
Power of One Bit: Increasing Error Correction
Capability with Data Inversion

Rakan Maddah1, Sangyeun Cho2,1, and Rami Melhem1

1Computer Science Department, University of Pittsburgh
2Memory Solutions Lab, Memory Division, Samsung Electronics Co.

{rmaddah,cho,melhem}@cs.pitt.edu

Abstract—Phase-change memory (PCM) has emerged as a
candidate that overcomes the physical limitations faced by
DRAM and NAND flash memory. While PCM has desirable
properties in terms of scalability and energy, it suffers from
limited endurance. Repeated writes cause PCM cells to wear out
and get permanently stuck at either 0 or 1. Recovering from
stuck-at faults through a proactive error correction scheme is
essential for the widespread adoption of PCM.

In this paper, we propose data inversion as a practical technique
to increase the number of faults that an error correction code
can cover. Since stuck-at cells can still be read, errors are
manifested only when a worn-out cell is programmed with a
bit value different than the value it is stuck at. After a write
operation fails for a given block of data, data inversion attempts
another write operation with all original data bits inverted.
Inverting the data is likely to bring the number of errors within
the nominal capability of the deployed error correction code.
Requiring only one additional auxiliary bit, data inversion can
double the capability of an error correction code and extends
the lifetime by up to 34.5%.

Keywords-Phase Change Memory; Error Correction; BCH;
Hard Faults; Fault Tolerance;

I. INTRODUCTION

As DRAM and NAND flash memories face physical limita-
tions that hinder their further scaling [1], the quest for an
alternative memory technology became a necessity. Amongst
several memory candidates, phase-change memory (PCM) is
emerging as one of the most promising technologies due to
its desirable characteristics in terms of superior scalability, low
access latency and negligible standby power. Assessments and
measurements show that PCM compete favorably with DRAM
and NAND flash in terms of performance while providing
improved scalability, density and endurance [2]–[4].

Instead of representing information as the presence or
absence of electrical charges, PCM encodes bits in different
physical states of chalcogenide alloy that consists of Ge,
Sb and Te. Data is stored in PCM devices in the form of
either a low resistance crystalline state (SET) or a high resis-
tance amorphous state (RESET). Switching between the states
happens through the application of different programming
currents that melt and then re-solidify the material into one
of the SET/RESET states. Unfortunately, each PCM cell can
endure only a limited number of SET/RESET cycles. The
heating and cooling process to program a cell leads to frequent

∗This work is supported in part by National Science Foundation grants
CNS-1012070 and CCF-1064976.

expansions and contractions of the material. Consequently,
the heating element detaches from the chalcogenide material
after sustaining 106 to 108 writes on average, which results
in a stuck-at hard fault that can be subsequently read but not
reprogrammed [5].

In order to make PCM a viable memory technology for
high volume manufacturing, mitigating the wear-related fail-
ures is essential. While wear leveling [6] and suppressing
unnecessary bit flips [7] are good techniques to preserve
the endurance and lessen the degradation rate of PCM cells,
stuck-at faults eventually occur. In addition, parametric and
random variations in the manufacturing process results in a
non uniform distribution of cell lifetime. Consequently, early
failures of cells are common. Therefore, proactive multi-bit
error correction schemes are a necessity to gracefully recover
from numerous stuck-at faults that accrue within a memory
block [8]–[11]. Unlike DRAM and NAND flash, PCM cells
are not susceptible to radiation induced transient faults in the
foreseeable future due to the high energy required to change
the state of a PCM cell [12]. Hence, stuck-at cells are the
major failure mode that needs to be alleviated in PCM.

The fact that a failed stuck-at cell is still readable makes the
nature of errors to be data dependent [10]. In a sense, a faulty
cell is erroneous only when the bit value read is different than
the intended bit value to be written. For example, if a cell is
stuck-at-1 then an error occurs only when the cell needs to be
written with 0. Consequently, a stuck-at cell can be classified
into either “stuck-at-wrong” (SA-W) or “stuck-at-right” (SA-
R) depending on whether the cell needs to be written with
a value different or identical to the value it is stuck at [11].
Henceforth, the errors that an error correction scheme masks
correspond to those cells that happen to be SA-W after a given
write operation.

This paper proposes data inversion to boost the error
correction capability of error correction schemes, such as
BCH [8] and SECDED [13], at a very small cost. Given
an error correction scheme with the capability of masking t
errors, a write operation fails only when t+ 1 faults are SA-
W. Following a write failure, our technique attempts a second
write operation with the original data inverted. By applying
data inversion, SA-W cells become SA-R and vice versa. Thus,
if the number of SA-R faults in the initial write pattern was
smaller than or equal to the nominal capability of the error
correction scheme, then applying data inversion makes the
second write attempt successful as the number of SA-W faults

becomes within the capability of the error correction scheme.
To increase the error correction capability of a code, the

number of auxiliary bits has to be increased. In addition, the
complexity of error correction codes increases linearly with
the increase in the number of errors that can be tolerated [14].
Data inversion levies very little design complexity as it enables
an error correction code to cover more errors through a
simple inversion operation without altering the encoding and
decoding complexity of the code. As a matter of fact, data
inversion introduces an additional auxiliary bit that serves as a
polarity bit that is set based on the occurrence of the inversion
step. Hence, data inversion reduces the bit costs as well as
computational complexity while allowing more errors to be
covered.

A write request completes successfully if the number of SA-
W cells is smaller than or equal to the nominal capability of
the error correction scheme. In this sequel, data inversion can
be looked at as a data mapping technique. It offers the choice
between two data encodings, one un-inverted and one inverted.
If writing the un-inverted pattern happens to induce a number
of SA-W cells that is greater than the nominal capability of the
error correction scheme, then writing the inverted pattern may
induce a number of SA-W cells that is within the nominal
capability. Hence, the data to be written is mapped to the
pattern that leads to a successful write, if any.

