
17

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant
Cache Memories

HYUNJIN LEE, SANGYEUN CHO, and BRUCE R. CHILDERS, University of Pittsburgh

Advances in deep submicron technology call for a careful review of existing cache designs and design practices
in terms of yield, area, and performance. This article presents a Design and Evaluation Framework for
defect-tolerant Cache Memories (DEFCAM), which enables processor architects to consider yield, area, and
performance together in a unified framework. Since there is a complex, changing trade-off among these
metrics depending on the technology, the cache organization, and the yield enhancement scheme employed,
such a design flow is invaluable to processor architects when they assess a design and explore the design space
quickly at an early stage. We develop a complete framework supporting the proposed DEFCAM design flow,
from injecting defects into a wafer to evaluating program performance of individual processors on the wafer.
Using DEFCAM, interesting interactions between architectural, organizational, and layout/defect related
parameters can be easily evaluated. Moreover, we propose practical set remapping schemes to contain hard
faults in cache memory. In a set remapping scheme, accesses that would go to an unusable faulty set are
directed to a sound set. Case studies are presented to demonstrate the effectiveness of the proposed design
flow and developed tools. Experimental results show that a set remapping is the most efficient fault covering
method among prevailing strategies.

Categories and Subject Descriptors: B.3.3 [Memory Structures]: Performance analysis and design aids;
B.3.4 [Memory Structures]: Reliability, testing, and fault-tolerance; C.4 [Performance of Systems]: Fault
tolerance

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Process Variations, Yield

ACM Reference Format:
Lee, H., Cho, S., and Childers, B. R. 2011. DEFCAM: A design and evaluation framework for defect-tolerant
cache memories. ACM Trans. Architec. Code Optim. 8, 3, Article 17 (October 2011), 29 pages.
DOI = 10.1145/2019608.2019616 http://doi.acm.org/10.1145/2019608.2019616

1. INTRODUCTION

At feature sizes below 65nm, more frequent hard faults due to random defects and
process variations pose a serious burden to processor design and yield management
[SEMATECH 2003]. As device size scales downward, a smaller defect size makes it
easier to introduce faults that cause critical failures. Process variations also become
problematic due to limitations in lithography and process control. The primary effect
is on device length and threshold voltage, which can adversely impact timing and
leakage. Amplified process variations require that operational margins widen, making
it difficult to construct functioning chips with worst case design.

This work is supported in part by the National Science Foundation, under grant CCF-0702236, grant
CCF0811295, grant CCF-0811352, grant CCF-0952273, grant CCF-1059283, and grant CCF-1064976.
Author’s address: email: abraham@cs.pitt.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1544-3566/2011/10-ART17 $10.00

DOI 10.1145/2019608.2019616 http://doi.acm.org/10.1145/2019608.2019616

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:2 H. Lee et al.

This problem is particularly pronounced in the memory hierarchy of a processor chip.
As the march continues toward large on-chip memories, more of the total transistor
budget is devoted to memory. For example, in Intel’s Nehalem-EX processor [Rusu et al.
2009], the memory arrays for the L2 and L3 caches account for well over 50% of the total
chip area. There is a greater likelihood of defects and variations in memory as these
structures grow in size because memory transistors are some of the smallest and most
timing sensitive. Traditional techniques for masking memory faults use redundancy,
where functional spare elements (e.g., columns and/or rows) take the place of defective
ones. However, this approach will have to devote a large chip area to the spares in future
nanometer-scale technology [Agarwal et al. 2005], leading to an adverse interplay with
yield.

In response to the problems with redundancy in nanometer technology, new yield-
enhancing techniques based on graceful degradation are gaining much attention [Lee
et al. 2007; Agarwal et al. 2005; Sohi 1989]. In graceful degradation, all memory capac-
ity is exposed to the microarchitecture (i.e., there are no spares). Graceful degradation
can disable failed components and possibly reconfigure operational ones to serve as
substitutes. For caches, faulty components, such as cache lines, sets, and ways, can
be disabled without changing the processor functionality, possibly with a performance
penalty. Programs that are cache intensive may suffer a larger penalty than programs
having few memory accesses. Even the specific memory access pattern in a program
can have an impact—a failure in a cache line that is heavily accessed may result in
more performance loss than a fault in a less frequently used line. This approach has
been applied to recent processors [Rusu et al. 2009; Bossen et al. 2002], and will become
more commonplace, even in embedded and SoC designs.

An advantage to traditional redundancy approaches is that cache microarchitecture
and yield can be treated independently, especially at an early stage during architecture
specification. Assuming no faulty components exist, a processor architect can focus
on designing key processor components to achieve the target performance regardless
of yield management schemes. In this approach, yield should be maintained at the
lower level (e.g., circuit level) which determines the physical layout of the processor’s
elements.

However, with graceful degradation, there is a strong interdependence between cache
microarchitecture and yield. In this case, the cache microarchitecture and the yield
management scheme must be considered simultaneously to make appropriate design
decisions. For example, one graceful degradation mechanism might have good defect
coverage but a high performance penalty on a benchmark workload. Another scheme
might have a negligible performance impact but cover only certain faults in a few cache
resources. A processor architect needs to evaluate the choices to select the most appro-
priate one, given the expected workload and defect and process variation characteristics
of the target technology.

In this article, we propose a design methodology, called “Design and Evaluation
Framework for defect-tolerant Cache Memories” (DEFCAM), that has fault models
based on defects and metrics that can effectively evaluate the trade-off between yield
and performance with different fault masking mechanisms. Using DEFCAM, perfor-
mance impacts of the processor cache can be estimated quickly with faults caused from
randomly or systematically injected low-level defects.

