk(j) > 0 then
21 FAIL; // Given faults can’t be masked

applied. In each iteration, k, of the algorithm (line 2), the
subarray which contains SA-W cells is formed (by computing
the flags VXk and VYk - lines 3 to 10). Then, the state of
every cell that is not in this subarray is set to (φ = 0 and σ
= 0) since it is either NF or is SA-R (lines 16 and 17). In
preparation for the next iteration, the algorithm then changes
the states of every faulty cell in the identified subarray such
that SA-W cells become SA-R and SA-R cells become SA-W
(lines 18 and 19). The algorithm assumes that the counters
VX(i) and VY(j)are initially set to zero.

The way the counters VX(i) and VY(j) are computed
implies that if cell c(i, j) is in Ck and not in Ck+1 then at
least one of the two counters VX(i) or V Y (j) is equal to k
while the other one is equal to k + 1. Given this observation,
Algorithm 2 can be used to store the data bits.

Algorithm 2: Storing data bits.
1 begin
2 for i← 0 to n− 1 do
3 for j ← 0 to m− 1 do
4 if min(VX(i),VY(j)) is even then
5 Store b(i, j) in c(i, j);

6 else
7 Store b(i, j) in c(i, j);

Similarly, when retrieving the data, the bit read from cell
c(i, j) is complemented if the minimum of VX(i) and VY(j)
is an odd number. Building a hardware circuit to perform this
operation is straightforward, especially when the maximum
value of VX and VY is small.

4 PUTTING IT ALL TOGETHER
In this section, we sum up the overall flow of execution
that RDIS follows to detect and mask errors. After a write

operation is executed, a read operation is performed to verify
the correctness of the written data. In case the read verification
step did not detect any error, then the write request completed
successfully and no further action is required. RDIS is different
in this regard from ECC where the auxiliary information is
always computed irrespective of the presence of errors. As a
matter of fact, RDIS is designed specifically to recover from
stuck-at faults where errors are permanent once manifested
after a write operation. On the other hand, ECC is designed for
a general fault model where latent errors are possible. Hence,
RDIS exploits the characteristics of the stuck-at fault model
and saves the overhead of computing the auxiliary information
when no errors are manifested. While the read verfication
operation is not exclusive to RDIS and has been used by
many schemes that dealt with the PCM endurance problem
such as in [7] and [8], it could affect the memory bandwidth.
Nevertheless, PCM reads are fast and the read verification
operation is off the critical path and should not be affecting the
bandwidth severely. Moreover, dealing with errors at encoding
time makes data retrieval faster and simpler than dealing with
error at decoding time.

In the other case where the read verification operation dis-
covers errors, RDIS initiates the computation of the auxiliary
information. As noted previously, the read verification step
reveals only the SA-W cells. However, the encoding process
of RDIS requires the identification of SA-R cells that can be
identified by testing storage cells on the intersection of a row
and column both containing a SA-W cell. Specifically, to test a
cell c(i, j), we first read the value, v, stored in that cell, write
the complement of v into the cell and read it again. If the
value read is not the complement of v, then the cell is SA-R.
Otherwise, the cell is NF. One way of avoiding the overhead
of determining the fault information after each write operation
is to keep a cache to store the faults positions along with their
stuck-at values. Such a cache was proposed in [8], where it
was shown that a 128K-entry cache is enough to capture most
of the fault information in an 8 Gbit memory. The same cache
design can be used in RDIS.

Clearly, RDIS could require an extra write operation to
reveal the fault information. An extra write could have a
detrimental effect on endurance as it exacerbates the rate at
which non-faulty cells wear-out. However, a non-faulty cell
undergoes an extra write only if it lies at the intersection of
a row and a column both containing SA-W cells. Thus, non-
faulty cells do not get written twice on every write request
due to the data-dependent nature of errors. We quantify the
effect of of extra writes on the lifetime of a memory chip in
Section 9.5.

Once the fault information is determined, the computation
of the invertible set is initiated (refer to Algorithm 1 and
Algorithm 2).This computation involves setting the auxiliary
counters with the appropriate values in order the retrieve the
data correctly. Clearly, the auxiliary counters are subject to
wear-out if stored in the PCM medium. To protect the auxiliary
counters, two approaches could be followed. The first would
be to store the counters in a more reliable medium such as
DRAM. The second would be to dedicate an error correction
scheme to recover from errors within the auxiliary counters.
As a matter of fact, the auxiliary counters are written at a
lower rate than the actual data cells. Specifically, none of the
auxiliary counters starts to be written before the first stuck-
at fault appears in the protected block. In addition, writing
the counters depends on whether their associated rows or
columns contain a stuck-at faults that happen to be SA-W.

6

Therefore, protecting the auxiliary counters with a low order
error correction scheme should be enough as their initial
endurance should sustain their infrequent writes. In Section 9,
we show that RDIS is capable of tolerating a significantly
large number of stuck-at faults and we consider the case
of protecting the auxiliary counters with a dedicated error
correction scheme.

5 COVERAGE OF RDIS
The previous section described the basic idea of RDIS as well
as the necessary algorithms.This section will delve further into
the properties of RDIS by studying specific conditions under
which RDIS fails to cover a given set of faults. There are
two such conditions: (1) the progress stops because for some
k, Ck = Ck−1; and (2) the capacities of the counters VX
and VY are exceeded before the recursion terminates. Each
of these two situations is caused by specific fault patterns as
described next.

5.1 Coverage failure caused by a loop of faulty cells
In this section, let us first consider the case where the progress
of the construction of the invertible set stops because Ck =
Ck−1, for some k. We start with some preliminary definitions.

Definition. A faulty cell, c(i, j) in Ck is row and column
connected (RC-connected) if row i in Ck contains at least one
other faulty cell, c(i, j′), j 6= j′ and column j in Ck contains
at least one other faulty cell c(i′, j), i 6= i′.

For example, cells c(7, 3) in the array of Fig. 2(a) is RC-
connected while cell c(0, 2) is not RC-connected.

Definition. A loop of faulty cells (or “loop of faults”) is a
sequence of 2q faults (q > 1) where every two consecutive
faults in the sequence are, alternatively, in the same row or in
the same column. More specifically, a loop of faulty cells is of
the form c(i1, j1), c(i2, j1), c(i2, j2), c(i3, j2), . . ., c(iq, jq),
c(i1, jq).

Definition. A loop of faults c(i1, j1), c(i2, j1), c(i2, j2),
c(i3, j2), . . ., c(iq, jq), c(i1, jq) is alternatively-stuck (or “A-
stuck”) if the faults in the loop alternate between SA-R and
SA-W. That is, faulty cells c(i1, j1), c(i2, j2), . . ., c(iq, jq),
are stuck at a value, while faulty cells c(i2, j1), c(i3, j2), . . .,
c(i1, jq), are stuck at the opposite value.