We present two variations of data inversion. In the first,
we integrate the polarity bit as part of the codeword. In the
second, we take the polarity bit out of the codeword. We show
that in the first variation the number of stuck-at faults that can
be tolerated depends on the distribution of the faults within
the protected block. As for the second variation, we show that
the number of stuck-at faults that can be tolerated is doubled.
Furthermore, we show that data inversion may require an extra
write operation before completing a write request successfully
only after the number of stuck-at faults within a protected
block exceeds the nominal capability of the error correction
code. Nevertheless, the need for an extra write is rare due to
the data dependent nature of errors. Our findings reveal that
data inversion can increase the lifetime of main memory by
up to 34.5% and secondary storage by up to 16.1%.

The remainder of this paper is organized as follows. Sec-
tion II gives the details of the proposed technique by proving
its capability in increasing the number of faults that can form
within a memory block before turning defective. Section III
presents the flow of execution of data inversion. Section IV
analyses potential overheads. Section V presents experimental
evaluation. Section VI reports the related work, and finally,
Section VII summarizes the paper.

II. DATA INVERSION

Data inversion is a simple technique to boost the error
correction capability of an error correction scheme. When
a block write request causes the stuck-at cells to entail a
number of errors above the nominal capability of the deployed
error correction scheme, data inversion resubmits a new write
request after inverting the original write pattern. This simple
inversion operation can make the number of manifested errors
within the capability of the error correction code. Thus, data

inversion is capable of completing otherwise failed write
requests successfully.

Before we delve into the details of data inversion, let us
start with some preliminary definitions that will help us set
the ground for the concepts of data inversion.

Definition 1. A memory/storage block is non-defective if any
data pattern can be written successfully on the block.

Definition 2. A memory/storage block is defective if some data
patterns cannot be written successfully on the block.

Definitions 1 and 2 establish the distinction between a
defective and a non-defective block. A defective block is not
free of stuck-at faults, but these faults can never lead to a
pattern of errors uncorrectable by the error correction code.
Conversely, the stuck-at faults in a defective block can lead
to write failures. However, not every write request necessarily
fails on a defective block. In fact, failures are related to specific
data patterns that push the number of SA-W bits beyond the
capability of a given error correction code.

A. Integrated Protection

When a write request is submitted, the data bits are augmented
with the polarity bit set to 0. Subsequently, the error correction
code computes the auxiliary information to protect against
errors in the original data bits and the polarity bit. Next, the
codeword (data bits + polarity bit + auxiliary bits) is physically
written. If the codeword manifests a number of SA-W cells
larger than the error correction capability of the code, then data
inversion kicks in. The codeword is recomputed with inverted
data bits and the polarity bit set to 1.

The inversion step has the potential effect of increasing the
number of stuck-at faults that can form within the data bits,
while preserving the non-defectiveness of the memory block
as described in the following theorem.

Theorem 1. Given a memory/storage block protected by an
error correction code that can correct up to t-bit errors,
applying data inversion with integrated protection extends the
correction capability of the code to Q + R faults such that
Q/2 + R = t, where Q is the number stuck-at faults in the
data bits and R the number of stuck-at faults in the auxiliary
bits. That is, the block is defective only if (Q/2 +R) > t.

Proof: By construction, an error correction code of capability
t fails only when at least t + 1 errors are manifested, i.e.,
t+ 1 SA-W faults in the context of the stuck-at fault model.
In the worst case, the number of SA-W cells is equal to the
number of SA-R cells within the data part after a write failure.
Therefore, Q/2 stuck-at faults can happen to be SA-W in the
worst case after inverting the data part. In addition, at most
R errors can be manifested within the auxiliary bits in the
worst case as recomputing the auxiliary information does not
necessarily change the value of every auxiliary bit. Hence, a
memory/storage block becomes defective only if (Q/2+R) >
t. �

It follows from Theorem 1 that data inversion makes the
defectiveness of memory blocks correlated with the distribu-
tion of the stuck-at faults in between the data and the auxiliary

bits within the blocks. It is highly likely that the distribution
of faults allows increasing the number of faults within a block
before it becomes defective. Hence, data inversion can be
looked at as increasing the capability of the error correction
code.

B. Un-integrated Protection
Data inversion is a post failure technique. As a matter of fact,
data inversion interferes with the write operation only after a
failure occurs. As long as the number of stuck-at faults accrued
within a block is still within the capability of the correction
code, no write failure could occur. Accordingly, the polarity
bit does not start to be toggled until that point is reached. Even
after the number of stuck-at faults gets above the capability of
the correction code, the polarity bit is not toggled frequently
due to the data dependent nature of errors that makes write
failures rare.

Given its infrequent toggling, we consider separating the
polarity bit out of the protection scope of the error correc-
tion scheme. Such an approach could make data inversion
vulnerable to a single point of failure. Nevertheless, the
raw endurance of the polarity bit is expected to be resilient
enough to sustain its infrequent toggling. Furthermore, the
vulnerability to polarity bit failures can be mitigated through
redundancy techniques such as triple modular redundancy
(TMR). Taking the polarity bit out of the codeword brings
two enhancements to data inversion. The first enhancement
is to abolish the need to recompute the auxiliary information
prior to the second write attempt. With integrated protection,
the auxiliary information of the first write attempt protects
against errors with the value of the polarity bit is set to 0. In
the event of a write failure, the integrated protection scheme
recomputes the auxiliary information with the value of the
polarity bit set to 1 for the second write attempt. By separating
the polarity bit, the data and auxiliary bits are inverted with
no need to change the value of any of the original bits.
Accordingly, with un-integrated protection the additional write
is a simple inversion of the entire codeword. The second and
most important enhancement is that separating the polarity bit
out of the codeword guarantees doubling the number of stuck-
at fault before a block turns into a defective one. Theorem 2
proves the conjuncture.