The methodology relates the occurrence of defects at the circuit level to faults at
the cache organization level. The occurrence of process variations or defects in the
circuit can cause many different fault manifestations, including the failure of cache
lines, sets, and ways. Based on the failures, microarchitecture schemes that dis-
able faulty components may be modeled and workloads simulated to evaluate the
performance impact. Our methodology introduces a new family of metrics, called

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:3

yield-area-performance (YAP), for comparing alternative yield management schemes.
YAP can be used to evaluate different graceful degradation approaches, as well as
traditional redundancy schemes. It can be used to quantify yield at a particular perfor-
mance goal. Importantly, our methodology lets a processor architect quickly and early
in the design process evaluate the trade-offs.

This article makes several important contributions. First, it presents a new high-level
evaluation methodology for various yield management strategies. Second, it describes
a model that can relate circuit-level defects and process variation in caches to faults at
the organizational level. Third, it gives a novel metric (YAP) for evaluating different
graceful degradation and redundancy approaches. Finally, the article presents a case
study of using our methodology and the YAP metric. We find that a set remapping
graceful degradation scheme can achieve a higher yield than redundancy approaches
at a slight performance cost.

The rest of this article is organized as follows. Section 2 presents background
and explains in detail fault classification and manifestations in cache memory.
Section 3 explains our proposed design flow that generates physical level defects and
maps defects to faults. Section 4 illustrates delete schemes to cover faults at the ar-
chitectural level and analyze the minimum and maximum performance impact. Our
proposed set remapping schemes are demonstrated in Section 5. Using the tools and
strategies, we describe case studies in Section 6. Related works are summarized in
Section 7, and concluding remarks are presented in Section 8.

2. BACKGROUND

2.1. Fault Classification

A fault is an event and cause of an error which can eventually lead to a system failure.
For instance, a fluctuation in the power supply that is larger than the design margin
and an alpha particle hitting the chip circuit are faults. If a circuit state is affected by a
fault (e.g., a bit flip in an SRAM cell), an error is said to occur. When the changed circuit
state is eventually propagated to the program state, a system failure can happen. Not
all errors lead to a system failure, however, since faults and errors may occur to a
circuit portion that is not currently in use.

Projections suggest that future microprocessors based on advanced nanometer-scale
CMOS technology will be subject to three classes of faults: hard faults, intermittent
faults, and transient faults [SEMATECH 2003]. Hard faults reflect irreversible physical
damage (defect), caused by imperfect material and process. Intermittent faults happen
due to unstable or marginal hardware, activated by changed operating conditions, e.g.,
higher temperature or lower voltage. Both high temperature and low voltage cause
circuit speeds to slow. Transient, soft errors are caused by charge-assuming particles
striking sensitive devices and reversing stored logic states. Cosmic rays and alpha
particles generated from chip packaging material are known to cause soft errors.

As circuit technology enters the sub-65nm regime, much attention has been paid to
the impact of process variation and lifetime reliability issues [Borkar 2004]. Process
variation refers to the fluctuations in process parameters observed after fabrication.
These variations result from a wide range of factors during the fabrication which de-
termine the ranges of variations and can lead to designs that deviate significantly from
their specification. Furthermore, lifetime reliability issues become more pronounced
with technology scaling which increases power densities in the processor. Aging phe-
nomena such as electro-migration, stress migration, gate-oxide breakdown, and neg-
ative bias temperature instability (NBTI) can also give rise to hard faults while the
chip is operational [Srinivasan et al. 2004]. Kumar et al. [2006] find that NBTI can

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:4 H. Lee et al.

Fig. 1. A 4-way set associative cache structure.

degrade the read stability of SRAM cells by reducing their static noise margin (SNM)
by as much as 9% in 3 years.

The focus of this work is on hard and intermittent faults caused by hardware defects
and process variations. Faults due to defects and process variations will become a more
serious concern in the future.

2.2. Fault Manifestations in Cache Memory

When a processor architect considers faults in cache memory, low-level defects and
their immediate effect, such as a single bit failure, may not be seen at the architectural
level. It is beneficial for an architect to identify faults at the architectural level instead
of low-level especially when evaluating the impact of such faults at an early design
stage. This section briefly discusses how low-level defects and process variations can
manifest themselves at the cache organizational level [Lee et al. 2007]. Figure 1 depicts
a typical set-associative cache for the following discussion. Major components in a cache
include memory cells in the tag/data arrays, wires (wordline/bitline/bus), supporting
logic (decoders/hit-miss logic) and peripheral circuits (sense amps/drivers).

All major components in a cache, including memory cells, wires, logic, and peripheral
circuits, are subject to defects [Kumar et al. 2006; Srinivasan et al. 2004]. A cache fault
will occur if a defect in a cache component interferes with any step in a read or write
operation. The critical cache access path is: 〈address input, decoding, wordline (data
array), memory cell, bitline, sense amp, data bus, data output〉 and 〈address input,
decoding, wordline (tag array), memory cell, bitline, sense amp, comparator, hit/miss
logic〉.

Defects in cache can manifest themselves in a number of ways at the cache orga-
nizational level. First, individual cache lines can become faulty and unusable. For
example, if a memory cell in a tag or data array has a defect, the corresponding cache
line will be unusable. This cache line fault model is commonly used in previous studies
[Agarwal et al. 2005; Pour and Hill 1993; Sohi 1989]. We note that SRAM read stability
is aggravated with scaling and cache lines whose cells suffer from reduced SNM will be
more frequent in the future. Second, an entire cache set may fail. For example, process
misalignment can lead to a large number of unstable memory cells, which may cause
the loss of cache sets. When there is a defect in the row decoding logic, specific word-
lines stick to ground/VDD or they may float. As a result, an entire cache set becomes
unusable. In certain cases, defective memory banks can lead to losing a group of cache
sets. Third, an entire cache way can become faulty due to marginal bitlines or degraded
sense amplifiers. Lastly, the entire cache can be lost as a result of a few critical defects
in shared resources. For example, defects in the hit logic, the address bus, or the data

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:5

bus will interfere with every cache access. Consequently, it becomes impossible to use
the cache memory.