For example, the loop in Fig. 3(a) includes the sequence
of faulty cells c(2, 6), c(4, 6), c(4, 4), c(6, 4), c(6, 0), c(3, 0),
c(3, 1), c(2, 1). Moreover, this loop is A-stuck since cells
c(2, 6), c(4, 4), c(6, 0), c(3, 1) are SA-W while cells c(4, 6),
c(6, 4), c(3, 0), c(2, 1) are SA-R.

Theorem 1. The process of constructing the invertible set
stops with Ck = Ck−1 for some k, if the original array of
cells, C, contains a loop of faults that is A-stuck.

Proof. Assume that C contains the A-stuck loop of faults,
c(i1, j1), c(i2, j1), c(i2, j2), c(i3, j2), . . ., c(iq, jq), c(i1, jq).
By definition, each of rows i1, . . ., iq contains two faults, one
SA-R and one SA-W, and each of columns j1, . . ., jq contains
two faults, one SA-R and one SA-W. Hence, C1 will include
rows i1, . . ., iq and columns j1, . . ., jq , meaning that it will
include the loop of faults. Similarly, we argue that C2 and
any subsequent subarray will include the same loop of faults.
Given that the number of faulty cells in C is finite, then the

construction of Ck ⊂ Ck−1 will eventually terminate with
Ck = Ck−1 for some k. �

Theorem 2. The process of constructing the invertible set
terminates with CK being empty for some K if the original
array of cells, C, does not contain a loop of faults.

Proof. First, we observe that if k is odd (a similar argument
applies if k is even) and array, Ck, contains some faulty cells
but does not contain a loop of faults, then at least one of the
faulty cells in Ck, say c(i, j), is not RC-connected. Second,
we observe that if c(i, j) is SA-R then during the construction
of Ck+1, either VXk+1(i) = 0 or VYk+1(j) = 0. This is
because either row i does not have a faulty cell besides c(i, j)
or column j does not have a faulty cell besides c(i, j). This
leads to the exclusion of c(i, j) from Ck+1. If, on the other
hand, c(i, j) is SA-W then it will be included in Ck+1 but will
lead to VXk+2(i) = 0 or VYk+2(j) = 0 and thus excluded
from Ck+2. That is, Ck+2 is a strict subset of Ck. Moreover,
given that Ck does not contain a loop of faults, then Ck+2

does not contain a loop of faults either and the process of
excluding faults from consecutive subarray continues until an
empty CK is reached. �

5.2 Coverage failure caused by limited counter ca-
pacity
Theorem 2 implies that the process of constructing the invert-
ible set eventually terminates successfully if the fault pattern
does not include a loop of faults. However, even in the absence
of a loop of faults, the process of constructing the invertible
set may fail because of the limited capacity of the counters VX
and VY. Specifically, if the maximum capacity of the counters
is K and CK contains both SA-W and SA-R cells, then the
construction of the invertible set will fail. We explore the fault
configuration that leads to this failure next.

Definition. A row-column alternating sequence (“RCA se-
quence”) of 2q − 1 faulty cells (q > 1) is a loop of 2q faulty
cells after excluding one node.

The above definition implies that every two consecutive
faults in an RCA sequence are, alternatively, in the same row
or in the same column. If the two first cells in the sequence are
in the same column, then the sequence is of the form c(i1, j1),
c(i2, j1), c(i2, j2), c(i3, j2), . . ., c(iq−1, jq), c(iq, jq), while
if the first two cells are in the same row, the sequence is of
the form c(i1, j1), c(i1, j2), c(i2, j2), c(i2, j3), . . ., c(iq, jq−1),
c(iq, jq). The notation in the following definition encompasses
both cases.

Definition. an RCA sequence of 2q − 1 faulty cells, c1, c2,
. . ., c2q−1, is said to be alternatively-stuck (or “A-stuck”) if
the first fault in the sequence is SA-W and subsequent faults
alternate between SA-R and SA-W. That is, cells c1, c3, . . .,
c2q−1 are SA-W, while cells c2, c4, . . ., c2q−2 are SA-R.

For example, Fig. 3(b) shows an RCA sequence of 7 faults
which is obtained by removing cell c(2, 1) from the loop of
faults shown in Fig. 3(a). This RCA sequence is A-stuck. The
step-like RCA sequence in 3(b) is isomorphic to the RCA
sequence and is obtained by interchanging columns 0 and 2,
rows 4 and 5, rows 4 and 6 and rows 2 and 7. The proofs of
the following theorems are more intuitive if RCA sequences
are envisioned as step-like. In general, any RCA sequence can
be transformed to a step-like one by a series of row/column
interchanges.

7

Stuck at wrong Stuck at right

0
0
1
1
1
0
1
0
 VYk = 1 1 0 0 1 0 1 0

VXk

Ck Ck+1

0
0
1
1
1
0
1
0
 VYk+1 = 1 1 0 0 1 0 1 0

VXk+1

(a)

Step-like RCA Sequence RCA Sequence

Stuck at wrong Stuck at right

Switch columns 0 and 2, rows 4/5, row 4/6, row2/7

(b)

Fig. 3: (a) A loop of faults which cannot be masked (VXk = VXk−1 and VYk = VYk−1). (b) Two isomorphic RCA sequences of faults
that cannot be masked in three iterations.

Theorem 3. The process of constructing the invertible set fails
to terminate after K iterations (with CK containing only SA-
R cells or only SA-W cells) if the original array of cells, C,
contains an RCA sequence of at least 2K+1 faults and this
sequence is A-stuck.

Proof. Assume that C contains an RCA sequence c1, c2, ...,
c2q+1 which is A-Stuck. By construction, C1 contains all the
cells in that sequence. However, consider any of the cells ci,
i = 2,...,2q. If cell ci is SA-R, then it is located in a row that
contains a SA-W cell and in a column that contains a SA-W
cell. Hence, this cell will be included in the subarray C2. A
similar argument applies if ci is SA-W and consequently C2

will contain the RCA sequence c2, c3, ..., c2q . Applying this
argument recursively leads to the conclusion that if q ≥ K,
then the subarray CK will contain the RCA sequence cK , ...,
c2q+1−(K−1). In other words, if the RCA sequence contains
at least 2K + 1 cells, then CK will contain at least the three
cells cK , cK+1 and cK+2. Being three consecutive cells in an
RCA sequence, at least one of the cells is SA-R and another
is SA-W, which proves the theorem. �

Theorem 4. The invertible set can be constructed in at most K
iterations if the longest RCA sequence of faults in the original
array of cells, C, contains at most 2K − 1 faults.

