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Abstract—We forecast that proper handling of unreliable storage blocks (e.g., “bad block management” in solid-state drives) will
remain critical for future systems built with advanced and emerging memory technologies. This paper argues that the conventional
block retirement and sparing approach—a block is retired as soon as it shows faulty behavior—is overly conservative and inefficient.
We observe that it is highly unlikely that all faulty bits in a storage block manifest errors. Consequently, we propose data dependent
sparing, a relaxed block retirement and sparing approach that recycles faulty storage blocks. At small management cost and with less
than 1% sparing, data dependent sparing achieves the same lifetime as the conventional approach with 20% sparing.

Index Terms—Sparing, phase-change memory (PCM), flash memory, solid-state drive (SSD), stuck-at faults.

F

1. INTRODUCTION

Bad block management is a vital technique for memories subject
to relatively low write endurance. For example, the NAND
flash memory medium in modern solid-state drives (SSDs) has
a write endurance of only 103 to 105 [6]. While SSDs perform
aggressive wear leveling to spread writes to the entire flash
memory capacity, careful bad block management is required to
cope with the unreliable blocks and preserve the dependability
and performance of the storage device. The common practice
is to permanently retire a bad block, once manifested, and
replace it with a good spare block [7], [8]. In flash SSDs, over-
provisioning of as large as 20% is typical in server products.

Effective bad block management is expected to remain
critical for emerging memories like phase change memory
(PCM), when deployed in main memory and secondary storage
alike [12]. Initial measurements indicate that PCM cells can
endure 106 or more write cycles [9]. This rating is certainly
better than the 103 to 105 write endurance of recent flash
memory, but not by far. Realistic PCM based SSD prototypes
demonstrated a superior performance potential to that of flash
SSDs [1], [5]. Accordingly, under demanding applications PCM
SSDs will have to absorb a larger write volume during the
lifetime than current NAND flash SSDs.

In NAND flash memory, repeated program/erase cycles
damage the nitride layer of a cell, causing charges to be trapped
in the dielectric. This mechanism results in a permanent shift in
the cell state. Writing to PCM cells requires repeated heating
and cooling (expansion and contraction) of the chalcogenide
material, leading to the detachment of the chalcogenide from
the heating elements. This mechanism also results in a perma-
nent shift in the cell state. Accordingly, NAND flash as well
as PCM cells exhibit a “stuck-at” fault model [4], [7], [12],
[13]. That is, when a cell fails, it gets stuck at either 0 or 1,
and can still be read but not reprogrammed. In this case, the
manifestation of errors is data dependent; an error occurs only
when a different bit value is written to a faulty cell than what it
is stuck at.As an example, consider a block with twenty stuck-
at faults. Writing new data to the block may result in only
nine errors—when eleven remaining faulty cells were written
bit values identical to their stuck-at values.

Given an error correction scheme of capability N , a write
operation fails if at least N + 1 errors are manifested. Ac-
cordingly, the probability of failure for a block with F faults
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Fig. 1. Block write failure probability vs. # of faults within a 4KB
storage block, when an error correction mechanism covers up to 20
errors.
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probability of failure on a block write as a function of the
number of stuck-at faults in the block. We assume that the
block is protected by an error correction mechanism capable of
fixing up to 20 errors. The plot shows that a block write fails
rarely even if there are more than 20 faults. For example, when
a block has 29 faults, the probability of block write failure,
i.e., at least 21 errors are manifested, is only ∼1%. Clearly,
retiring a block immediately when it becomes faulty (having
more than 20 faults given the capability of the error correction
mechanism) is overly conservative and fails to squeeze more
lifetime from faulty, yet “better-than-bad” blocks.

This paper proposes data dependent sparing, a new physical
block sparing scheme that delays the retirement of a faulty
block when the memory exhibits the stuck-at fault model.
Specifically, we do not immediately retire a block on an un-
successful write; instead, we borrow a spare block temporarily
to complete the write operation. When we perform a later
write operation on the original (faulty) block, the operation
will succeed with a high probability (i.e., new data are different
from old data). Essentially, we classify storage blocks into
“good”, “better-than-bad” and “bad” (retired) and utilize both
good and better-than-bad blocks on writes. A better-than-bad
block is reclassified as bad when it suffers frequent failures.

To manage better-than-bad blocks, we need to keep track of
their “goodness”, which may be achieved with a counter per
block that records past failures. Alternatively, one could em-
ploy storage-efficient global data structures like Bloom filters
to bookkeep failing blocks. Our quantitative result shows that
data dependent sparing substantially improves the lifetime of
a storage device, justifying the small management overhead.
Lifetime improvement as compared to a conventional scheme
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Fig. 2. Flow of execution in data dependent sparing.

is as large as 24.2% at 20% sparing. In turn, data dependent
sparing achieves an equivalent lifetime as the conventional
scheme with significantly fewer spares.