3. DEFCAM

The design of critical processor components like cache memory at the architectural
level is complicated by the requirement of meeting a number of important, yet poten-
tially conflicting design goals. Although performance is a key goal in high-performance
processor designs, the cost of a design, typically measured in chip area, is also an
important aspect to ensure a competitive product. Yield is another important design
consideration that affects the cost structure of the product. To achieve the best design,
a processor architect has to make judicious trade-offs between these interacting goals:
performance, area, and yield. In this section, we present a new Design and Evaluation
Framework for defect-tolerant Cache Memories (DEFCAM) that allows a processor
architect to study and evaluate these trade-offs for the on-chip cache.

Evaluating a cache design in terms of different goals is complicated by two factors,
which DEFCAM has to consider. First, the evaluation needs to be done early in the
design flow. However, not all information needed to perform the evaluation may be
available at an early design stage. Second, the interaction among yield management
and the cache organization is complicated because a selected cache mechanism si-
multaneously impacts performance, area, and yield. For example, a mechanism might
help yield, but harm performance. Indeed, architecturally visible yield-enhancement
schemes, such as set remapping as proposed in Section 5, are challenging in this regard
because they trade run-time performance for improved yield. DEFCAM considers these
two factors by deriving high-level fault manifestations at the cache organizational level
from low-level specification. As a result, fault-aware evaluation and behavioral simula-
tion can be done with the derived fault information. DEFCAM can be used to iteratively
evaluate design decisions and how they interact with performance, area and yield.

3.1. Integrated Design Flow

DEFCAM provides a processor architect with an integrated framework to evaluate a
cache design’s yield, area, and performance.1 Figure 2 shows the DEFCAM framework.
The design flow can be easily extended to include other traditional metrics, such as
power and energy consumption. However, power is not the focus of this paper because
good power estimation tools already exist, which can be integrated into the frame-
work [Tarjan et al. 2006; Ye et al. 2000].

There are three obstacles in current methodologies that have to be addressed by
DEFCAM. First, during early design exploration, a processor architect needs to under-
stand how defects and process variations affect the cache to select a good yield man-
agement scheme. There are complex trade-offs among yield, area, and performance,
especially when yield control mechanisms with different area and defect coverage are
considered [Lee et al. 2007; Thomas and Anthony 1999]. Second, defects and process
variations manifest themselves at the physical level and need to be related to the cache
microarchitecture under consideration. However, the physical design is unknown dur-
ing early design exploration. Finally, because a particular yield management scheme
can affect several design layers from the application level to the physical level, efforts
from independent design groups have to be integrated.

DEFCAM addresses these problems in the following way. From a “cache microarchi-
tecture specification,” the design flow automatically derives a “physical cache model.”
The physical cache model approximates the anticipated implementation of the given

1Yield usually refers to the proportion of dies on a wafer that perform properly up to a design specification.
In this paper, we extend the use of “yield” to a cache within a processor chip.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:6 H. Lee et al.

DefectRandom

Generation

DefectPV

Generation

Tech. info.

Cache
Model

Generation

Physical
Defect
Map

Performance
Simulation

Mapping
Defect
to Fault

Analyzing
Yield

Processor info./
Benchmarks

Cache Model

Arch.
Fault
Map

Arch.
Fault
Map

Arch.
Fault
Map

Performance

Yield

Yield Control
Mechanism info.

Area

Defect
Parameters

Process Variation
Parameters

Chip/cache
Configuration

Fault
Impact

Analysis

Max/Min/Ave
Fault Impact

Performance
Threshold

process dataInput Output

Fig. 2. DEFCAM design flow overview.

cache specification. For instance, the number of wordline segments (in Table I) can be
used to calculate the number of row decoders in the physical cache model. Defects and
process variations are automatically placed in the physical model according to a “de-
fect model.” The defect model is based on the characteristics of the target technology.
The defects and process variations at the circuit level are then mapped to the organi-
zational level to determine how they affect the cache (e.g., which cache lines failed).
Because some yield management schemes do not guarantee program performance, our
methodology simulates—at the architecture behavioral level—a cache with a set of
given faults. The simulation is done automatically only in cases when the yield man-
agement scheme can impact program performance (e.g., when the number of faults
is bigger than the number of redundant rows). To ensure statistically valid coverage
of many possible fault manifestations, the methodology uses extensive sampling at
the virtual wafer level to derive and evaluate different defect and process variation
scenarios (e.g., 100 wafers per each scenario).

To use the design flow in Figure 2, several inputs have to be specified. Table I lists
these inputs. The processor architect would typically specify the cache organization,
program workload and processor architecture. Information about the target technology
can be provided by circuit and process engineers. The output of the design flow includes
yield, area, and program performance. In our current implementation, obtaining the
output from the input is fully automated.