Proof. We prove the theorem by induction. Specifically, we
prove three Lemmas: the first establishes the base of the
induction, while the other two deal with the induction steps.
The proofs of the lemmas are based on the observation that the
first and last cells in an RCA sequence are not RC-connected.
Lemma 1: If the longest RCA sequence in C is c1, c2, ..., cq ,
then the longest RCA sequence in C1 is c1+u, ..., cq−v , where
u, v ≥ 0 and both c1+u and cq−v are SA-W. This is because,
by construction, any faulty cell that is not RC-connected in
C1 should be SA-W.
Lemma 2: For k = 1, 3,..., if the longest RCA sequence in
Ck is c1, c2, . . ., cq , where c1 and cq are SA-W, then the
longest RCA sequence in Ck+1 is c1+u, . . ., cq−v , where
u, v > 0 and both c1+u and cq−v are SA-R. This is because, by
construction, any faulty cell in Ck+1 that is not RC-connected
should be SA-R.
Lemma 3: For k = 2, 4,..., if the longest RCA sequence in Ck is
c1, c2, . . ., cq where c1 and cq are SA-R, then the longest RCA
sequence in Ck+1 is c1+u, . . ., cq−v , where u, v > 0 and both
c1+u and cq−v are SA-W. This is because, by construction,
any faulty cell that is not RC-connected in Ck+1 should be
SA-W.

The above three lemmas prove that for k = 1, 2, . . . , if the
longest RCA sequence in Ck includes q cells, then the longest

RCA sequence in Ck+1 includes q− 2 cells. Therefore, if the
longest RCA sequence in C has 2K−1 cells then the longest
RCA sequence in CK has one cell (SA-W if K is even and
SA-R if K is odd). This proves that CK includes only one
type of faulty cells (SA-R or SA-W). �

5.3 Defective blocks of storage cells
Consider a storage block of n × m cells of which F cells
are faulty and assume that RDIS is used for masking the
faults with the maximum counter capacity of K. Theorem 1-4
identify the only two types of fault patterns that can cause the
failure of RDIS to mask the faults: loops of faults and RCA
sequence of length 2K + 1. Hence, we call a block of cells
defective if it contains a loop of faults or an RCA sequence
of at least 2K + 1 faults.

If a block of cells with F faults is not defective, then it
can be used to write/read any combination of information
bits. For a small number of faults, it is possible to compute
the probability of having a defective block analytically. For
example, three faults cannot form a loop of faults. With four
faults, the probability of having a loop of faults in an n×m
block is given by

(
n
2

)
·
(
m
2

)
/
(
n·m
4

)
. Applying this formula, we

find that the probability of having a defective fault pattern
given four faults is 0.0012 when n = m = 8 and 0.00008
when n = m = 16. Section 9 gives a detailed evaluation of
the probability of a block being defective in the presence of
F faults.

6 MULTIDIMENSIONAL RDIS
In order to enable the determination and retrievel of the
invertible set, RDIS adds a number of auxiliary counters.
These counters form the major space overhead of RDIS. In
Section 3, we have chosen to represent an N bits memory
block as a logical two-dimensional array of n rows and m
columns. In addition, we have introduced n + m counters
that hold the auxiliary information. Accordingly, the physical
overhead of RDIS is equal to (n+m)×k

N where k is the number
of bits used for to each auxiliary counter. Interestingly, the
concepts of RDIS are not limited to a logical two-dimensional
grouping of memory cells. As a matter of fact, the grouping of
cells can be extended up to d-dimensional, where d is log2(N).
For example, a 512-bit memory block can be represented as
a logical 9-dimensional array i.e. 29.

Extending the array dimensions of the logical representation
of a memory block reduces the space overhead incurred
by RDIS. For example, consider a 512-bit memory block.
Assuming each auxiliary counter is 2 bits, the space overhead

8

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

2D 3D 4D 5D

O
ve

rh
e

ad

Number of Dimensions

Fig. 4: Space overhead of RDIS for a 512-bit block with various
dimensional arrangements.

incurred by RDIS for a logical 2-D arrangement of 16×32
is 18.75%. If the number of dimension is extended to 3
i.e. 8 × 8 × 8 logical block, the space overhead of RDIS
is reduced to 9.37%. In this sequel, an additional increase
in the number of dimensions further reduces the overhead of
RDIS. Nevertheless, increasing the number of dimension can
have a diminishing return. In fact, the overhead cannot be
further reduced when the sum of the dimensions of the dth-
D arrangement is equal to that of the dth+1-D arrangement.
Going back to our 512-bit memory block example, the space
overhead of a 5-D logical arrangement, i.e. 4×4×4×4×2, is
7.03%. Moving to a 6-D arrangement, i.e. 4×4×4×2×2×2,
keeps the space overhead of RDIS at 7.03%. Thus, increasing
the number of dimensions past 5 for a 512-bit block does not
bring any merit in terms of space overhead reduction. Fig. 4
shows the decrease in overhead for RDIS as the number of
dimension for a logical array arrangement of a 512-bit block
increases from 2D to 5D.

On the flip side, RDIS loses some of its correction capability
with each move to a higher dimension. However, RDIS still
guarantees the recovery from 3 stuck-at faults irrespective
of the dimensional representation of the protected block.
In Section 9, we show that the likelihood of cycles and
RCA sequences increases with the increase in the number
of dimensions used to represent a block. Nevertheless, mul-
tidimensional RDIS still tolerates more faults that any other
scheme at the same level of space overhead.

7 MULTILEVEL CELL PCM
Instead of representing information as the presence or absence
of electrical charges, PCM encodes bits in different physical
states of chalcogenide alloy that consists of Ge,Sb and Te. Data
is stored in PCM devices in the form of either a low resistance
crystalline state (SET) or a high resistance amorphous state
(RESET). Switching between the states happens through the
application of different programming currents that melt and
then re-solidify the material into one of the SET/RESET states.
As a matter of fact, resistance in the fully crystalline and
amorphous states differs by 3 to 4 orders of magnitude [26].
Accordingly, the difference in resistance can be exploited to
store multi-bits per cells which results in higher density chips.
Instead of representing the data in a cell using two levels,
the resistance range can be broken down into multiple levels
where each level represents a particular data pattern. Fig. 5
shows a PCM cell arranged in two levels (a), 4 levels (b) and
16 levels (c).