Theorem 2. Given a memory/storage block protected by an
error correction code that can cover up to t-bit errors, apply-
ing data inversion with un-integrated protection can correct
up to 2t+1 stuck-at faults. That is, the block is defective only
after 2t+ 2 stuck-at faults are accrued.

Proof: By construction, an error correction code of capability
t fails only when at least t + 1 errors are manifested. Since
applying data inversion exchanges the role of SA-W and SA-R,
at least t+1 SA-R faults in addition to t+1 SA-W faults have
to exist in the block for the error correction code to fail after
inverting the codeword to be written. Thus, a memory/storage
block becomes defective only after 2t + 2 stuck-at faults are
accrued. �

It follows from Theorem 2 that separating the polarity bit
out of the codeword allows an error correction code to be

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

P
ro

b
. D

e
fe

ct
iv

e
n

e
ss

of Faults

BCH-6 BCH-6 + DI + IP BCH-6 + DI + UP

Fig. 1: Probability of defectiveness as a function of the number
of stuck-at faults, where a BCH-6 code protects a block of size
512 bits. “DI” denotes data inversion, “IP” denotes integrated
protection and “UP” denotes un-integrated protection.

capable of extending the non-defectiveness of a block until
the number of faults within the block becomes double the
capability of the correction code irrespective of the distribution
of the faults. Before that point is reached, the probability of
defectiveness is 0. As when the polarity bit is integrated with
the data part, a probability of defectiveness can form as when
the number of faults gets above the capability of the correction
code. Nevertheless, the probability of defectiveness increases
slowly with the relative increase in the number of stuck-at
faults within a memory block as depicted in Fig. 1.

C. Surviving Polarity Bit Defectiveness

Since data inversion with un-integrated protection does not
protect the polarity bit, the defectiveness of the polarity bit
may result in making data inversion failing to meet the
premise of doubling the number of faults that can be tolerated.
However, the number of faults that can be tolerated is never
below the nominal capability of the error correction code even
if the polarity bit is defective. Imagine that a polarity bit is
defective by manufacturing and stuck at 1. As the polarity
bit is not protected, covering the faulty cell is not possible.
However, the codeword can always be inverted to match the
status of the polarity bit in which case the error correction
code can cover errors within the inverted codeword up to the
nominal capability.

To gain insight about the effect of a defective polarity bit
on blocks’ defectiveness, Table I compares the probability
of defectiveness of the integrated protection scheme against
the un-integrated scheme where the polarity bit could turn
defective for a 512-bit block protected by a BCH-6 code. Sim-
ilarly to integrated protection, defectiveness with un-integrated
protection can now occur when the number of faults exceeds
the nominal capability of the error correction code. Yet, it
is notable that the probability of defectiveness for the un-
integrated scheme remains low until number of faults within
the block grows above the threshold that the un-integrated
scheme can potentially tolerate. This is because the probability
of the polarity bit turning defective is low.

Allowing operation with a defective polarity bit is possible,
but it changes an important aspect of data inversion. That is, a
second write attempt may be required only after the number of

of faults 7 8 9 10 11 12 13 14

IP 1.59E-07 3.07E-05 0.001 0.015 0.100 0.363 0.763 1

UP with PL defectiveness 0.012 0.013 0.015 0.017 0.019 0.020 0.022 1

TABLE I: Probability of defectiveness as a function of the number of faults within a 512 bit block protected by BCH-6 code
complemented with data inversion with integrated protection (IP) and un-integrated protection (UP) with the possibility of the
polarity bit (PL) turning defective.

faults exceeds the nominal capability of the error correction
code. Nevertheless, the target of this paper is to present a
technique that exploits the major fault model of PCM, which
is worn-out cells. In general, memory manufacturers follow a
rigorous testing phase to eliminate blocks where certain cells
are defective by manufacturing. Even though manufacturers
allow variation in cells lifetime, a minimal level of endurance
has to be achieved. Accordingly, we do not consider the case
of continuing operations with a defective polarity bit. In the
event of a defective polarity bit by manufacturing or because
of low endurance, one can declare the block associated with
the polarity bit defective. Yet, redundancy techniques could be
applied to mitigate the unlikely event of polarity bit failure as
indicated in the previous section.

III. EXECUTION FLOW

The execution of write and read requests differs between
data inversion with integrated and un-integrated protection.
When a write request is issued, data inversion with integrated
protection augments the data bits with the polarity bit set
to 0. Subsequently, the error correction code computes the
auxiliary information with a correction capability that covers
the polarity bit. Next, the codeword (data bits + polarity bit +
auxiliary bits) is physically written on the PCM medium. In
the event that the codeword exhibits a number of SA-W cells
above the capability of the error correction code, a second
write operation is attempted. Before submitting the second
write attempt, the data bits are inverted, the polarity bit is
set to 1 and the auxiliary information is recomputed. If the
second write attempt exhibit a number of SA-W cells within
the reach of the error correction code, then the write request
has completed successfully. At read time, the data bits and
the polarity bits are retrieved after the error correction code
decodes the codeword and corrects errors. When the value of
the polarity bit is 1, the data bits are inverted to finally obtain
the intended data that had to be written initially.

Fig. 2 gives an example where a byte is protected by
an error correction code of capability 1 complemented with
data inversion with integrated protection. Protecting a byte
against one error requires a Galois field of size 4, which is
large enough to accommodate the need to augment the data
bits with the polarity bit. Fig 2 shows that the first write
attempt fails as 3 SA-W cells are manifested. Consequently,
a second write with inverted data bits, polarity bit set to 1
and recomputed auxiliary bits is attempted. The second write
completes successfully as only one SA-W cell is manifested.
At read time, the error correction code is capable of recovering

from the single error and correctly decodes the data bits and
the polarity bit. As a last step, the data bits are inverted since
the value of the polarity bit is 1.