3.2. Generating Physical Defects

Procedures for generating and projecting defects into physical layer were developed.
We use a 300mm silicon wafer model and the die area model from the specified pro-
cessor model. A hard defect is a spot defect on the physical layout of the wafer. Based
on the physical information input to DEFCAM, we randomly generate physical defects
with defect density and clustering effect factors. One can also set defect sizes from
the ITRS projection data [ITRS 2005]. After generating defects, we inject them into
a wafer according to the location of defects in the wafer. We use a Gaussian random

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:7

Table I. Input Parameters

Cache configuration Description
A Set associativity
B Block size (in bytes)
C Cache size (in bytes)

Ndwl Number of wordline segments
Ndbl Number of bitline segments
Nspd Number of sets mapped to a single wordline

Yield control mechanism Description
Redundancy Number of redundant rows

ECC Number of correctable bits
Disabling Line/set/way disabling

Set remapping Number of target set candidates
Defect Description

Density Number of defects in unit area (1mm2)
Clustering Average number of clustered defects

Size Average size of defects
Process variation Description
Inter-die variation �Vth−inter (in V)
Intra-die variation �Vth−intra (in V)

Technology information Description
Wafer size Diameter (mm)

Threshold voltage Vth (in V)
cx, cy SRAM cell dimension (in nm)

Processor Description
Pipeline In-order/out-of-order, issue width, number of ROBs
Cache L1/L2 cache architectural configurations

Branch predictor Number of entry, bi-mod/combined/g-share
Memory Access latency, bus width

distribution model for the defect locations and sizes in this work, but any distribu-
tion model can be specified. Clustering factors can represent the nature of the real
processor’s defects [Friedman et al. 1997]. Two defect generation blocks (i.e., physi-
cal defect generation and process variation generation) and the physical defect map
in Figure 2 illustrate these processes in the DEFCAM design flow. After generating
physical defects, we translate low-level defects into architectural level faults using the
methodology described next.

3.3. Mapping Defects to Faults

To accurately translate physical defects into architecturally visible faults, a detailed
cache specification is necessary. The most important cache design parameters are ar-
chitectural parameters, organizational parameters (e.g., banking), and physical layout
information such as array geometry and SRAM cell layout. Our design flow provides
an interface to describe a cache’s geometry inside a chip.

Architectural parameters are a 3-tuple: A (associativity), B (block size), and C (cache
size). We consider three organizational parameters: Ndwl, Ndbl, and Nspd, which de-
termine the internal sub-banking by specifying how wordlines and bitlines are parti-
tioned [Tarjan et al. 2006; Wada et al. 1992]. They are listed as cache configuration
parameters in Table I. They also define cache line to subbank mapping. Cache geometry
is modeled as a hierarchy of non-overlapping rectangles, from the wafer and chip down
to cache and cache components. Cache components include memory arrays and control
logic. To ease illustration, we use derived parameters in Table II. These parameters
are used for calculating faulty way/set numbers (i.e., architectural fault information)
from defect parameters (i.e., circuit-level defects or process variations). For the sake of

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:8 H. Lee et al.

Table II. Derived Parameters for Mapping Defects to Faults

Parameter Description
px, py Coord. of a given physical defect φ from physical defect map (in nm)

Wb Block width; 8 · cx · B (in nm)
Wsb Sub-bank width; A · Wb · Nspd/Ndwl (in nm)
Wssb Set width in a sub-bank (Nspd ≥ 1); Wsb/Nspd
pxsb Rel. X-coord. of φ in a sub-bank; px mod Wsb
Nset Number of sets; C/(A · B)
Nsbl Number of sets per bitline; Nset/Ndbl
Npr Index of memory row having φ; �py/cy�
Nxsb X-index of sub-bank having φ; �px/Wsb�

presentation, we consider only the data array in the following discussion. Our tech-
niques apply equally well to the tag array.

A defect or process variation in the physical model is mapped to the cache microarchi-
tecture based on the affected component. In this mapping, our methodology considers
three component types: bitline, wordline, and memory cell. Bitline and wordline faults
include sense amplifier faults and row decoder faults, respectively. Once lower level
defects are converted to architectural faults, different defects are indistinguishable at
the organization level.

3.3.1. Bitline and Sense Amplifier. A defect in a bitline or a sense amplifier causes faulty
cache lines. Depending on the cache organization, all the lines in a way can be lost as
in Figure 3(a) or only a portion of them as shown in Figure 3(b) and (c). The left part
of the figure shows some defects placed in the cache at the circuit level, and the right
part architectural faults according to the defects. We consider two cases depending on
the value of Nspd. When Nspd ≥ 1, total (Nset/(Nspd · Ndbl)) lines are affected. Within
a selected cache way (way num in below equations), one cache line in every Nspd
consecutive cache lines is faulty. In other words, given a defect φ = (px, py) which
shows two dimensional location information, all the sets with their number equal to
(initial set num + n · Nspd mod (Nset/Ndbl)) ≥ 0, are faulty. way num and initial set num
are computed as:

way num = Nxsb · Wssb/Wsb + �(pxsb mod Wssb)/Wb�
initial set num = Npr · Nspd + �pxsb/Wssb�.

When Nspd < 1, total (Nset/Ndbl) consecutive cache lines become faulty. They are iden-
tified with:

way num = �px/(Wb · Nspd)�
set num, start = �(Npr · Nspd)/Nsbl� · Nsbl.

3.3.2. Wordline and Row Decoder. Like a defective bitline, a defective wordline or a
defective row decoder (i.e., an unusable decoder line) can cause unavailable cache lines
in a number of different cache ways. All lines in a set can be lost as in Figure 3(a), a
few cache lines in a set may become unavailable as in Figure 3(b), or cache lines in
multiple cache sets can become faulty as in Figure 3(c). When Nspd ≥ 1, faulty cache
lines are clustered in a rectangle (Nspd by A/Ndwl) whose origin can be computed as
follows:

set num, start = Npr · Nspd

line num, start = Nxsb · A/Ndwl.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:9

(a) A=4, Ndwl=1, Ndbl=1, Nspd=1

way 3way 0 way 2way 1way 0 way 3way 2way 1

WL

BL

(b) A=4, Ndwl=2, Ndbl=2, Nspd=0.25

way 3way 0 way 2way 1

way 0 way 3way 2way 1

way 0 way 3way 2way 1

WL

BL

(c) A=4, Ndwl=4, Ndbl=1, Nspd=2

way 3way 0 way 2way 1
way 0

way 3way 2

way 1

WL

BL

A defect on a word line

A defect on a bit line

Fig. 3. Defective wordline or bitline (left) results in various architectural faults (right).