With the stuck-at fault model in binary storage cells, it was
straight forward to identify SA-W and SA-R cells and compute

Min-R

Min-R

Min-R

Max-R

Max-R

Max-R

0 1

00 01 10 11

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

(a) 2-level cell

(b) 4-level cell

(c) 16-level cell

Fig. 5: The concept of multilevel PCM cell [27].

the invertible set which contains both SA-W and NF cells and
write/read the complement of the data into the cells of the
invertible set. In multi-level cells (MLC), each cell can store
one of q > 2 possible values, with q usually being a power
of 2. If a cell can be stuck at one of the possible q values,
then a data value, v, to be written on a faulty cell can still
be used to differentiate between SA-W and SA-R cells [26].
However, the SA-W cell to which v is to be written may be
stuck at a value, u, that is different than the complement of v,
and hence the concept of invertible sets would not suffice to
mask the faults.

Nevertheless, RDIS can be used to mask faults for MLC.
One straight forward way to apply RDIS to MLC is to envision
an n×m array of q level cells as a n×m×log2(q) logical array
of binary cells and apply RDIS to the logical array. Hence,
RDIS would logically deal with binary cells only. As such,
the concepts of RDIS can be extended to MLC.

8 REPAIRING DEFECTIVE BLOCKS
In Section 5, we have proved that a cycle or an RCA sequence
of faults are the only patterns that cause RDIS to halt. In
this section, we propose techniques that could be adopted to
recover from defective patterns. We classify our techniques
into two categories. The first encompasses techniques to fix
a defective block through breaking cycles or RCA sequences.
The second encompasses techniques that try to squeeze more
lifetime from defective blocks through a smart usage of block
sparing.

8.1 Block Fix
In this section, we present two techniques that could be used
to recover from the detrimental effect of RCA sequences
and cycles. The first technique, Pointer Break, consists of
allocating a pointer entry in addition to a patch cell that are
to be used to break a cycle or an RCA sequence of faults.
The pointer entry specifies the location of a stuck-at cell that
is substituted by the patch cell. Choosing any faulty cell in
an RCA sequence or cycle is enough to break the defective
pattern. However, for an RCA sequence picking the middle
cell is recommended as it reduces the probability of forming
a new RCA sequence. As a matter of fact, half the total number
of faults in the original defective pattern is required for a new
RCA sequence to form.

The second technique, Shift Break, consists of changing the
mapping of the cells into the logical 2D n×m structure after
a defective pattern is formed. One possible implementation
would be to shift the position of a cell by its row number
modulo m. Though shifting the cells in the block is not
masking any of the stuck-at faults, it is likely to cause the
faulty cells to form a pattern that is not anomalistic to RDIS.
Both techniques are depicted in Fig. 6.

9

0 1 2 3 4 7 8 11 12 13 14 15

0 1 2 3

4 7

8 11

12 13 14 15

0 1 2 3

4 7

8 11

12 13 15 15

Pointer

3 0 1 2

7 4

1 11 8

13 14 15 16

Pointer Break Shift Break

Fix Fix

1

ECP entry Shift status bit

Fig. 6: Defective block fixing techniques.

It is worth mentioning that both techniques are complemen-
tary to RDIS. Accordingly, it is a design choice to adopt either
of them. Pointer Break guarantees the recovery from defective
patterns. On the other hand, Shift Break cannot guarantee the
recovery from defective patterns. While shifting the cells in
the protected block breaks the existing defective pattern, other
stuck-at faults within the block could form a new defective
pattern. Nevertheless, the likelihood of this event is low.

To implement both techniques, Shift Break requires a simple
remapping function and one additional auxiliary bit that serves
as a flag to be set when a shift is applied. On the other hand,
Pointer Break necessitates lg(n × m) + 1 auxiliary bits. In
addition, it requires determining the location of the stuck at
cells that formed a defective pattern in order to pick one of
them to break the pattern. We evaluate both techniques in
Section 9.6.

8.2 Dynamic Sparing

After an error correction scheme fails to recover from errors
manifested within a memory block, the common practice is
to map-out the memory page where the block resides from
the address space. Instead of retiring a whole memory page,
Free-p [9] proposed to degrade the memory gracefully through
only retiring the block in which errors were failed to be
masked. To achieve this goal, a pointer is embedded within
the failed block to permanently remap it into a fault free spare
block. Recently, Data-dependent sparing [25] was proposed.
The data-dependent technique builds on the fact that failures
are data-dependent within the context of the stuck-at fault
model. Thus, a write operation to a block fails only if the
manifested errors form a defective pattern. This said, data-
dependent sparing proposed to assign spares temporally and
dynamically after a write failure. A later write request to the
same location is attempted on the original block. Due to the
data dependent nature of errors, the later write is likely to
be successful. Subsequently, the previously assigned spare is
reclaimed in order to be used as a temporal replacement for
other failing blocks. The concept of data dependent-sparing is
illustrated in Fig. 7, where blocks 1 and 3 are defective. Fig. 7
(left) shows that writing to block 1 has failed while writing to
block 3 has not. This has caused block 1 to be mapped to the
spare block. However, a later write to block 1 was successful.
Accordingly, the spare block was reclaimed and assigned to

block 3 after a write request failed on it as depicted by Fig. 7
(right).

Memory
Blocks

Spare
Block

W
rite Requests

Memory
Blocks

Spare
Block

W

rite Requests

Fig. 7: Data-dependent Sparing. Shaded cells represent defective
blocks.

In section 5, we have proved that it is not enough to have a
cycle or an RCA sequence of faults for RDIS to halt. However,
the cycle or RCA sequence must be alternatively stuck. Thus,
failures in RDIS are data dependent. Accordingly, coupling
RDIS with the data-dependent sparing technique could have
a synergistic effect on the lifetime of a memory device. We
study the effect on lifetime in section 9.7.

9 EVALUATION
In this section, we rely on Monte Carlo simulation to study the
various parameters that affect RDIS as well as to compare it to
other schemes. We assume that all cells within a storage block
have equal probability of failure. To test if a n ×m storage
block having F faulty cells is defective, this block is modeled
as a bipartite graph of (n+m) nodes, one for each row and
one for each column. If a cell c(i, j) is faulty, then an edge
connects the nodes representing row i and column j. A simple
variation of depth first search algorithm (DFS) is used to detect
the occurrence of a loop. To detect RCA sequences, we keep
track of the longest recursion depth executed by DFS while
attempting to detect a loop. In other words, our algorithm
either detects the existence of a loop, if any, or returns the
length of the longest RCA sequence.