Data inversion with un-integrated protection separates the
polarity bit from the codeword, which alters the execution flow
of write and read requests. When a write request is issued,
the error correction code computes the auxiliary information
with correction capability that does not cover the polarity bit.
Subsequently, the polarity bit is set to 0 and it is physically
written along with the codeword (data bits + auxiliary bits)
into the PCM meduim. In the event of a write failure, another
write operation is attempted with the codeword inverted and
the polarity bit set to 1. At read time, the codeword is read
inverted if the value of the polarity bit is 1. Finally, the data
bits are retrieved through decoding the codeword by the error
correction code.

Fig. 3 gives an example where a byte is protected by an
error correction code of capability 1 complemented with data
inversion with un-integrated protection. The first write attempt
fails as a consequence of 3 SA-W cells. Afterwards, a second
write is attempted with the codeword inverted and the polarity
bit is set to 1. The write completes successfully since the
inversion step could turn the SA-W cells into SA-R. At read
time, firstly the codeword is retrieved inverted as the value
of the polarity bit is 1. Secondly, the codeword is decoded to
retrieve the data bits.

So far, our discussion of data inversion did not address two
important points. The first is how to determine the successful-
ness of a write operation while the second is how to handle the
failure of the second write attempt. Since PCM’s major fault
model is stuck-at faults resulting in hard errors, a standard
practice is to apply a read-after-write (RAW) operation to
verify that the data was written successfully [9]–[11]. Given
the data dependent nature of errors, RAW divulges all the
SA-W cells. Thus, the successfulness of the write operation is
determined based on the number of SA-W cells determined by
the RAW operation. Accordingly, data inversion requires one
RAW operation after the first write attempted and an additional
RAW operation in case a second write attempt is needed. The
failure of the second write attempt is an indication of the
defectiveness of the block. Consequently, such a block has to
be retired and mapped-out of the address space. The execution
flow of data inversion for a write request is captured in Fig. 4.

IV. POTENTIAL OVERHEADS OF DATA INVERSION

The flow of execution for data inversion reveals that no
overhead is incurred before the number of faults accrued

SA-1 SA-0 SA-1

1 1 0 0 1 0 1 0 1

0 0 1 1 0 1 0 1

Write
request

Read
request

Write pattern

Physical state

1st write

2nd write

Data decoded
through ECC

Data read
inverted

1 0 1 1 0 1 0 1 0 1 0 0 1

1 1 0 0 1 0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1 0 0 0 0 1

SA-1 SA-0 SA-1

0 0 1 1 0 1 0 1

Write
request

Read
request

Write pattern

Physical state

1st write

2nd write with
data inversion

1 0 1 1 0 1 0 1 1 0 0 1

1 1 0 0 1 0 1 0 1 1 1 0

0 0 1 1 0 1 0 1 0 0 0 1 0

0

1

0 0 1 1 0 1 0 1 0 0 0 1 Codeword
read inverted

Data decoded
through ECC

Data inverted
auxiliary bits
recomputed

0 0 1 1 0 1 0 1 1 0 1 0 0

Fig. 2: An example of executing write and read requests with data inversion with integrated protection complementing an error
correction code of capability 1. Dotted cells represent the polarity bit, gray cells represent the auxiliary bits and red hashed
cells represent errors.

SA-1 SA-0 SA-1

1 1 0 0 1 0 1 0 1

0 0 1 1 0 1 0 1

Write
request

Read
request

Write pattern

Physical state

1st write

2nd write

Data decoded
through ECC

Data read
inverted

1 0 1 1 0 1 0 1 0 1 0 0 1

1 1 0 0 1 0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1 0 0 0 0 1

SA-1 SA-0 SA-1

0 0 1 1 0 1 0 1

Write
request

Read
request

Write pattern

Physical state

1st write

2nd write with
data inversion

1 0 1 1 0 1 0 1 1 0 0 1

1 1 0 0 1 0 1 0 1 1 1 0

0 0 1 1 0 1 0 1 0 0 0 1 0

0

1

0 0 1 1 0 1 0 1 0 0 0 1 Codeword
read inverted

Data decoded
through ECC

Data inverted
auxiliary bits
recomputed

0 0 1 1 0 1 0 1 1 0 1 0 0

Fig. 3: An example of executing write and read requests with data inversion with un-integrated protection complementing an
error correction code of capability 1. Dotted cells represent the polarity bit, gray cells represent the auxiliary bits and red
hashed cells represent errors.

within a block exceeds the nominal capability of the deployed
error correction scheme. Once the number of faults exceeds the
nominal capability, an extra write operation may be required to
successfully complete a write request. Nevertheless, the need
for an extra write operation is rare due to the data dependent
nature of failures. Consider a 4 KB storage block protected
by a BCH code of capability 20. For a write operation to fail,
two conditions must hold. The first condition is that the block
must suffer from at least 21 stuck-faults. The second condition
is that at least 21 of the stuck-at faults have to be SA-W after
a write operation. Hence, the occurrence of write failure is
probabilistic. In Section V-E, we show that the probability of

failing to write on a defective block is notably low and quantify
the overhead of extra writes.

In PCM, write data are typically buffered before being
written on the memory cells in an iterative manner [15],
[16]. Hence, the computational overhead of data inversion,
when an extra write is required, is incurred while the data
is buffered and is off the critical write path. Furthermore,
applying inversion does not necessitate an inverter for each
cell. Instead, a set of inverters on the bus transferring the data
from the data buffer is enough. In fact, data inversion could
borrow the same design to incorporate the inverters as in [7],
[15].

Write Request

RAW
Verification

Apply Inversion

RAW
Verification

Declare Block
Defectiveness

Fig. 4: Flow of executing a write request. “RAW” denotes read
after write.

At read time, data inversion requires inverting the data if
the polarity bit is set to 1. Consequently, the read path is
augmented with a simple logic to retrieve the data inverted,
when needed, that incurs marginal overhead. As a matter of
fact, the PCM prototype in [17] has a relatively sparse pipeline
stages that can easily incorporate the required logic.