When Nspd < 1, (A/Ndwl) consecutive lines become faulty within a single set. The
initial line is identified with the following:

set num = �Npr · Nspd�
line num, start =

⌊�px/(Wb · Nspd)�
A/Ndwl

⌋
· A

Ndwl
.

3.3.3. Memory Cell. A faulty cache line due to a defective memory cell is determined
by the following equations. Again, we consider two cases based on the value of Nspd.
When Nspd ≥ 1, calculating the set and line number is identical to finding the initial

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:10 H. Lee et al.

set and way number of the bitline defect case.

set num = Npr · Nspd + �pxsb/Wssb�
line num = Nxsb · Wssb/Wb + �(pxsb mod Wssb)/Wb�

When Nspd < 1, this is also very similar to the bitline defect case.

set num = �Npr · Nspd�
line num = �px/(Wb · Nspd)�

Besides the effect of random defects, we consider the impact of process variations on
memory cell reliability. Failures caused by process variations are heavily dependent
on operating voltage, frequency, and temperature. Since these conditions are varying
factors, the worst case operation condition (e.g., low voltage and high temperature) is
routinely considered at the manufacturing time. Thus, we assume the worst operating
condition as a fixed design point. While there are systematic variations and random
variations, we only consider random variations in this study. Process variations are
caused by imperfect control over the channel length, width, oxide thickness, and place-
ment of dopants. Among them, random dopants are more important than the others
because it causes a threshold voltage mismatch even between nearby transistors [Tang
et al. 1997]. Different threshold voltages vary the transistor’s response time and lead
to SRAM cell’s access time failures and read and/or write failure. These three failures
(access, read, and write time failures) compose the probability of single cell failure.
This problem is magnified when adjacent transistors in one SRAM cell have different
threshold voltages [Agarwal et al. 2005]. The probability of failure increases as the
variation of threshold voltages grows. For example, effective probability of failure be-
comes 1×10−3 in 45nm technology where �Vth is 30mV [Agarwal et al. 2005]. We treat
process variations similar to random defects based on the failure probability.

3.4. Area Calculation

In our current implementation, DEFCAM uses CACTI [Tarjan et al. 2006] to calculate
the baseline cache area for a given technology. Further, there are three elements that
affect the area: row redundancy, ECC, and an availability bit for graceful degradation.
For redundant rows, data area grows proportionally to the number of redundant rows.
We assume conventional SECDED code (i.e., 8-bit ECC code for 64-bit data) to evaluate
the area overhead from ECC. We consider one bit overhead for graceful degradation,
which comes from each block’s availability bit [Sohi 1989].

3.5. Yield Calculation

DEFCAM computes cache yields by simulating fault occurrences from the information
about cache configuration, low level defects, process variations, and yield enhancing
techniques employed. Low-level defects are randomly injected to a user-specified num-
ber of dies, which eventually become bit line, word line, cell, or peripheral errors based
on the cache configuration. Process variations are calculated for individual cells using
the methods described in Section 3.3.3. These two types of errors are projected to higher
level architectural fault information. With the architectural fault information, the im-
pact of different yield enhancing techniques is evaluated. If a given yield enhancing
technique is unable to cover all faults in a die (e.g., more faults than the number of
redundant rows), yield is sacrificed.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:11

3.6. Performance Simulation

DEFCAM simulates workloads to measure the performance for different architectural
fault maps, as shown in Figure 2. In our current implementation, the performance
simulator is based on SimpleScalar [Austin et al. 2002] with an additional module to
simulate the effects of cache faults with fault masking strategies—delete schemes and
remapping schemes—which are described in Section 4. This performance simulator
enables the user to analyze how much performance is impacted from faults. The per-
formance result also becomes an input to the Yield Analyzer (see Figure 2). When a
disabling or remapping scheme is used, a cache achieving performance equivalent to a
user-specified threshold or better is regarded as a sound cache. In this article, we use
either a 95% or a 99% performance threshold for the caches using a graceful degrada-
tion scheme. For the 95% performance threshold, if any benchmark’s performance on
a processor show more than 5% degradation from disabling faulty blocks in the cache,
it is discarded.

3.7. YAP: Yield, Area, and Performance

The yield of a cache memory depends on its area and organization as well as defect
distribution and process variation effects. A cache memory with a defect which hinders
its normal operation is considered a failed component, unless a yield enhancement
technique masks the effect of the defect. The area of a cache depends on its baseline
design (specified by design parameters) and the yield enhancing scheme employed. The
performance of a cache memory is primarily determined by its architectural parame-
ters. Note that these metrics interplay. For example, a larger cache design may lead
to lower yield. If a disabling scheme is used, the resulting yield may be high, but the
average performance obtainable from the degraded cache may be low. Therefore, these
metrics should be made available together to a designer at an early design phase so
that good design decisions can be made.