9.1 Sensitivity to RDIS Parameters
The block size to be protected, and the overhead of auxiliary
counters are the main parameters that affect RDIS. In this
section, we study the performance of RDIS in light of these
parameters. We simulate RDIS with 5 different block sizes
of varying overhead. In addition, each block size is simulated
with three variations of RDIS. The first limits the capacity of
the auxiliary counters to 3, the second to 7 and the last to
the number required to tolerate the maximum possible RCA
sequence. Hereafter, we denote these three variations as RDIS-
3, RDIS-7 and RDIS-max. For each block size, we report the
average number of faults that can be tolerated as well as the
probability of failure with F faults for F = 1, 2, Given a
block of size n ×m, the corresponding overhead is (n · s +
m ·s)/(n ·m), where s is the size of each auxiliary counter in
bits. For example, a 128-byte data block arranged as a 32×32
bit array incurs a 12.5% overhead for s = 2. It is to be noted
that for a fixed s, the overhead percentage decreases with the
increase in the size of the protected storage block.

10

0

10

20

30

40

50

60

70

80

90

100

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

A
v

g
.

#
 o

f
fa

u
lt

s
 t

o
le

ra
te

d
 RDIS-3 RDIS-7 RDIS-max

O
v

e
rh

e
a
d

 (
%

)

0

10

20

30

40

50

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

Block size

Fig. 8: Average number of faults tolerated within a block and the
corresponding overhead.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
of faults

Pr
ob

. h
av

in
g

a
de

fe
ct

iv
e

pa
tte

rn

1,024-bit block

RDIS-3

RDIS-7

RDIS-max

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70
of faults

2,048-bit block

RDIS-3

RDIS-7

RDIS-max

Pr
ob

. h
av

in
g

a
de

fe
ct

iv
e

pa
tte

rn

Fig. 9: Probability of failure with F faults.

Fig. 8 shows the average number of faults that can be
tolerated for various block sizes and the overhead of the
three RDIS configurations. The overhead for RDIS-max is
calculated based on the maximum length of an RCA sequence
that can occur within a block. Specifically, for n×m blocks,
the maximum length of an RCA sequence is n + m − 1
(imagine a step-like RCA sequence starting at c(0, 0) and
ending at c(n − 1,m − 1)), and thus a counter of size
s = dlog2((n+m− 1)/2)e bits is sufficient for recovery
according to Theorem 4. From the results shown in Fig. 8,
it can be inferred that the average number of faults tolerated
within each block increases with the overhead. Hence, the
choice of auxiliary counters capacity for RDIS represents a
trade-off between the number of faults that can be tolerated
and the overhead. RDIS-3 is shown to correct many errors
robustly at the smallest overhead.

The main advantage of RDIS is the large probability to
tolerate a relatively large number of faults. Fig. 9 shows
that given F faults, the probability of forming a loop or
RCA sequence increases at low pace with the increase of F .
Accordingly, RDIS is capable of tolerating a high number of
faults beyond what it guarantees. Even though we show the

results for blocks of 1,024 bits and 2,048 bits, other block
sizes exhibit the same trend and are omitted for brevity. These
results show that RDIS-3 is capable of tolerating a notable
number of faults while incurring an affordable overhead. As
a matter of fact, the relative increase in the number of faults
tolerated by increasing the counters capacity beyond three is
not proportional to the increase in the overhead. Consequently,
we consider only RDIS-3 in the rest of our evaluation.

9.2 Comparison with existing schemes
In this section, we evaluate the performance of RDIS against
other schemes. Specifically, we compare RDIS-3 with SAFER
which was shown in [8] to be superior to ECP and ECC.
The overhead of SAFER depends on the number of groups
that a block is partitioned into.3 Hence, RDIS-3 is compared
with two SAFER configurations that have an overhead just
smaller and just larger than RDIS-3. Two metrics are used for
comparison: (1) the probability of failure with F faults; and
(2) the average number of faults that can be tolerated in a
storage block.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

of faults

SAFER 256

SAFER 128

2,048-bit block

RDIS-3

Pr
ob

. o
f f

ai
lu

re

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

of faults

1,024-bit block

RDIS-3 SAFER 64

Pr
ob

. o
f f

ai
lu

re

Fig. 10: RDIS vs. SAFER: Probability of failure with F faults.

Both RDIS and SAFER can probabilistically tolerate more
faults than what they guarantee. With n groups, SAFER
(denoted by SAFER n) guarantees the tolerance of log2 n+1
faults while RDIS can always tolerate three faults. Any
additional fault is tolerated by both schemes with a certain
probability. Fig. 10 shows the probability of failure of a storage
block after F faults. Though SAFER guarantees the tolerance
of more faults than RDIS, the probability of failure after what
it guarantees increases at a high rate. On the contrary, the
probability of failure for RDIS increases at a substantially low
rate. In addition, the probability of failure for RDIS in the
interval of faults that SAFER guarantees is remarkably low
as depicted in Table 1, even when compared with the higher
overhead version of SAFER. Though we show the results
for two different block sizes for brevity, the same trend is
manifested with other block sizes.

3. The overhead of SAFER when used to protect a block of N bits using
n groups is: (dlog2 ne × dlog2dlog2Nee) + d(log2dlog2 ne+ 1)e+ n.

11

Faults # 4 5 6 7 8 9 10 11 12 13

1 Kbits
SAFER 128 0 0 0 0 0 0.055 0.11 0.17 0.23 0.30

RDIS-3 6×10−6 3×10−5 8×10−5 2×10−4 4×10−4 0.00008 0.0015 0.0025 0.0045 0.0074

2 Kbits
SAFER 256 0 0 0 0 0 0 0.03 0.06 0.09 0.13

RDIS-3 2×10−6 5×10−6 1×10−5 4×10−5 1×10−4 2×10−4 0.00033 0.00057 0.00093 0.0015

TABLE 1: RDIS vs. SAFER: Probability of failure.

0

10

20

30

40

50

60

70

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 2

5
6

R
D

IS
-3

S
A

F
E

R
 5

1
2

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

A
v

g
.

#
 o

f
fa

u
lt

s
 t

o
le

ra
te

d

0

5

10

15

20

25

30

35

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 6

4

R
D

IS
-3

S
A

F
E

R
 1

2
8

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 1

2
8

R
D

IS
-3

S
A

F
E

R
 2

5
6

S
A

F
E

R
 2

5
6

R
D

IS
-3

S
A

F
E

R
 5

1
2

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

O
v

e
rh

e
a
d

 (
%

)

Block size

Fig. 11: RDIS vs. SAFER: Average number of tolerated faults and
the corresponding overhead.

