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Abstract—Cloud computing offers high scalability, flexibility
and cost-effectiveness to meet emerging computing requirements.
Understanding the characteristics of real workloads on a large
production cloud cluster benefits not only cloud service providers
but also researchers and daily users. This paper studies a large-
scale Google cluster usage trace dataset and characterizes how
the machines in the cluster are managed and the workloads
submitted during a 29-day period behave. We focus on the
frequency and pattern of machine maintenance events, job-
and task-level workload behavior, and how the overall cluster
resources are utilized.

Keywords-Cloud computing, datacenter computing, system
management, job scheduling.

I. INTRODUCTION

The last decade has seen a surge of interest and commercial
developments in cloud computing (large-scale distributed data
processing). Companies like Google, Facebook and Ama-
zon routinely process petabytes of web and user data using
distributed computing frameworks such as MapReduce and
Hadoop [1], [2]. They expose ample coarse-grain parallelism
and harness large clusters of machines. Cloud computing
services are also available to enterprise users and individuals,
like Amazon’s EC2. The low cost, elastic scalability and robust
performance makes cloud computing fast become a backbone
of the society and necessity for everyday Internet uses.

Despite the popularity of cloud computing, designing and
managing a large cloud computing system cost-effectively
remains hard problems. For example, Barroso and Hdlzle [3]
list four challenges: rapidly changing workloads, building
balanced systems with imbalanced commodity components,
curbing energy usage and maintaining high parallel efficiency
in the presence of mismatches in performance and cost trends
of hardware components. Addressing each challenge requires
detailed understanding about how a cloud computing infras-
tructure is utilized under real workloads first.

Recently, in November 2011, Google released a “cluster
usage trace dataset” that records extensive machine and work-
load events on a large production cluster [4]. Compared with
the trace released in late 2009 by the same company [4],
the new dataset has vastly richer information that is collected
during a much longer period (29 days vs. 7 hrs). This work
analyzes the trace dataset with three focuses: We first study
how machines in the cluster are managed. According to the

dataset, individual machines may become unavailable and then
available, to get upgraded, for instance, or because of hardware
failures. We then look at how jobs are scheduled and processed
in the cluster. The dataset allows us to obtain job mixes and
reason about the job scheduling properties, e.g., when and how
often jobs are “killed” and rescheduled. Lastly, we investigate
how the cluster resources are utilized. Especially, we estimate
the amount of useful, wasted and idle resources.

II. GOOGLE CLUSTER USAGE TRACE

This section briefly introduces the Google cluster usage trace
dataset (or simply “trace dataset™) itself. Readers are referred
to Reiss et al. [5] for full details.

A. Google cluster

In Google datacenters, a cluster is comprised of machines
that are connected by a high-bandwidth cluster network. A
cell is a set of machines, typically all in a single cluster,
sharing a common cluster management system that allocates
work to machines. Work arrives at a cell in the form of
jobs. For example, “Map” and “Reduce” could each become
a job. A job is comprised of one or more tasks, each of
which is accompanied by a set of resource requirements used
toward scheduling and may run on one or more cores. Each
task represents a Linux program, possibly involving multiple
processes, to be run on a single machine. Tasks that belong
to a common “parent” job are typically an identical binary
and have the same resource usage requirements. Users of the
clusters are typically Google employees and services.

B. Scheduling jobs and tasks

Jobs and tasks are a unit of scheduling. Each job or task has a
life cycle of four different states, as visualized in Fig. 1. State
transitions occur on scheduler or machine events like: Submit,
Schedule, Evict, Fail, Finish, Kill, Lost, Update_Pending and
Update_Running. Among these events, Schedule (following
Submit), Finish, Kill and Fail are the most frequent. A job
or task may experience one or more terminating events like
Fail and Kill before it is normally finished. We will closely
examine job/task scheduling events in Section IV.