2. DATA DEPENDENT SPARING
Data dependent sparing builds on the observation that faulty
blocks1 have a low probability of actual write failure. This
section describes in detail the idea of data dependent sparing,
design trade-offs and its overheads.

2.1. Conceptual Design
When an attempt to write to a block fails, i.e., there are more
errors than can be corrected by the error correction mechanism,
a spare block replaces the original block.2 In conventional
bad block management, referred to as “static sparing” in this
paper, this block is labeled “bad” and is discarded at once [7],
[8], [10]. In data dependent sparing, the original block is not
immediately retired because a later write to the same block
with different data will likely succeed.

When a later write to the block succeeds, the initially as-
signed spare is reclaimed to the spare pool, essentially in-
creasing the write volume of the device without help from
a spare. After more write cycles are applied, however, the
block will wear out further and become unreliable. Fig. 1
shows that the probability of write failure increases with the
number of faults in the block. Hence, once a block is deemed
to have a high probability of producing write failure, it is
retired to prevent repeated writes and associated overheads.
Data dependent sparing introduces a failure frequency threshold
to determine when a block is retired. Data dependent sparing’s
flow of execution is depicted in Fig. 2.

Data dependent sparing is expected to significantly prolong
the lifetime of a storage device. By continuously involving
better-than-bad blocks in data writes and dynamically allocat-
ing spares to temporarily accommodate writes that failed, data
dependent sparing utilizes and manages sparse spares more
efficiently than conventional bad block management. Section 3
quantitatively studies the benefits of data dependent sparing.

It is worthwhile to note a recently proposed scheme called
Pay-As-You-Go (PAYG) [11]. It reduce the storage for error cor-
rection through allocating error correction entries in proportion
to the number of hard-faults in a block. PAYG is orthogonal to
our scheme. Specifically, it delays the failure of blocks but do
not reuse bad blocks. Moreover, it does not exploit the data-
dependent nature of failures.

1. A storage block is faulty when it has more stuck-at faults than the
provided error correction mechanism can always cover.

2. A block is the unit of write and error correction. It is not to be
confused with NAND flash memory “block” (multiple of “pages”).

2.2. Design Trade-Offs
There are several interesting design decisions to be made when
realizing data dependent sparing. The first has to do with how
spares are allocated upon a write failure. Two strategies are feasi-
ble: (1) Temp-sparing: a healthy spare block temporarily substi-
tutes the failing better-than-bad block and completes the write
request; and (2) Role-exchange: a spare block permanently
replaces the failing block and the failing block is added to the
pool of spares. Temp-sparing has the advantage of reducing the
wear of spares because the spares will be written infrequently
compared with regular blocks. This strategy maximizes the
chances of finding a healthy spare quickly when needed. Role-
exchange has the advantage of spreading writes across the
entire capacity of the device including spares. Hence, regular
and spare blocks will wear at the same rate. It may incur
multiple writes on spares more frequently than temp-sparing.

The second design choice is about how to map a logical
block (that failed) to a new physical block. If the temp-sparing
strategy is applied, a small table could be implemented to store
pointers to spare blocks. The number of entries in the table is
equal to the number of provided spares. If the role-exchange
strategy is applied, then this requires address remapping , e.g.,
updating the address remapping table in SSD, so that read and
write accesses are mapped to the new block. These two design
choices are similar to Micron’s Skip Block Method and Reserve
Block Method [8].

Finally, we need a mechanism to determine when a better-
than-bad block retires. This mechanism kicks in when a block
write fails and is queried about the block’s history of fail-
ures. If the block is failing more frequently than a failure
frequency threshold, it is retired. A straightforward strategy to
track past failure history is to associate a counter with each
(better-than-bad) block that records the number of failures.
In another strategy, one could employ a global data structure
that approximates individual counters, like a counting Bloom
filter. If the number of better-than-bad blocks is expected to be
small in a device during its life (e.g., the device steers writes
to known better-than-bad blocks to exhaust them first), this
strategy could result in smaller bookkeeping space overheads
than the first strategy.