The advantage of RDIS over SAFER, when it comes to
the low probability of failure, is manifested by the average
number of faults that each scheme can tolerate as shown in
Fig. 11. The results show a significant advantage for RDIS
over SAFER. For example, RDIS-3 is capable of tolerating
18% more faults than SAFER 128 with a 512-bit block size
and 95% more faults than SAFER 512 with a 8,192-bit block.
Note that this increase in the average number of faults tolerated
is realized with lower overhead.

9.3 Protecting auxiliary data

Similarly to SAFER, RDIS cannot recover from faults in the
auxiliary bits. Specifically, it is assumed that the storage of
those bits is error free. The ECP scheme [7] is different
in that regard in the sense that it can protect the cells that
replace faulty cells. To this end, we can use ECP to protect the
auxiliary counters of RDIS-3 against faults. For this, we can
allocate π pointers to protect the auxiliary bits. We simulated
RDIS-3 with various values of π and concluded that π = 5
is a suitable value since it maintains the high number of
faults tolerated when counters are assumed to be fault-free.
Hereafter, we denote the scheme that protects the auxiliary
bits of RDIS-3 (can be applied to any version of RDIS) as
RDIS-3PX.

1,024-bit block

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Pr
ob

. o
f f

ai
lu

re

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Pr
ob

. O
f f

ai
lu

re

2,048-bit block

of faults

of faults

RDIS-3PX

RDIS-3PX

ECP 20

ECP 16

Fig. 12: RDIS-3PX vs. ECP: Probability of failure with F faults.

Subsequently, we compare RDIS-3PX against ECP itself.
We assign to ECP the minimum number of pointers, n, that
makes its overhead larger than RDIS-3PX and denote the
scheme by ECP n.4 For various block sizes, we study the
probability of failure with F faults as well as the average
number of tolerated faults achieved by each scheme. When it
comes to the probability of failure with F faults, Fig. 12 shows
that ECP cannot recover from faults beyond the provided num-
ber of correction pointers. To the contrary, RDIS is capable
of remarkably tolerating faults beyond what it guarantees.
Furthermore, RDIS exhibits a notably low probability of
failure within the error free window of ECP. Again, these
results are manifested in the average number of faults that both
schemes can tolerate as depicted in Fig. 13. For example, RDIS
tolerates up to 81% more faults with block size of 8,192 bits.
It is to be noted that RDIS’ average number of faults tolerated
corresponds to faults occurring both in the protected block and
the auxiliary bits.

The presented results make it clear that RDIS can tolerate
more faults with higher probability than previously proposed
schemes using the same assumptions and fault model. It is
particularly suited for large blocks of 128 bytes or more.

4. The overhead of ECP n when used to protect a block of N bits using
n pointers is: n(dlog2Ne+ 1) + 1.

12

0

10

20

30

40

50

60
Av

g.
 #

 o
f f

au
lts

 to
le

ra
te

d

0

10

20

30

O
ve

rh
ea

d
(%

)

Block size

R
D

IS
-3

P
X

E
C

P
 1

6

E
C

P
 2

0

E
C

P
 2

4

E
C

P
 3

1

R
D

IS
-3

P
X

R
D

IS
-3

P
X

R
D

IS
-3

P
X

E
C

P
 1

4

R
D

IS
-3

P
X

R
D

IS
-3

P
X

E
C

P
 1

6

E
C

P
 2

0

E
C

P
 2

4

E
C

P
 3

1

R
D

IS
-3

P
X

R
D

IS
-3

P
X

R
D

IS
-3

P
X

E
C

P
 1

4

R
D

IS
-3

P
X

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

512 bits 1,024 bits 2,048 bits 4,096 bits 8,192 bits

Fig. 13: RDIS-3PX vs. ECP: Average number of tolerated faults and
the corresponding overhead.

9.4 Multidimensional RDIS
In Section 6, we have presented multidimensional RDIS that
consists of extending the number of dimensions of the logical
array used to envision a protected memory block. We have
shown that extending the number of dimensions reduces the
space overhead incurred by RDIS. In this section, we study
the impact of extending the number of dimension on the error
correction capability of RDIS. To this end, we report the
average number of faults that can be tolerated by RDIS-3 with
a 2D, 4D and 6D arrangement of memory cells for 4096-bit
block. We limit the maximum number of dimensions to 6 as no
further reduction in space overhead can be achieved past a 6D
arrangement. In addition, we compare multidimensional RDIS
to SAFER where each configuration of RDIS is compared to
that of SAFER k that is either at the same level of space
overhead or slightly larger where k is the number of groups a
block is arranged into and log2(k) is the number of faults that
can be tolerated. Moreover, we compare RDIS to BCH. The
latter is an industry standard multi-bit error correction scheme.
A major difference between RDIS and BCH is the probabilistic
nature of the error correction capability. While RDIS can
tolerate a large number of faults beyond the threshold it
guarantees with high probability, the capability of a deployed
BCH code predetermines the maximum number of faults that
can be tolerated. Similarly to SAFER, we compare RDIS to a
BCH t code that is either at the same level of space overhead
or slightly larger where t indicates the maximum number of
faults that BCH can tolerate.

Fig. 14 shows the average number of faults that can be
tolerated by each of the three schemes. The results reveal
that RDIS maintains its superiority to other schemes even
with higher dimensions. Nevertheless, RDIS loses some of
its correction capability with the increase in the number of
dimensions used to logically arrange a protected block. Our
findings indicate that the probability of block defectiveness
for RDIS, i.e. the probability of forming a cycle or an
RCA-sequence, increases with the increase in the number of
dimensions. In fact, a new plane is added with each additional
dimension. Each plane can be envisioned as a sub-block. With
the increase in the number of dimensions, the size of each

plane decreases. In accordance with our results from previous
sections, the error correction capability of RDIS depends of
the size of the protected block. Hence, a smaller plane size
implies a higher probability of defectiveness. The probability
of defectiveness of RDIS for 4096-bit block with 2D, 4D and
6D arrangement is ploted in Fig. 15. At last, other block
sizes show the same pattern when it comes to the average
number of tolerated faults and the probability of defectiveness.
Accordingly, their results were omitted for brevity.

0
5

10
15
20
25
30
35
40
45

B
C

H
 2

3

R
D

IS
-3

SA
FE

R
 2

5
6

B
C

H
 5

R
D

IS
-3

SA
FE

R
 6

4

B
C

H
 4

R
D

IS
-3

SA
FE

R
 3

2

2D 4D 6D

A
vg

 #
 o

f
fa

u
lt

s
to

le
ra

te
d

0

2

4

6

8

B
C

H
 2

3

R
D

IS
-3

SA
FE

R
 2

5
6

B
C

H
 5

R
D

IS
-3

SA
FE

R
 6

4

B
C

H
 4

R
D

IS
-3

SA
FE

R
 3

2

2D 4D 6D

O
ve

rh
ea

d
(%

)

Fig. 14: Average number of faults that can be tolerate by RDIS with
various dimensional arrangement compare to SAFER and BCH for
4096-bit block.