TABLE I
BASIC STATISTICS OF THE SIX DATA TABLES.

| Data Table Name | Machine Event | Machine Attr. | Job Event | Task Event | Task Constraint | Task Usage |
# files 1 1 500 500 500 500
# data entries (total) 37,780 10,748,566 2,012,242 | 144,648,288 28,485,619 1,232,792,102
Avg. entries per file 37,780 10,748,566 4,024.5 289,296.6 56,971.2 2,465,584.2
# data attributes 6 5 8 13 6 19
Zipped Size 339 KB 136 MB 83 MB 1.5 GB 147 MB 36.6 GB
Unzipped Size 3 MB 1.1 GB 315 MB 15.4 GB 2.8 GB 158 GB
UPDATE_RUNNING types:
1. ADD: a machine became available to the cluster; there are
in total 8,966 ADD events (excl. “initial ADDs”).
2. REMOVE: a machine was removed from the cluster and
is unavailable for service; there are 8,957 instances.
SCHEDULE EVICT, FAIL,
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Fig. 1. State transitions for a job or task.

C. Dataset organization and limitations

The Google trace dataset is comprised of six separate data
tables: Machine Event, Machine Attribute, Job Event, Task
Event, Task Constraint and Task Usage. The tables record
various machine events, machine attributes (such as kernel ver-
sion), scheduling events, scheduling constraints and resource
usages, collected during a 29-day period in the month of May
2011 in one of Google’s production cluster cell. The cell size
is significant, with more than 12k distinct machines. Table I
summarizes the basic statistics of these tables.

There are limitations in the trace dataset because certain
information was obfuscated for confidentiality reasons [5].
Despite the sanitization done on the dataset, we felt that the
trace dataset gives extremely useful information about the
cluster usage. For instance, while we do not know actual user
names, we can derive how many jobs were submitted by a
particular user because the user name stays the same (while
being a random string). Likewise, resource capacity scaling
does not limit our ability to gain insight about the machine
population mix and the temporal fluctuations in the cluster
resource usage.

III. MACHINE USAGE

This section considers how machines in the studied cluster
are managed based on the data in the Machine Event table. It
lists 12,583 distinct machines in total (12,477 machines ini-
tially). The table has 37,780 machine events of three different

3. UPDATE: a machine had its available resources changed;
there are in total 7,380 UPDATE events.

A. Machine population

Each machine in the dataset is characterized by its capacity.
A machine’s capacity is represented with a tuple, <CPU
capacity, memory capacity>. Each variable in the tuple has
a “normalized” value that is larger than O and at most 1 [4].
In the studied dataset, we found three distinct CPU capacity
values: ‘0.25°, ‘0.5” and ‘1’. In the case of memory, we saw
ten different values: ‘0.03085°, ‘0.06158’, ‘0.1241°, 0.2493’,
‘0.2498’, ‘0.4995°, ‘0.5, ‘0.749’°, ‘0.9678’ and ‘1’. Notice that
we can naturally group the memory capacity values around
five levels, ‘0.125°, ‘0.25°, ‘0.5, ‘0.75” and ‘1’. Table II counts
initially available machines in 15 groups having the same CPU
and memory capacity.

It is shown that a majority (93%) of the machines in
the cluster have a CPU capacity value of ‘0.5’. We do not
know how many CPU cores this relative value corresponds
to; however, bulk compute capabilities of the cluster appear
to come not from the highest capacity machines but from
the medium capacity machines. A small number of the high
capacity machines might have replaced some older machines
with smaller capacities. This cluster’s machines are fairly
homogeneous, which we believe relaxes the complexities in
scheduling jobs and tasks. Moreover, it would ease machine
maintenance (e.g., fewer types of spare components need be
in stock.)

TABLE II
NUMBER OF MACHINES IN DIFFERENT CAPACITY GROUPS.

[ Mem\CPU [[ =025 ] =0.5 [ =10 ] Total |
< 0.125 0 60 0 60
~0.25 123 (1%) 3,835 (31%) 0 3,958 (32%)
~0.5 0 6,672 (54%) 3 6,675 (54%)
~0.75 0 992 (8%) 0 992 (8%)
~1.0 0 4 788 (6%) 792 (6%)
Total 23 (1%) | 11,563 (93%) | 791 (6%) | 12477 (100%)
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B. Daily machine events

Fig. 2 plots the frequency of daily machine events. There
are over 870 machines events on average each day. We
make two observations. First, machines are constantly updated;
on average, 2% of all machines report an update everyday.
Second, many machines are removed and added; on average,
2.5% of all machines are removed (and added back soon) each
day. A machine could be removed due to system upgrades
(e.g., automated kernel patching) and failures (e.g., network
down) [4]. The same machine would be added back to the
cluster and made available to services once it is upgraded (and
rebooted) or the cause for failure has been resolved.