Our design flow reports these metrics together in a 3-tuple (Y (yield), A (area), P
(performance)). To conveniently compare multiple design points with a single number,
the three terms can be combined in various ways. For example, when Y , A, and P
are normalized to a baseline cache design with no yield enhancement, Y l · A−m · Pn

gives a single number which ranges between 0 and 1. The negative exponent for
A comes from the fact that a smaller area cache presents a better design with the
same performance and yield. The choice of l, m, and n depends on the emphasis of
analysis. If a processor architect concerns more on area, m should be bigger than
other two numbers. Y 0.7 · A−0.9 · P0.4 is an example, which stresses area rather than
performance.

4. FAULT MASKING STRATEGIES: DELETE SCHEMES

DEFCAM can model many different fault schemes for cache memory, as described in
Section 3.3. In this section, we use DEFCAM to explore some of these schemes, as well
as new ones. We start with “delete schemes” that disable portions of the cache. These
schemes are already present in some modern processors [Rusu et al. 2009; Bossen
et al. 2002] and are based on the observation that programs run correctly as long
as the processor retrieves (from a defective cache) correct data regardless of cache
access latency. However, any performance degradation due to masking the defects is a
critical issue for processor usability and yield analysis/management. There are general
strategies that can be used to trade performance for guaranteed correct operation,
including line, set, and way delete.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:12 H. Lee et al.

(b) Maximum/Minimum misses with 3 faulty lines

number of faults
additional misses

200
60

30
50
40

40
20
50

20
30
10
40

5
15
1

30

MIN(3): 16

200
60

30
50
40

40
20
50

20
30
10
40

5
15
1
30

MAX(3): 120

(c) Maximum/Minimum misses with 4 faulty lines

200
60

30
50
40

40
20
50

20
30
10
40

5
15
1

30

MIN(4): 31

200
60

30
50
40

40
20
50

20
30
10
40

5
15
1
30

MAX(4): 231

200
60

30
50
40

40
20
50

20
30
10
40

5
15
1
30

Set 0

Set 1

Set 2

Set 3

LRU 0 LRU 1 LRU 2 LRU 3

(a) Access counts for each LRU stack

Fig. 4. An example access count profile and fault maps leading to most or fewest misses.

4.1. Line Delete

When a particular cache line is faulty, it can be marked and excluded from normal
cache line allocation and use. A programmable fault map can be provided to record
the markings. As an implementation of the fault map, an “availability bit” may be
attached to each cache tag and treated as second valid bit [Patterson et al. 1983].
Once the system is turned on, a memory BIST engine performs testing, and sets the
availability bits. Any cache line with the availability bit turned off is faulty and not
used. A similar strategy has been employed in IBM’s Power4 and Power5 processors,
which can delete up to two cache lines in each L3 cache slice [Bossen et al. 2002]. For
this scheme to work, cache line allocation (e.g., LRU or FIFO) has to be aware of the
fault locations in a target set. Several circuit techniques have been studied for such
LRU logic [Lamet and Frenzel 1993; Ooi et al. 1992].

4.2. Set Delete

When a set becomes faulty, it can be marked as deleted. In certain cases, set deletion
can be done by deleting all lines in the set if a line delete scheme is employed. On the
other hand, since the nature of faults may not allow per-line or per-set fault marking
schemes utilizing the tag memory (e.g., a specific entry in the tag memory is not
accessible), more robust fault map techniques may be needed. One such technique is
to employ a second decoder leading to an array of fault map bits.

4.3. Way Delete

A cache way can be shut down if it becomes unavailable due to defects. Conceptually,
an N-bit fault map can tell which ways are unavailable in an N-way set-associative
cache. Depending on the nature of defects, a cache way may be shut down by simply
turning off a specific per-line availability bit in all cache sets. As in the case of set
delete, a more robust fault map scheme than a per-line available bit scheme may be
needed. For instance, one may introduce N faulty way bits and on each cache access,
treat those bits as the third valid bit (just like the per-line availability bit), common to
all sets. There are also microarchitectural techniques to shut down cache ways to save
power consumption [Albonesi 1999], which can also be used to delete defective cache
ways.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:13

Table III. Key Machine Parameters

Benchmarks Parameters
MiBench “ARM based Embedded Processor”

Single in-order pipeline
8kB 16-way I/D caches – 32B line, 1-cycle latency
50-cycle latency main memory via a 64-bit bus
2k-entry bi-mod branch predictor

SPEC2000 “High-Performance Superscalar Processor”
8-issue out-of-order processor with 128 ROBs
32kB 4-way I/D caches – 128B line, 3-cycle latency
2MB 8-way L2 cache, 256B line size, 18-cycle latency
240-cycle latency main memory via a 128-bit bus
4k-entry combined branch predictor

4.4. Evaluation Methodology: Greedy Algorithm

We used DEFCAM to assess the impact of line and set delete schemes. We do not
include the impact of disabling a way because it does not have significant impact
except when the whole cache is turned off [Lee et al. 2007]. For more informative
assessment, DEFCAM needs to evaluate the best- and worst-case scenarios for line
and set deletion. For example, the deletion of a frequently used cache line may lead
to different performance than the deletion of a rarely used line. Thus, we develop
an algorithm that finds the worst/best miss counts (miss rate) when the most/least
frequently used lines or sets are deleted. Figure 4 illustrates how the algorithm works
for a four-way set-associative cache with four sets. The figures show the number of
accesses per cache line for an example workload. Figure 4(a) shows the access counts
for each set and LRU stack without any faults. LRU 0 means the most recently used
line in the LRU stack. For example, the number for LRU 0/Set 1 is the total hit counts
from LRU 0 stack in set 1 (50 from the figure).

In Figure 4(b), MIN(n) shows the minimum additional misses that result when there
are n faulty lines. The minimum is computed based on the best case (i.e., the least
heavily used lines are faulty). For example, “MIN(3):16” means there are only 16 addi-
tional misses when three lines are faulty, given the access counts from Figure 4(a). The
highlighted lines are the faulty ones. Similarly, MAX(n) shows the maximum additional
misses with n faults.