2.3. Overheads
In data dependent sparing, a single block write operation may
incur a series of writes before completion due to error occur-
rences, adding to the performance cost of a write. However,
this cost is expected to be very small because erroneous writes
are extremely rare. If the temp-sparing strategy is applied, only
one extra write is expected as this strategy preserves the health
of spares. If the role-exchange strategy is applied, multiple
writes could occur as the spare wears at the same level of
other blocks. However, multiple writes will occur with a low
probability. For example, consider a failure frequency threshold
of 1/100. The probability of a write operation failing twice in
a row for a given data pattern is at most 1/10,000.

The second source of overheads in data dependent sparing
is the data structure to bookkeep history of errors. If data de-
pendent sparing introduces a one-byte counter per 4KB block,
this overhead corresponds to 1/4,096 = 0.24%. The overhead
can be made smaller if we allocate counters on demand (i.e.,
no counter for a healthy block) or use an approximation data
structure like Bloom filter.

Lastly, a major storage capacity overhead—of up to 20%—
comes from over-provisioned capacity (the amount of spares).
Spares are consumed as bad blocks occur, and hence, a storage
device must provision sufficient spares to guarantee a target
lifetime. Because data dependent sparing increases the write
volume each storage block successfully absorbs, it effectively



delays the wearing of available blocks and increases a stor-
age device’s lifetime. In turn, compared with static sparing,
data dependent sparing reduces the overhead due to over-
provisioning given a target lifetime.

3. EVALUATION
This section evaluates the performance of data dependent
sparing, focusing on the relative advantage of data dependent
sparing compared with static sparing in terms of lifetime im-
provement and reduction in required over-provisioning given
a lifetime target.

We resort to Monte Carlo simulation in evaluation. Since
detailed simulation of a large storage capacity is impractical,
we simulate 2,000 storage blocks of 4KB and derive results sta-
tistically. Cells in the storage blocks have a write endurance fol-
lowing a Gaussian distribution. We choose two configurations.
Cells in the “Flash” configuration have a mean of 8.27×105

with a standard deviation of 2.48×105 [2]. “PCM” cells show a
mean of 108 and a standard deviation of 25×106 [12]. Overall,
our methodology is similar to the one in [12].

We assume that an efficient wear leveling scheme distributes
writes evenly across the available storage blocks. Each storage
block is protected with an error correction code. We use a
BCH code built over a Galois field of size 216 [3], capable
of correcting n errors (BCH-n) where n is a parameter. We
keep track of the number of faults within a block. Once the
number of faults gets above BCH capability, the success of
a write operation is determined based on the probability of
failure as presented in Fig. 1.

Because the primary concern in this paper is to cover hard
faults, we assume that the BCH capability is dedicated to
masking hard faults. In the case of NAND flash memory, there
are other important transient faults like read disturbance and
retention; hence, one must provision separate BCH capability
for transient faults, which we do not consider in this work.

We track the write failure probability of each simulated block
to determine when the block is retired. We provide a number
of spare blocks that is a parameter to simulation. We note that
flash SSDs may temporarily utilize spare blocks to aid garbage
collection. Because the garbage collection is orthogonal to the
main idea of this work, we do not take the spare blocks used
for garbage collection into consideration and assume that the
provided spares are dedicated to bad block management.

3.1. Lifetime Improvement
We first look at how data dependent sparing improves the
lifetime of a device. The modeled device uses BCH-20 and has
20% over-provisioning. The write failure frequency threshold
is 10%, i.e., a block is retired if the probability of write failure
on it reaches 10%. Fig. 3 plots our result: the percentage of
surviving blocks in a storage device (Y axis) as a function of
successful writes per block (X axis).

The result shows that when the number of surviving blocks
with data dependent sparing is 100%, only 22% of the blocks
survived with static sparing. In other words, data dependent
sparing offers 78% point more physical storage capacity than
static sparing before bad blocks happen. In terms of storage
device lifetime—time until the first bad block occurs after
consuming all spares—data dependent sparing’s advantage is
clear; it increases the lifetime by 18.1% compared with static
sparing. Similar advantage is achieved with Flash and its result
is omitted for brevity.

The two curves in the plot have a noticeably different shape.
Static sparing starts to lose storage blocks soon and keeps
losing more and more blocks as they become faulty. On the
other hand, data dependent sparing sheds blocks much later
but loses many blocks near the end of usable lifetime. Data
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Fig. 3. Lifetime of PCM blocks with BCH-20 and 10% failure
frequency threshold. “DD” denotes data dependent sparing and
“SS” static sparing.

dependent sparing salvages otherwise bad blocks and effectively
extracts more lifetime from better-than-bad blocks.