Fig. 3 shows the distribution of the machine downtime
(time to machine addition after removal; we identified 8,860
such instances). While most downtimes are short, the tail
is fairly long (the longest captured in the trace is 17,406
minutes). The plot combines all samples that are longer than
145 minutes into a single sample point in the graph. We
suspect that many machine downtimes, more than 60% that
are shorter than 25 minutes, might have been caused by
automated system upgrades. Other longer downtimes might
have involved human intervention, e.g., replacing a disk drive.
In certain cases, staffing situations (e.g., failures during late
hours) and availability of parts, may have resulted in even
longer downtimes.

It is interesting to find that some machines experience more
events than others. Fig. 4 shows that quite a few machines
saw two or more REMOVE-ADD events. Some machines
went through more than ten removals. Also, a few machines,
while only a very small fraction of the machine population,
reported a resource status update more than 30 times. The
result suggests that there is some temporal and/or spatial
locality of machine events.

IV. WORKLOAD BEHAVIOR

A. Basic job level statistics

As the first step, we pick the four most frequently appearing
states—Schedule, Fail, Finish and Kill—and count the number
of job events that are associated with those states on each day.
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Number of machine events of different types on each day of the 29-day tracing period.
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Fig. 4. Machines receiving the same number of events.

Fig. 5 plots the result. We find from the result that: (1) the
number of scheduled jobs show a strong periodicity and the
period is seven days—just one week. We suspect that fewer
jobs are submitted on weekends; (2) the trend in the number
of killed jobs and finished jobs follows that of scheduled
jobs. That is, the relative probability of jobs being killed or
completed (out of all scheduled jobs) is fairly stable; and (3)
jobs rarely fail. However, jobs are frequently killed—as many
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Fig. 5. Time series of the number of different job events (Schedule, Fail, Finish and Kill).

as 40.52% of all scheduled jobs are killed at least once.

In order to gain further insights about job characteristics,
in what follows, we will focus only on the finished jobs, not
counting killed jobs. Moreover, whenever it is relevant, we will
present result split into four scheduling classes. Each job in
the trace dataset has a scheduling class, an integer value from
0 to 3. A larger value implies that the job is more sensitive to
latency. Fig. 6 presents the number of job events according to
their event type and scheduling class.

We have several interesting findings from the result. First,
scheduled jobs are frequently killed—much more frequently
than they failed. Job kill probability is shown to be fairly
high for all scheduling classes. Jobs may be killed by the
user (e.g., after serving testing objectives) or by the job
scheduler (e.g., when a job’s resource requirements can’t be
met within a reasonable amount of time). Second, over 50%
of kill events occurred to jobs in the scheduling class O (i.e.,
latency-insensitive jobs). We suspect that some of these jobs
are test jobs submitted by Google engineers. Lastly, latency-
insensitive jobs saw (relatively) few failures compared to jobs
that are sensitive. This is because these jobs are relatively short
(e.g., killed early) and their resource usages are light.

Next, we will examine the size of jobs using two measures,
the number of tasks per job and the execution time. Fig. 7
plots the result of the first measure and shows that: (1) Many
jobs have a small number of tasks (less than 100)—in fact,
a very large number of jobs have a single task; and (2) The
tail is quite long—a few jobs have over 2,000 tasks. What is
shown implies in our result that the overall system throughput
is determined by the jobs with a few tasks rather than a few
jobs with many tasks. Our trace dataset does not disclose
the nature of each job that can directly explain the number
of tasks. Still, we expect that jobs having a relatively small
number of tasks are easier to schedule.

Fig. 8 further presents the job size distribution based on
the execution time. Jobs with a scheduling class from 0 to
2 showed similar behavior—the majority of the jobs run for
a fairly short amount of time of less than 15 minutes, while
the tail of the distribution is long—there are a number of jobs
that run longer than 300 minutes. There were a limited number
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of, only a few tens of scheduling class 3 jobs (i.e., latency-
sensitive jobs) in the dataset and their execution times were
all shorter than 30 minutes.