To find MIN(n), the algorithm simply accumulates the small n numbers from the
given access counts. For example, to find MIN(4) , the next smallest line access count
(15) is added to MIN(3). On the other hand, determining MAX(n) is more complex.
For MAX(n), the algorithm sums the access counts for each set and picks the set with
the highest summation. For each set, the summation starts from the LRU block to
the MRU block. For example, MAX(3) is the summation of LRU 3, 2 and 1. As shown
in Figure 4(b), set 3 has the maximum number of summation from LRU 3 to LRU 1.
However, MAX(4), as illustrated in Figure 4(c), comes from set 2 because LRU 0 block
of set 2 has far greater number than that of other sets.

Currently, DEFCAM generates cache access profile data using SimpleScalar with
an additional cache profiler module. The impact of the delete schemes for each bench-
mark is produced with the greedy algorithm in Section 4.4. Table III summarizes the
experimental configurations. We selected these configurations to represent two design
points—one for embedded systems and the other for high-performance systems. The
embedded processor is modeled after an ARM-based design and the high-performance
processor after an aggressive out-of-order superscalar design. We used different bench-
mark suites for each processor to represent the kinds of applications that would run
on these designs. The embedded design uses MiBench [Guthaus et al. 2001] and the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:14 H. Lee et al.

Table IV. Benchmark Simulation Configuration

Benchmarks Inputs Fastforward Warmup Simulation period
MiBench Small input sets No No Whole execution

SPEC2000 All inputs, Averaged 5B instructions 500M instructions 1B instructions

CJPEG, SET

max

ave

min
40%

60%

80%

100%
CJPEG, LINE

max

ave

m
is

s
ra

te

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%
MGRID, SET

max

ave
min

VORTEX, SET

capacity loss due to set delete

max

ave

min

MGRID, LINE

max

ave
min

m
is

s
ra

te

VORTEX, LINE

capacity loss due to line delete

max

ave

min

m
is

s
ra

te

(a) SPEC2000

12.5% 12.5%

DIJKSTRA, SET

capacity loss due to set delete

max

ave

min

0%

20%
min

0%

20%

40%

60%

80%

100%
DIJKSTRA, LINE

capacity loss due to line delete

max

ave

min

m
is

s
ra

te

(b) MiBench

12.5% 12.5%

Fig. 5. Max./avg./min. impact of deleting lines (left) and sets (right) on miss rate. for selected programs.

high-performance design uses SPEC2000. Simulation benchmark configuration is sum-
marized in Table IV.

Figure 5 illustrates the relationship between miss rate (y-axis) and capacity loss
(x-axis) due to two delete schemes: line delete and set delete. Left four figures are for
line delete and, similarly, right four are for set delete. It shows only four benchmarks,
for brevity; two are from MiBench [Guthaus et al. 2001] and two are from SPEC2000.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:15

Table V. Miss Rate with 12.5% Capacity Loss for Selected Programs

MGRID VORTEX CJPEG DIJKSTRA
MAX:line 0.3506 0.5842 0.2949 0.5535
MAX:set 0.3506 0.5842 0.2949 0.5535
AVE:line 0.0090 0.0064 0.0006 0.0065
AVE:set 0.1216 0.1296 0.1140 0.1267
MIN:line 0.0000 0.0006 0.0004 0.0044
MIN:set 0.0927 0.0053 0.0528 0.0471

These benchmarks have two extreme cache access trends. One case has uniformly
distributed accesses to all lines/sets and the other case has a bias toward accessing
only certain lines/sets. The balanced cases are mgrid and cjpeg. The biased cases are
vortex and dijkstra.

Each graph has three curves showing the maximum, average, and minimum per-
formance impact. As shown, vortex in Figure 5(a) and dijkstra in Figure 5(b) have a
large gap between the maximum and minimum curves. These “big eyes” suggest that
cache set usage is heavily unbalanced and clustered in these programs and that only
a few lines are actively used in the sets. Therefore, it becomes more difficult to pre-
dict performance accurately given the number of faulty cache lines or sets for these
benchmarks. On the other hand, mgrid in Figure 5(a) and cjpeg in Figure 5(b) have a
narrower gap between the curves, especially in the set graph. cjpeg again has the most
balanced usage of cache lines within each set, and the maximum impact curve for line
deletion becomes in essence a 16-segment (16-way cache) piecewise linear curve.

Now, we turn our attention to the criticality of the lines (sets) deleted. Table V
summarizes the maximum, average, and minimum miss rate with 12.5% capacity loss
as an example for the four programs in Figure 5. Interestingly, the maximum miss rate
from the line losses and the set losses are the same for all four programs regardless of
the program’s characteristics. We can interpret that those faulty lines compose faulty
sets which have the same amount of capacity loss. Consequently, even with 12.5%
disabled lines, the miss rate can be more than 50% for programs with “big eye” from
Figure 5. “Small eye” programs also have significant miss rates (i.e., more than 29%)
when critical lines become unusable.

For average and minimum miss rates, faulty sets generate a moderate miss rate,
while faulty lines have a small miss rate. On the average case, faulty sets’ miss rate
is almost corresponding to the amount of the capacity loss. Minimum miss rate row in
Table V illustrates that set faults produce a substantial miss rate even if they make
the least number of misses with the given capacity loss. However, the minimum impact
of line faults is very limited. For example, mgrid shows 9.27% miss rates for minumum
set faults while miss rates becomes negligible for minumum line faults. In fact, mgrid
has significant miss rates from only one faulty set (see Figure 5), which leads to sizable
performance penalty. From above observations, we conclude that set fault is the most
important to mitigate performance penalty, whereas line fault is much less significant.
Line faults only become more meaningful when they compose set faults.