3.2. Sensitivity to Over-Provisioning
To study the sensitivity of data dependent sparing to the
amount of over-provisioned capacity, we define and use a
metric dubbed lifetime increase. It is the difference between
lifetime with data dependent sparing and lifetime with static
sparing, divided by lifetime with static sparing. In essence,
this metric expresses the relative lifetime advantage with data
dependent sparing.

We examine four different over-provisioned capacities of 1%,
5%, 10% and 20% for data dependent sparing, while keeping
20% over-provisioning for static sparing. We assume BCH-20
and a block failure frequency threshold of 10%.
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Fig. 4. Lifetime increase achieved by data dependent sparing at
various levels of over-provisioning compared with static sparing with
20% over-provisioning.

Fig. 4 shows the result. Data dependent sparing is shown
to outperform static sparing at all over-provisioned capacity
levels examined. Data dependent sparing beats static sparing
(with 20% over-provisioning) with only 1% over-provisioning
and increases the lifetime by up to 4.5%. At 20% over-
provisioning (i.e., same spare capacity for both schemes), life-
time increase reaches 18.1% (PCM) and 24.2% (Flash). The
result proves that the observation we make in this paper that
errors are typically fewer than faults in a block is extremely
valuable; indeed, data dependent sparing significantly increases
the amount of data written to a block. This explains why data
dependent sparing achieves a target lifetime with a smaller
over-provisioned capacity than static sparing.

3.3. Sensitivity to BCH Capability
This section studies the effect of changing the capability of
the error correction mechanism. We experiment with BCH-5,



BCH-10, BCH-15 and BCH-20 to revel the effect. We assume
20% over-provisioning and a block failure frequency threshold
of 10%. Our evaluation metric is lifetime increase.
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Fig. 5. Lifetime increase achieved by data dependent sparing
relative to static sparing for various BCH code capabilities.

Fig. 5 plots the result. It is shown that lifetime increase with
data dependent sparing is larger when a weaker BCH code is used.
This result may look surprising at a first glance. However,
with a weaker BCH code static sparing retires faulty blocks
and starts to consume spares sooner. By comparison, data
dependent sparing continues using better-than-bad blocks and
saves wearing of spares, which translates into a significant gain
in lifetime. Our result shows that data dependent sparing is
robust in improving the lifetime of a device across the capability
of an error correction mechanism used.

3.4. The Effect of Fail Frequency Threshold
In this section, we study the influence of the failure thresh-
old upon which a block is retired. We protect the memory
blocks with BCH-20 and provide 20% spares. We compare two
thresholds—5% and 10%.
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Fig. 6. Lifetime of PCM blocks under two failure frequency threshold
values: 5% vs. 10%. “DD” denotes data dependent sparing and “SS”
static sparing.

Fig. 6 shows the result. We find that a smaller threshold
value leads to a shorter lifetime; this is expected because
data dependent sparing discards a better-than-bad block more
quickly with a smaller threshold value. Still, data dependent
sparing under both threshold values achieves substantial gain
in storage block lifetime. Our result confirms an interesting
design trade-off—fail frequency threshold affects the lifetime
of the storage device and management overheads.

3.5. Sparing Overhead Reduction
Finally, this section revisits the question of how much over-
provisioning is needed for data dependent sparing to achieve

TABLE 1
Required over-provisioning for data dependent sparing to

match static sparing lifetime.

DD Over-provisioning

20% Sparing (SS)
PCM 0.4%
Flash 0.7%

10% Sparing (SS)
PCM 0.1%
Flash 0.4%

a target lifetime, compared with static sparing. We assign static
sparing with 20% and 10% over-provisioning and obtain the
over-provisioning for data dependent sparing. We use BCH-20
and a failure frequency threshold of 10%.

Table 1 highlights the capability of data dependent sparing
in reducing the amount of over-provisioning; it requires as
low as 0.4% over-provisioning to achieve the same lifetime
as static sparing with 20% over-provisioning and only 0.15%
over-provisioning to match the lifetime of static sparing with
10% over-provisioning. Clearly, data dependent sparing has the
good potential to increase the value of a storage device by
achieving a target lifetime with reduced cost.

4. CONCLUDING REMARKS
We argued that existing strict bad block retirement strategies
are inefficient for memories that exhibit a stuck-at fault model.
A block is retired unnecessarily early when it can still be writ-
ten successfully with high probably due to the data dependent
nature of errors.

This paper advocates a new block retirement and sparing
approach called data dependent sparing. By delaying the re-
tirement of faulty yet usable storage blocks, data dependent
sparing extends the lifetime of a storage device substantially, or
achieves a target lifetime with much smaller sparing overheads
than conventional, conservative bad block management. The
added system design complexity with data dependent sparing
is very small.
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