B. Scheduling constraints

An important factor that affects the operation of a task
scheduler is the scheduling constraints that have been attached
to jobs and tasks. Each constraint defines a condition to meet
by the scheduler; for example, a task constraint could limit
scheduling of the task to a machine with a smaller memory
capacity than specified.

The task constraints dataset lists in total 28,485,619 con-
straints, 55,272 jobs and 1,405,572 tasks. On average, a job
has 20 constraints attached to its tasks. Each constraint has
a comparison operator like EQUAL, NOT EQUAL, LESS
THAN and GREATER THAN. LESS THAN and GREATER
THAN represent a machine attribute in an integer value (e.g.,
“1,024” MB memory). EQUAL and NOT EQUAL treat a
machine attribute as a string (e.g., kernel version number).
Table III presents the number of constraints according to their
comparison operator.

The result shows that the EQUAL operator dominate the
constraints. This is because many jobs and tasks require spe-
cific constraints—for instance, specific machine architecture,
core count, Ethernet speed and platform. LESS THAN does
not appear frequently at all, which is natural because a task
would normally require a machine that exceeds a threshold
for a particular attribute (e.g., core count, memory capacity).
Examples of more concrete task scheduling constrains and
their effects on scheduling were reported recently by Sharma
et al. [6].

Fig. 9 plots the number of jobs according to their number of
constraints in a cumulative form. It is shown that more than
93% of jobs have four or fewer constraints and more than
98% of jobs have less than 20 constraints. While not many,
there are jobs having a relatively large number of—over 400
constraints. This indicates that the scheduling algorithm used
in the Google cluster must be robust and scalable in handling
jobs having a varied number of constraints.

TABLE III
JOB-LEVEL CONSTRAINTS DISTRIBUTION.

[ Constraint Op. [[ EQUAL | NOT EQUAL [ LESST. [ GREATER T. |
[ Count (%) || 9135 [ 398 [ 005 [ 462 |
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Fig. 9. Per-job constraints distribution (cumulative).

C. Temporal task level resource usage

Finally, this section will focus on analyzing the CPU usage
of tasks based on the Task Usage table. We are particularly
interested in looking into how many CPU cycles are spent
toward tasks that complete normally (“useful cycles”), tasks
that fail (“lost cycles”) and tasks that are killed (potentially
“wasted cycles”). Because the dataset is quite large, we
selected a day’s worth of data for presentation out of the 29-
day span, which corresponds to 288 5-minute measurement
samples.

We used the following method to calculate the CPU cycles.
For each 5-minute measurement period ¢ and a task j, the
resource usage (RS) is defined as: RS; = Tj.end_time —
Tj.start_time) x T.cpu_rate. Since there is no event_type
information in each entry in the Task Usage table, we link the
information in the Task Usage and the Task Event tables to
derive the information. Algorithm 1 lists the actions of this
process. In the algorithm, mid is machine id, jid is job id,
tidx is task index, st is start time, et is end time, cpu is CPU
rate, type is event type, and tstamp is time stamp.

Algorithm 1 Locate event types for Task Usage entries
/I Given a 5-min. period i, M P; and a task T} from Task
Usage falls in M P;
1. Select T;.mid, T}.jid, T;.tidz,T;.st, Tj.et, Tj.cpu
2. Find events Eys from Task Event who match T;.mid,
T;.jid, T;.tide where Ej.type € {Kill, Fail, Finish}
3. Find t = arg ming (Ey.tstamp — Tj.et)
4. Set T} .type = Ey.type

The result is presented in Fig. 10, which splits the CPU
cycles into three categories: cycles spent for tasks that were
killed, task that finished normally and tasks that failed. Note
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that the result reports the relative portions of the CPU cycles
spent on the tasks and does not consider the CPU cycles that
are idle and not spent (i.e., CPU cycles of a machine that is
idle).