To increase the capability of an error correction code,
a substantial computational complexity has to be incurred.
Complementing an error correction code with data inversion
increase the number of faults that the code can tolerate by
up to double the nominal capability with a simple inversion
operation. In addition to higher computational complexity,
increasing the capability of an error correction code requires
a significant number of additional auxiliary bits. For example,
a BCH code implemented over a Galois field of size 10
requires 60 auxiliary bits to protect against 6 errors. If the
BCH capability is to be doubled, then 120 auxiliary bits are re-
quired. Nevertheless, data inversion can double the correction
capability of the code with a single auxiliary bit i.e. the polarity
bit. Thus, data inversion save ∼50% of the required auxiliary
bits to double the correction capability of a code. Putting
it altogether, data inversion increases the error correction
capability without incurring a significant encoding/decoding
complexity and an appreciable large number of additional
auxiliary bits.

In summary, data inversion is a simple technique capable
of increasing the number of faults that an error correction
code can mask while incurring a minimal additional overhead
imposed on read and write operations. Most importantly,
data inversion is a post failure technique. Consequently, the
additional overhead does not start to be incurred until write
failures start to occur. That is, when the number of stuck-
at faults within a memory/storage block exceeds the nominal
capability of the deployed error correction code.

V. EVALUATION

To assess the performance of data inversion, we look at the
lifetime that can be achieved when an error correction code
is complemented with data inversion in comparison to the
lifetime that can be achieved with the same error correction
code without data inversion. In addition, we quantify the
overhead of the additional write operation that data inversion
may require. At last, we study the effect of data inversion on
the lifetime of memory devices and chips through changing the
variability in cells’ endurance. It is worth noting that a number
of error correction schemes to mask stuck-at faults have been
proposed [9]–[11]. Nevertheless, the roadmap to endorse those
schemes in real system implementation is still unclear. Error
correction codes, such as BCH, are an industry standard
that have been thoroughly implemented and optimized in
functional systems. Furthermore, unlike data inversion that is
a post-failure technique, other proposed schemes are proactive
techniques that try to delay the occurrence of write failures. To
the best of our knowledge, data inversion is the first technique
that targets extending the usability of memory blocks beyond
the nominal capability of the error correction code deployed
to recover from faults. Hence, the goal of this paper is not to
compare with other existing schemes but to present a simple
architectural technique capable of increasing the number of
faults that error correction codes can cover.

A. Experimental Setup

To evaluate data inversion, we resort to Monte Carlo simula-
tion. Since a detailed simulation of a large memory capacity
is impractical within a reasonable time span, we lay out 2,000
pages of main memory and secondary storage each of size
4KB. For main memory system, we assume that each page is
an aggregation of 512-bit cache line size blocks. To protected
a cache line, we deploy a BCH code of capability 6 (BCH-6).
BCH-6 requires an overhead of auxiliary bits that amounts to
11.7%, which is below the 12% generally accepted overhead.
As for secondary storage system, we assume that each page is
an aggregation of 512-byte sector size blocks. We protect each
block with a BCH code that can tolerate up to 20 errors (BCH-
20). Our choice of the error correction code capability follows
the need to recover from more than 20 errors in a sector size
block in NAND flash [18]. To generate write traffic, we have
collected data from various real file types ranging from MPEG
videos and JPEG images to PDF documents.

To assign lifetime to the memory cells of simulated blocks,
we use a Gaussian distribution with a mean of 108 with
a standard deviation of 25 × 106 [9]. We assume that an
efficient wear leveling scheme distributes writes evenly across
the available blocks so that we achieve comparable wear rate.
We retire memory blocks after a write request fails to be
written successfully as results of a number of errors that could
not be masked by either the BCH code or the BCH code
complemented with data inversion. In addition, we take into
consideration the possibility for the polarity bit to wear out
when data inversion with un-integrated protection is in use.
That is, in the rare event of a polarity bit wearing out before
its associated memory block becomes defective, we retire the

80

85

90

95

100

0 5 10 15 20 25 30 35 40 45 50

%
 S

u
rv

iv
in

g
B

lo
ck

s

Writes per Block (Million)

BCH-6 BCH-6 + DI + IP BCH-6 + DI + UP

Fig. 5: Lifetime of PCM main memory blocks achieved with
BCH-6 and BCH-6 plus data inversion (DI) with integrated
protection (IP) and un-integrated protection (UP).

memory block. At last, our simulation methodology takes into
consideration the possible need for extra writes operations and
simulates them accurately. Overall, our methodology is similar
to the one in [9].

Because the main failure mode of PCM is hard faults, we
assume that the BCH capability is dedicated to masking hard
faults. In case other failure modes, such as transient errors,
become an issue in the future, a separate BCH capability must
be provisioned to recover from them, which is orthogonal to
this work.

B. Main Memory Lifetime Improvement
To study the effect of data inversion on the lifetime of
main memory, we compare the lifetime achieved with data
inversion complementing a BCH-6 code to that of the lifetime
achieved by the BCH-6 code itself. Our evaluation metric
is the total number of writes executed on memory blocks
before retirement. When our scheme requires two physical
write operations to complete a write request successfully as
the first write could fail, we increment to the total write count
by 1 only for fairness to the BCH-6 code. Since it is generally
accepted for main memory to continue in operation even after
retiring a number of memory blocks due to defectiveness, we
study the lifetime until 20% of the memory blocks are retired.
Fig. 5 shows our results, where the Y axis represents the
percentage of surviving blocks as a function of the number
of writes per block represented by the X axis.

It is clear from Fig. 5 that data inversion is capable of
substantially improving the lifetime of memory chips. After
retiring the first memory block, data inversion extends the
lifetime over BCH-6 by 21.1% and 34.5% with integrated
and un-integrated protection respectively. Furthermore, the
shape of the three curves indicates that the achieved lifetime
improvement gap is maintained until 20% of the memory
blocks are retired.