RDIS-3 (4D)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

P
ro

b
ab

ili
ty

 o
f

d
ef

ec
ti

ve
n

es
s

Number of faults

RDIS-3 (6D)

RDIS-3 (2D)

Fig. 15: Probability of defectiveness with different dimensional
arrangements for a 4096-bit block.

9.5 Extra Write Effect
As indicated in section 4, RDIS requires an extra write
operation to reveal the fault information and mask erroneous
cells. This extra write could exacerbate the wear-out rate of
non-faulty cells that happen to be on the intersection of a row
and column both containing stuck-at faults (i.e. row-column
connected). In this section, we study the effect of extra writes
on the lifetime of a memory block. To this end, we compare
the number of writes that can be executed on a memory block
in two settings. The first assumes that the fault information
is cached; thus only one write operation is required. The
second assumes no knowledge about the fault information;
thus additional write operations are required. We lay down
2000 PCM blocks of various sizes and assign a lifetime to
each cell drawn from a Gaussian distribution with a mean of

13

108 and a standard deviation of 25 × 106 [7]. Fig. 16 plots
the lifetime decrease in terms of the total number of writes
executed when extra writes could occur relative to one write.

0%

1%

2%

3%

4%

512 bits 1024 bits 2048 bits

Li
fe

ti
m

e
 d

e
cr

e
as

e
 r

e
la

ti
ve

 t
o

 o
n

e
 w

ri
te

Block Size

Fig. 16: Lifetime decrease due to extra writes.

Fig. 16 shows that the decrease in lifetime due to extra
writes is notably low. This result is attributed to the fact that
row-connected cells are not always part of the initial mesh
that RDIS forms unless both row and column contain stuck-
at wrong cells. Thus, extra writes to healthy row-connected
cells happens occasionally due to the data dependent nature
of errors i.e. stuck-at wrong. In the event that a row-connected
cell wears-out earlier than expected due to extra writes, this
cell is harmful only when it leads to the formation of a cycle or
an RCA sequence of stuck-at cells. Therefore, the extra writes
incurred by RDIS harm the lifetime marginally. Nevertheless, a
cache is still beneficial to eliminate the performance overhead
of the extra writes.

9.6 Block Fix

In section 8.1, we have presented two techniques to break
defective patterns that cause RDIS to halt. In this section, we
evaluate these two techniques in terms of the average number
of additional faults that can be tolerated after breaking a
defective pattern in a memory block that suffers from k stuck-
at faults.To this end, we resort to Monte-Carlo simulation. We
start with a block that already has k faults and is defective
whether because of an RCA sequence or a cycle.Subsequently,
we break the defective pattern with both techniques and record
the additional faults that could be tolerated in the block until
a new defective pattern is formed. We ran the experiment for
million times and thes results are depicted in Fig. 17.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

A
vf

g

o
f

to
le

ra
te

d
 f

au
lt

s
af

te
r

b
lo

ck
 f

ix

Number of faults in a block

Pointer-brk Shift-brk

Fig. 17: Avg. number of additional tolerated faults after breaking a
defective pattern in a 2048-bits block size.

It is notable that both techniques are capable of significantly
tolerating a large number of faults after fixing a block in which
a defective pattern occurred with a relatively small number
of faults. This finding is a direct consequence of the low
probability of defectiveness that RDIS exhibits with a small
number of faults in the block. Hence, fixing a block that got
defective with a small number of faults yields into a greater
number of faults that can be tolerated after the fix.

In addition, it is notable that fixing a defective block with
a pointer performs better when the number of faults in the
protected block is high. By shifting the cells in a block, the
defective pattern is broken. However, a new defective pattern
could form due to the large number of faults already existing
in the block. On the other hand, fixing a block with a pointer
is guaranteed to break the defective pattern. Nevertheless,
implementing the shifting technique is simple and easy. It only
requires one additional bit of overhead to indicate whether
the data was written shifted or not and tolerates a significant
number of additional faults.

9.7 Graceful Degradation
In section 8.2, we have proposed to couple RDIS with data-
dependent sparing. In this section, we study the effect on
lifetime of coupling data-dependent sparing with RDIS as
compared to coupling the static sparing technique with RDIS.
To this end, we laid down 2000 physical pages each composed
512-bits memory blocks. We followed the Free-p [9] approach
in assuming that the OS is responsible of dispatching a
memory page that serves as a set of spares for defective
blocks. we assign to each cell a lifetime drawn from a normal
distribution with mean 108 and standard deviation of 25×106.
We ran our simulation until all memory pages have been
retired i.e. all memory blocks became defective and record
the total number of writes executed. The results are shown in
Fig. 18.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

%
 p

ag
e

s
su

rv
iv

in
g

writes to page(billions)

Static Sparing Data-dependent Sparing

Fig. 18: Data-dependent sparing vs. static sparing effect of lifetime
when couple with RDIS.

The results show that coupling RDIS with data-dependent
sparing is capable of extending the life significantly. When
RDIS + data-dependent sparing still enjoy 100% of the
memory blocks, RDIS + static sparing retires around 50%
of the blocks. This finding is a direct consequence of the
data-dependent nature of failures exhibited by RDIS where
defective blocks can still be written reliably except with few
specific data patterns.

10 CONCLUSIONS
The limited write endurance is the major weakness of emerg-
ing resistive memories. Accordingly, robust error recovery

14

schemes are required to mask off hard errors and prolong
the lifetime of a resistive memory chip. In this paper, we
have presented and evaluated RDIS, a recursively defined
invertible set scheme to tolerate multiple stuck-at hard faults.
Our extensive evaluation shows that RDIS achieves a very
low probability of failure on hard fault occurrences, which
increases slowly with the relative increase in the number of
faults. This characteristic allows RDIS to effectively recover
from a large number of faults. For example, RDIS can recover
from 46 hard faults on average when the block size is 512
bytes (storage sector size) while incurring a low overhead of
6.2%.

Given its high error tolerance potential, RDIS fits the need
to recover from many faults in emerging resistive memories.
We believe that RDIS provides a very robust memory substrate
to a system and allows system designers to focus their efforts
on effective integration and management of resistive memory
capacity at higher levels, for better overall system performance
and reliability.