The result shows that about 60% of CPU cycles are used
for tasks that were killed. Because tasks are mostly killed by
the job owners (e.g., after answering certain test questions or
after finding a bug), these CPU cycles are potentially wasted.
About only 10% to 15% of the CPU cycles are used towards
tasks that complete normally; we consider this portion to be
fairly small. It is also noteworthy that a non-trivial portion of
the CPU cycles, between 10% and 20%, are spent on tasks
that eventually fail.

Our result implies that there are opportunities to improve
the scheduling process in the presence of constrains, and
in general, hints. For example, if the scheduler is offered
hints about the nature (“this job is submitted for testing
purposes”) and periodicity of the submitted jobs (e.g., “can we
reserve the resources predictably?”), it may specialize resource
management decisions in order to save energy and reduce
performance variations of important jobs.

V. PRIOR RELATED WORK

The problem of server workload characterization and per-
formance prediction has been widely studied in the past
decades [7]-[11]. However, the focus of these studies was on
single server workload analysis. More recently, research has
been done toward characterizing the workload in a cloud com-
puting environment. For example, Mishra et al. [12] describe
an approach to workload classification and its application to
the Google Cloud Backend. Chen et al. [13] demonstrate a
systematic approach to reasoning about cloud performance
tradeoffs using a tool called Statistical Workload Analysis
and Replay for MapReduce (SWARM). Khan et al. [14] treat
server workload data samples as multiple time series and
develop a co-clustering technique to identify correlated work-
load patterns and introduce Hidden Markov Model (HMM)

to characterize the temporal correlations in server clusters.
However, these studies concern with single level analysis: job-
level analysis, task-level analysis, or server (machine)-level
analysis. In this paper, we make a comprehensive statistical
analysis on all granularities and reveal some relations between
those different level analyses.

There are studies that derive statistical results from realistic,
large-scale measurement data. Kavulya et al. [15] study traces
collected from a Yahoo! M45 production cluster but the
cluster has been available to only select universities. They
provide a description of the statistical properties of their trace
data in understanding the performance and failure character-
istics of Hadoop jobs and present a simple analytical model
with configurable Hadoop-specific parameters to predict job-
completion times. Chen et al. [16] performed k-means clus-
tering to identify common groups of jobs and did correlation
analysis between job semantics and job behaviors. They used
a Google cluster trace dataset of early 2010, which covers a
relatively short time period of only seven hours (c.f., 29 days
of the new Google cluster trace dataset we used in this study).
Compared to these studies, our work reveals new interesting
results, especially with regard to machine population and daily
maintenance events, job and task level behavior of the cluster,
and its CPU cycle usage.

VI. CONCLUDING REMARKS

In this work we studied a recent Google cluster usage trace
dataset. This trace dataset is considered a valuable addition
to the community and discloses much information about how
(some) Google’s clusters are operated. Our initial investigation
reveals several interesting findings. First, machines are con-
tinuously taken off-line and on-line to combat failures and to
apply upgrades. Updates and upgrades will inevitably increase
the heterogeneity of the cluster. However, we find that the
machines in the studied cluster are fairly homogeneous—93%
of all machines have the same CPU capacity and 86% of
all machines have either of the only two distinct memory
capacities. On the other hand, about 6% of all machines are
considered “newest”—having the largest CPU and memory
capacity. Second, we find that there are many jobs submitted
each day that are not latency sensitive. Many of these jobs
could be codes that are run for testing and debugging purposes.
Indeed, we find that there are more jobs that are “killed” in
the cluster than jobs that complete normally. We also find that
many jobs have relatively few tasks of 100 or less. Lastly, we
find that many CPU cycles are put into jobs and tasks that
will be eventually killed or will fail. This implies that if the
scheduler is offered hints about the nature and periodicity of
the submitted jobs, it may specialize the resource management
decisions in order to save energy and reduce performance
variations of important jobs.

The new Google cluster usage trace dataset is large and
has rich information. This work analyzed only a fraction of
its information to offer first-order insights from the dataset.
An interesting future work may look closely into the relation
that exists among the dataset, such as scheduling constraints



and scheduling efficiency and delay, job scheduling class and
scheduling delay, user id and job characteristics, resource
requests and actual resource usage, and resource usage and
failure probability.
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