It is worth noting that data inversion with un-integrated
protection significantly passes data inversion with integrated
protected in terms of achievable lifetime. This result is a
direct consequence of the enhancements that un-integrated
protection adds to data inversion. Un-integrated protection
retires a memory block after 14 stuck-at faults are accrued. On

100

105

110

115

120

0 5 10 15 20 25 30 35 40

%
 S

u
rv

iv
in

g
B

lo
ck

s

Writes per Block (Million)

BCH-20 BCH-20 + DI + IP BCH-20 + DI + UP

Fig. 6: Lifetime of PCM storage blocks achieved with BCH-20
and BCH-20 plus data inversion (DI) with integrated protec-
tion (IP) and un-integrated protection (UP). This experiment
assumed that 20% of spare storage capacity was provided.

the other hand, integrated protection could retire a memory
block after 7 stuck-at faults are accrued depending on the
distribution of the faults within the block.

Overall, protecting memory chips solely with a BCH code
leads to an earlier retirement of the blocks. Conversely, deploy-
ing data inversion increases the number of faults that the BCH
code can tolerate. Thus, data inversion extends the usability
of memory blocks beyond a regular BCH code leading to
significant lifetime improvements.

C. Secondary Storage Lifetime Improvement
To evaluate the impact of data inversion on storage devices,
we note the lifetime in terms of the number of writes per
block achieved with a BCH-20 code complemented with data
inversion and a regular BCH-20 code. Conversely to main
memory chips, block retirements that cause the degradation
of the actual storage capacity are not allowed in storage
devices. As a matter of fact, block defectiveness is combated
through over-provisioned spare blocks. Consequently, we over-
provision an additional 20% of the total storage capacity
as spares which is a typical practice in server products. In
this sequel, a storage device remains in operation until the
defectiveness of the first sector that cannot be replaced with a
spare. Fig 6 plots the lifetime of storage blocks while providing
20% worth of spares.

The results show that when the first storage block is
retired, data inversion extends the lifetime over BCH-20 by
18.1% and 25.2% with integrated and un-integrated protection
respectively. This achievement is a consequence of the delay
in block defectiveness that data inversion provides through
increasing the number of stuck-at faults that can form within
a storage block before turning defective. Moreover, it is worth
noting that the improvement in lifetime is maintained until the
storage device is decommissioned.

Furthermore, it is notable that the difference in lifetime
between integrated and un-integrated protection is smaller than
that of main memory. As a matter of fact, having a BCH
code of high capability and a bigger block size increase the
likelihood of having a distribution of faults in between the data
bits and the auxiliary bits that preserves the non-defectiveness

0

10

20

30

40

50

60

70

512 bits 4096 bits 512 bits 4096 bits 512 bits 4096 bits

Variance: 0.15 Variance: 0.25 Variance: 0.35

Li
fe

ti
m

e
 In

cr
e

as
e

 (
%

)

Fig. 7: Lifetime increase with data inversion relative to no
inversion with various cell lifetime variance.

of a storage block. Hence, data inversion with integrated
protection could perform better with storage devices.

Lastly, it is noticeable that the overall lifetime improvement
for a storage device is less than that for a main memory chip.
In fact, spares have smaller impact on the lifetime when data
inversion complements a BCH code than with the regular code
itself. Since data inversion increases the number of stuck-at
faults that can be tolerated within storage blocks, it delays the
retirement of the blocks. Nevertheless, the number of blocks
nearing their lifetime limit increases. Consequently, spares are
allocated at a higher rate once defective blocks start to occur.
Our findings indicate that at the time the first spare block is
allocated when data inversion complements the BCH code,
5% of the spares are allocated when the regular BCH code
is used. Yet, the allocation rate of spares with data inversion
increases from that point on.

D. Lifetime Variability

As PCM scales to small feature sizes, the manufacturing
process is expected to exhibit a non-uniform distribution of cell
lifetime. Accordingly, we assess the impact of data inversion
on lifetime in light of the imperfect process control. To this
end, we evaluate the lifetime of memory and storage blocks
while varying the cell lifetime variance. That is, we fix the
lifetime mean to 108 and set the cell lifetime variance to
0.15, 0.25 and 0.35 respectively. Our evaluation metric is
the lifetime increase achieved through complementing a BCH
code with data inversion relative to the regular BCH code
after the retirement of the first memory block. To calculate
this metric, we subtract the total number of writes performed
with data inversion from the total number of writes performed
by the regular code and divide the difference by the latter.
Fig. 7 shows the increase in lifetime with data inversion with
the un-integrated protection scheme. The integrated protection
scheme showed similar trend and its results were omitted for
brevity.

Fig. 7 reveals that data inversion can increase the lifetime
across all lifetime variances. Yet, smaller lifetime increase is
noted with smaller variability in cells’ lifetime. In fact, if the
cells within a memory block exhibit low lifetime variability,

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

21 23 25 27 29 31 33

Pr
ob

. o
f F

ai
lu

re
 (l

og
 S

ca
le

)

Faults

Fig. 8: Probability of failing to write on a 512-bytes storage
block protected by a BCH-20 code.

then a large number of cells are expected to wear out within
close proximity. Accordingly, this domino effect makes data
inversion less effective in extending the lifetime. Nevertheless,
data inversion still manages to increase the lifetime by 10.4%
and 7.1% for memory and storage blocks respectively with a
variance of 0.15. On the other hand, increasing the number of
faults that an error correction code can cover has a significant
effect on the lifetime when the variability in cell lifetime
is high. For example, a striking lifetime increase is marked
with a cell lifetime variance of 0.35. As a matter of fact, a
high variability in lifetime implies that cells within a memory
block vary from low endurance cells to strong endurance cells.
Consequently, increasing the number of faults that can be
covered has a significant effect on lifetime as it allows to cover
weak cells that fail early in the lifetime and keeps enough
capability to cover cells that fails later. Hence, coupling an
error correction with data inversion achieves a significant
lifetime improvement with high variability in cell lifetime; a
case which is common due to the imperfect process control
with a very deep sub-micron technology.