REFERENCES
[1] K. Kim, “Technology for sub-50nm DRAM and NAND flash manufac-

turing,” 2005, pp. 323–326.
[2] ITRS, http://public.itrs.net, 2011.
[3] R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next storage

system technology,” IBM Journal of Research and Development, vol. 52,
no. 4.5, pp. 439–447, July 2008.

[4] B. C. Lee et al., “Architecting phase change memory as a scalable dram
alternative,” SIGARCH Comput. Archit. News, vol. 37, pp. 2–13, June
2009.

[5] M. K. Qureshi et al., “Enhancing lifetime and security of PCM-based
main memory with start-gap wear leveling,” in MICRO Conference, dec.
2009, pp. 14–23.

[6] P. Zhou et al., “A durable and energy efficient main memory using phase
change memory technology,” SIGARCH Comput. Archit. News, vol. 37,
pp. 14–23, June 2009.

[7] S. Schechter et al., “Use ECP, not ECC, for hard failures in resistive
memories,” SIGARCH Comput. Archit. News, vol. 38, pp. 141–152, June
2010.

[8] N. H. Seong et al., “SAFER: Stuck-At-Fault Error Recovery for Mem-
ories,” in MICRO Conference, dec. 2010, pp. 115–124.

[9] D. H. Yoon and Others, “FREE-p: Protecting non-volatile memory
against both hard and soft errors,” in HPCA conference, feb. 2011, pp.
466–477.

[10] S. Kang et al., “A 0.1 µm 1.8-V 256-Mb Phase-Change Random Access
Memory (PRAM) With 66-MHz Synchronous Burst-Read Operation,”
Solid-State Circuits, IEEE Journal of, vol. 42, no. 1, pp. 210–218, jan.
2007.

[11] K.-J. Lee et al., “A 90 nm 1.8 V 512 Mb Diode-Switch PRAM With
266 MB/s Read Throughput,” IEEE JSSC, vol. 43, pp. 150–162, January
2008.

[12] K. Bourzac, “Memristor memory readied for production,” http://www.
technologyreview.com/computing/25018/, April 2010.

[13] I. Micron Technology, “Phase change memory (pcm),” http://www.
micron.com/products/pcm, 2011.

[14] S. Lee et al., “A Study on the Failure Mechanism of a Phase-Change
Memory in Write-Erase Cycling,” IEEE Electron Device Letters, vol. 30,
no. 5, pp. 449–450, May 2009.

[15] M. Qureshi et al., “Practical and secure PCM systems by online
detection of malicious write streams,” in HPCA Conference, feb. 2011,
pp. 478–489.

[16] N. H. Seong et al., “Security refresh: prevent malicious wear-out
and increase durability for phase-change memory with dynamically
randomized address mapping,” SIGARCH Comput. Archit. News, vol. 38,
pp. 383–394, June 2010.

[17] B.-D. Yang et al., “A Low Power Phase-Change Random Access
Memory using a Data-Comparison Write Scheme,” ser. ISCAS, May
2007, pp. 3014–3017.

[18] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique to
improve PRAM write performance, energy and endurance,” in MICRO
Conference, Dec. 2009, pp. 347–357.

[19] R. Hamming, “Error Detecting and Error Correcting Codes,” Bell System
Technical Journal, vol. 26, no. 2, pp. 147 – 160, 1950.

[20] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Information and Control, vol. 3, no. 1, pp. 68–79, 1960.

[21] D. Strukov, “The area and latency tradeoffs of binary bit-parallel
BCH decoders for prospective nanoelectronic memories,” in ACSSC
Conference, nov. 2006, pp. 1183–1187.

[22] W. Wong, “A chat about micron’s clearnand technology,” electronic
design, December 2010.

[23] M. K. Qureshi, “Pay-as-you-go: low-overhead hard-error correction for
phase change memories,” in MICRO-44, 2011.

[24] H. Chung et al., “A 58nm 1.8V 1Gb PRAM with 6.4MB/s Program
BW,” in IEEE ISSCC, February 2011, pp. 500–502.

[25] R. Maddah et al., “Data dependent sparing to manage better-than-bad
blocks,” Computer Architecture Letters, 2012.

[26] G. Burr et al., “Phase change memory technology,” Journal of Vacuum
Science Technology, vol. 28, no. 2, pp. 223–262, 2010.

[27] M. Qureshi et al., “Morphable memory system: a robust architecture for
exploiting multi-level phase change memories,” in ISCA, 2010.

Rakan Maddah received his B.S. and M.S. de-
gree in Computer Science from the Lebanese
American University in 2007 and 2009 respec-
tively. He joined the Computer Science Depart-
ment at the University of Pittsburgh as a Ph.D.
student since 2010. His research interests are in
computer architecture, storage devices, systems
and fault tolerance. He is a student member of
IEEE.

Rami Melhem received a B.E. in Electrical En-
gineering from Cairo University in 1976, an M.A.
degree in Mathematics and an M.S. degree in
Computer Science from the University of Pitts-
burgh in 1981, and a Ph.D. degree in Com-
puter Science from the University of Pittsburgh
in 1983. He was an Assistant Professor at Pur-
due University prior to joining the faculty of the
University of Pittsburgh in 1986, where he is cur-
rently a Professor in the Computer Science De-
partment which he chaired from 2000 to 2009.

His research interests include Power Management, Parallel Computer
Architectures, Real-Time and Fault-Tolerant Systems, Optical Networks
and High Performance. Dr. Melhem served and is serving on program
committees of numerous conferences and workshops and on the edito-
rial boards of the IEEE Transactions on Computers (1991-1996, 2011-),
the IEEE Transactions on Parallel and Distributed systems (1998-2002),
the Computer Architecture Letters (2001-2010), the Journal of Parallel
and Distributed Computing (20032011) and The Journal of Sustainable
Computing, Informatics and Systems (2010 -). Dr. Melhem is a fellow of
IEEE and a member of the ACM.

Sangyeun Cho received the BS degree in com-
puter engineering from Seoul National Univer-
sity in 1994 and the PhD degree in computer
science from the University of Minnesota in
2002. In 1999, he joined the System LSI Di-
vision of Samsung Electronics Co., Giheung,
Korea, and contributed to the development of
Samsung’s flagship embedded processor core
family CalmRISC(TM). He was a lead architect
of CalmRISC-32, a 32-bit microprocessor core,
and designed its memory hierarchy including

caches, DMA, and stream buffers. Since 2004, he has been with the
Computer Science Department at the University of Pittsburgh, where
he is currently an associate professor. His research interests are in the
area of computer architecture and system software with particular focus
on performance, power and reliability of memory and storage hierarchy
design for next-generation multicore systems.