E. Performance Overhead

When a write request fails to complete successfully, data
inversion submits another write request after executing the
inversion step. Nevertheless, data inversion does not interfere
with the write process except when failures actually occur.
That is, after the number of faults within a protected block
exceeds the nominal capability of the error correction code.
Hence, the potential overhead incurred through an extra write
operation is not a constant overhead that every write request
pays. Even after the number of faults exceeds the capability of
the error correction code, an extra write operation is not always
required. Consider a 512-byte storage block protected by a
BCH code of capability 20. For a write to fail, the block must
have at least 21 faults and at least 21 of the faults must happen
to be SA-W. Fig. 8 reveals that the probability of failing to
write is low even after the number of faults within the block
significantly exceeds the capability of the BCH code due to the
data dependent nature of errors. For example, with 34 faults
the probability of failing to write is only 10%. Hence, writing
on a block having a number of faults above the capability
of the error correction code would still succeed with a high
probability. It is noted that a cache line size block exhibit the
same trend and its results are omitted for brevity.

Data Inversion with Integrated Protection Data Inversion with Un-Integrated Protection
Avg. % of extra writes

before nominal
capability is exceeded

Avg. % of extra writes
after nominal capability

is exceeded

Avg.% of extra writes
before nominal

capability is exceeded

Avg.% of extra writes
after nominal capability

is exceeded
512 bits 0% 4.9% 0% 13.1%
4096 bits 0% 6.4% 0% 8.9%

TABLE II: Performance evaluation in terms of extra write operations required by data inversion to complete write requests
successfully after the number of faults exceeds the nominal capability of the error correction code.

To quantify the overhead of extra writes that could occur,
we isolate their performance overhead. To this end, we count
the number of extra writes that a block undergoes before it is
retired. In Table II, we show the results where we consider a
cache line size block and a storage sector size block protected
by a BCH code of capability 6 and 20 respectively. We note
that we present the results of averaging a million simulation
runs each with a block of different cells’s lifetime.

Our result shows that no performance overhead in terms
of additional writes is incurred before the number of faults
within a block exceeds the nominal capability of the error
correction code. Thereafter, 4.9% and 6.4% of write requests
require an extra write operation for a memory cache line and
a storage sector respectively with the integrated protection
scheme and 13.1% and 8.9% of write requests require an extra
write operation for a memory cache line and a storage sector
respectively with the un-integrated protection scheme. It is
notable that the need for extra writes is still relatively low
even after write failures could start occurring. Therefore, data
inversion increases the number of faults that can be tolerated
within blocks, salvages otherwise decommissioned blocks and
notably augments the write volume of memory blocks while
incurring an affordable overhead.

Lastly, an observation is worth noting. The extra overhead
of the integrated protection scheme is less than that of the
un-integrated scheme. As a matter of fact, our evaluation
showed that the integrated protection scheme extends the life-
time of memory blocks less than the un-integrated protection
scheme. Consequently, the number of additional successful
writes achieved with the integrated protection scheme is less
than that of the un-integrated scheme when both schemes are
compared against a regular code. Hence, the un-integrated
protection scheme incurs more extra writes than the un-
integrated protection scheme.

VI. RELATED WORK

Data inversion is a new, simple and innovative technique to
increase the number of faults that an error correction code can
tolerate. Nevertheless, inverting the write data has appeared
in the literature in different contexts. Hence, we present a
summary of related work and highlight the differences and
similarities to data inversion.

Cho and Lee [7] propose Flip-N-Write to invert data if
the inversion step leads to a reduction in the number of
bits that needs to be physically programmed. When write

request is submitted, Flip-N-Write reads the old data written
on the physical block. Subsequently, the read data is compared
against the new data in its inverted and un-inverted forms.
Next, the form that incurs the least number of bit flip is
picked as the data that is physically written on the PCM
medium. Similarly to data inversion, Flip-N-Write introduces
an additional bit that serves as an inversion flag. However,
Flip-N-Write does not provide a variation in which the flag
bit is protected. It is worth mentioning that Flip-N-Write and
data inversion try to achieve two different tasks. The first
suppresses unnecessary bit flips in an attempt to increase
write bandwidth under write current constraints, while the
second attempts to increase the number of stuck-at faults that
can be tolerated before a block turns defective. Moreover,
Flip-N-Write interferes with every write operation while data
inversion starts to interfere in the write process only after the
number of faults exceeds the nominal capability of the error
correction code and the first write failure occurs. Hence, Flip-
N-Write is orthogonal to data inversion. Yet, we would like
to note that data inversion is compatible with Flip-N-Write.
Since Flip-N-Write’s main concern is to reduce the number of
bit flips, it does not take into consideration the data dependent
nature of errors for stuck-at faults. For example, inverting a
given data pattern to reduce bit flips may lead to a number of
stuck-at wrong cells that is above the correction capability of
the error correction code whereas un-inverted data may not.
In this sequel, data inversion reverts the decision taken by
Flip-N-Write and completes an otherwise failed write request
successfully.

RDIS [11] is an error correction scheme to tolerate stuck-at
faults in resistive memories. RDIS identifies a set containing
all the stuck-at wrong cells. This set is called the “invertible
set” as it needs to be inverted at read time in order to
correctly retrieve the stored data. The process of constructing
the invertible set goes through several steps that requires
inverting the bit values of certain specific cells. Hence, RDIS
uses the inversion step as a means to construct the invertible
set.

Another scheme that involves a potential inversion of data
is SAFER [10]. SAFER is an error correction scheme that
partitions the bits in a data block into several groups while
ensuring that each group contains at most one stuck-at fault.
In the event that a stuck-at cell in a group happens to be stuck-
at wrong after a write operation, SAFER inverts the data bits
that pertains to that group. Similarly to RDIS, the inversion

step in SAFER can be viewed as a tool to help encode the
data that needs to be written. Stated differently, the inversion
step is not an stand-alone technique as in data inversion.

ECP [9] is an error correction scheme that recovers from
stuck-at faults through providing a set of spare cells to replace
defective cells. To keep track of the position of defective cells,
ECP equips each spare cell with a pointer entry that identifies
the replaced cell. Once a defective cell is discovered, ECP
permanently allocates a correction entry to replace it. Data
inversion can be coupled with ECP provided that the allocation
of the correction entries changes into a dynamic one. That
is, the correction entries are allocated to mask off stuck-at
wrong cells that are manifested after the execution of a write
operation. Allocating the correction entries dynamically while
complementing ECP with data inversion, allows ECP to double
the number of faults that can be tolerated.

Lastly, it is worth noting an important difference between
data inversion and all other schemes mentioned above. That is,
data inversion is a post failure technique while other schemes
are proactive techniques. Particularly, data inversion kicks in
after write failure occurs while write failure is the halting
criterion of other schemes. Moreover, the above mentioned
error correction schemes have assumptions of fault-free aux-
iliary bits. This assumption does not hold for error correction
codes such as BCH, but those codes are criticized by their
complexity when the number of stuck-at faults that needs to
be masked is large. To this end, data inversion is a simple
architectural technique that enables error correction codes to
increase their capabilities with a minimal overhead. Hence,
data inversion paves the way to deploy error correction codes
in PCM chips and devices and benefit from their resilient
protection capability.

VII. SUMMARY

Phase-change memory (PCM) is an emerging memory tech-
nology capable of overcoming the physical challenges faced
by DRAM and NAND flash technologies. In order to make
PCM a viable memory technology for high volume manufac-
turing, combating the write endurance problem is essential.
Consequently, efficient multi-bit error correction schemes are
required. This paper presented data inversion, an architectural
technique capable of allowing error correction codes such as
BCH to tolerate a number of faults greater than their nominal
capability. Through exploiting the data dependent nature of
errors for stuck-at faults, data inversion inverts the write
pattern after a write request fails to complete successfully.
Consequently, the inversion step is likely to bring the number
of erroneous cells within the capability of the error correction
code. Thus, data inversion completes successfully a write
request that would otherwise fail and extends the usability
of memory blocks.

In this paper, we made the following key contributions:
1) We proved that data inversion is capable of increasing the

number of faults that an error correction code can tolerate
with a memory block while requiring a single additional
polarity bit. In addition, we presented two variations of
data inversion. The first protects the polarity bit and could

increase the capability of the error correction code based
on the distribution of faults within the protected memory
block. The second doubles the capability of the error
correction code through separating the polarity bit from
the protection scope of the code.

2) We showed that data inversion can significantly increase
the lifetime of PCM while incurring an affordable perfor-
mance overhead. Our evaluation shows that the overhead
could be incurred only after the number of faults within
a block exceeds the nominal capability of the deployed
error correction code.

3) We studied the effect of data inversion on lifetime in light
of imperfect manufacturing process control. We show
that data inversion copes with the variability in cells’
endurance and is especially effective when the variability
is high, which is expected to be a common manufacturing
phenomenon.

In conclusion, data inversion is an architectural technique
that effectively addresses the critical endurance reliability issue
that PCM suffers from. Data inversion is powerful, yet simple
enough to be readily incorporated into computer systems under
realistic usage scenarios.

REFERENCES

[1] ITRS, http://public.itrs.net, 2011.
[2] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-

mance main memory system using phase-change memory technology,”
in ISCA, 2009.

[3] J.-Y. Jung, K. Ireland, J. Ouyang, B. Childers, S. Cho, R. Melhem,
D. Mosse, J. Yang, Y. Zhang, and A. Camber, “Characterizing a real
pcm storage device,” in NVMW, 2011.

[4] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson,
“Onyx: a protoype phase change memory storage array,” in HotStorage,
2011.

[5] Numonyx, Inc. (Micron Technology, Inc.), “Numonyx phase change
memory (p8p),” www.micron.com, 2009.

[6] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh: prevent
malicious wear-out and increase durability for phase-change memory
with dynamically randomized address mapping,” in ISCA, 2010.

[7] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique to
improve pram write performance, energy and endurance,” in MICRO,
2009.

[8] D. K. Bose, R. C.; Ray-Chaudhuri, “On A Class of Error Correcting
Binary Group Codes,” Information and Control, vol. 3, no. 3, pp. 68–
79, march 1960.

[9] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ecp, not ecc,
for hard failures in resistive memories,” in ISCA, 2010.

[10] N. H. Seong, D. H. Woo, V. Srinivasan, J. Rivers, and H.-H. Lee, “Safer:
Stuck-at-fault error recovery for memories,” in MICRO, 2010.

[11] R. Melhem, R. Maddah, and S. Cho, “Rdis: A recursively defined
invertible set scheme to tolerate multiple stuck-at faults in resistive
memory,” in DSN, 2012.

[12] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda, “Dy-
namically replicated memory: building reliable systems from nanoscale
resistive memories,” in ASPLOS, 2010.

[13] R. Hamming, “Error Detecting and Error Correcting Codes,” Bell System
Technical Journal, vol. 26, 1950.

[14] D. Strukov, “The area and latency tradeoffs of binary bit-parallel BCH
decoders for prospective nanoelectronic memories,” in ACSSC, nov.
2006.

[15] H. Chung et al., “A 58nm 1.8V 1Gb PRAM with 6.4MB/s Program
BW,” in IEEE ISSCC, February 2011.

[16] JEDEC, “Jedec publishes lpddr-nvm memory standard,” www.jedec.org,
2009.

[17] K.-J. Lee et al., “A 90 nm 1.8 V 512 Mb Diode-Switch PRAM With
266 MB/s Read Throughput,” IEEE JSSC, vol. 43, January 2008.

[18] W. Wong, “A chat about micron’s clearnand technology,” electronic
design, December 2010.