4.4.1. Experimental Results. Figure 6 shows the misses from one set fault using a delete
scheme for all programs in MiBench and SPEC2000. The graph shows the additional
misses caused by deletion per 1,000 instructions. Many programs have a large number
of additional misses only from one faulty set. For example, mcf in SPEC2000 generates
97 additional misses per 1k instructions with only one faulty set. Similarly, tiff2rgba
and rijndael in MiBench add more than 70 misses per 1k instructions with one faulty
set. Although delete schemes are used in many processors, they cannot guarantee the
performance when an entire set is deleted.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:16 H. Lee et al.

Fig. 6. Additional misses per 1,000 instructions with one faulty set defect.

de
co

de
r

w
or

dl
in

es

de
co

de
r

re
m

ap

w
or

dl
in

es

(a) (b) (c)

reg1

reg2

0000101 1

0101100 0

index

Fig. 7. (a) Conventional decoder. (b) Remap unit. (c) Remap-enabled decoder.

5. FAULT MASKING STRATEGIES: SET REMAPPING SCHEMES

The investigation with line and set delete reveals two important findings. First, the
number of additional misses from faulty deleted lines is limited unless the faulty lines
make up most of a set (i.e., the set is faulty). For the MiBench programs, on average,
50% of the faulty lines contribute only 3% additional misses. Second, however, when
an entire set is faulty (or mostly lost due to line faults), a portion of the address space
is noncacheable, which leads to a significant performance penalty.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:17

Based on these observations, we propose a new mechanism, called set remapping,
that permits the caching of addresses that map to faulty sets. In essence, accesses
to faulty sets can be directed to other sound sets. This strategy is very effective in
minimizing the performance loss due to a few faulty cache sets (see Figures 8 and
9). Figure 7 shows how a conventional row decoder can be changed to accommodate
this strategy. The proposed set remapping scheme calls for a change in the decoder
driver (typically a series of inverters) as shown in Figure 7(a) and (c). In addition, a
set of programmable “remap match” registers are needed to record the faulty cache
sets to remap (Figure 7(b)). When there is a cache access to a “remapped” set, one of
the remap registers has a match, and consequently, drives the wordline to the sound
(replacement) target set.

The performance impact of set remapping is dependent on the target set chosen for a
faulty set. Well-chosen target sets can reduce the cache miss count dramatically. How
can the best target set be picked for a faulty cache set? We expect that a heavily used
set may not be an appropriate target set. For example, the set which receives the most
accesses is not a good candidate target set. However, if most accesses on that target
set use only a few lines among all lines in the set, even a heavily used set can be an
appropriate target set. Furthermore, it is possible that the target set’s usage is limited
to the specific program phase when the faulty set is rarely accessed. In these cases,
using access count numbers for each set to find a target set does not guarantee its
optimality. Therefore, we investigate several heuristic approaches to finding the best
target set. We consider three set remapping schemes: static, profile-based, and dynamic
remapping.

5.1. Static Remapping

This scheme selects a sound target set for a faulty set at design time (i.e., it is hard-
wired at the manufacturing time). The target sets that can be used for a faulty set are
predefined at design time. An access to a faulty set is remapped to a specific target
set. Thus, a target set handles accesses which would have been to two different sets
(i.e., the remapped faulty set and the target set). To select a target set for a faulty one,
we randomly pick a replacement from the candidate targets in a round-robin fashion,
starting from the first target set. This selection avoids the need for information about
program behavior. If there are more target sets than faulty sets, one target set index
shares at most two set indices.

To implement this scheme, we need two hardware changes. First, an additional
“fault bit” must be added in the tag memory to distinguish the original set index and
the remapped set index. If the design only supports the case where the number of faulty
sets is smaller than the number of target sets, only one fault bit is required per set.
When the processor accesses a faulty set that is remapped to a target set, the fault bit
is “1.” Otherwise, an access for a non-remapped set has a “0” in the fault bit. If there
are more possible faulty sets than target sets, more faulty bits are needed, which is
not assumed in this study. The second hardware change is to include a remap-enabled
decoder (shown in Figure 7). The access index number is compared to the remap register
value which has the faulty set index number. If it matches, the appropriate target set
is accessed instead of the faulty set. The mapping between faulty and sound target sets
is done at manufacturing time and the remap decoder is permanently programmed at
this time.

The addition of the remap capability is not expected to have a performance penalty in
terms of access latency. The necessary additional logic has two components: compara-
tors in the remap unit and NOR gates on wordlines as shown in Figure 7(b) and (c).
Each comparator has a data storage and a XOR logic. The data storage has a fixed
value that is set with laser fusing during manufacture. XOR logic has four transistors

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:18 H. Lee et al.

among which only one transistor causes switching delay. Therefore, the comparison
latency of the remap unit in Figure 7(b) consists of NMOS transistor delay and AND
gate delay. A conventional address decoders’ critical path has multiple NAND and NOR
gates to reduce the latency of the fan-in delay of large fan-in gates. Previously, Zhang
showed that the delay of a CAM-based comparator circuit can be tuned to match that
of a regular SRAM decoder circuit [Zhang 2006]. Given that our proposed circuit de-
sign is simpler (static from laser fusing vs. dynamic) than the design of Zhang et al.,
address matching in the comparators is faster than normal address decoding and the
comparison latency can be effectively hidden. NOR gates are used to select an actual
target set on a match and they replace inverters on the potential target sets. Again,
with proper circuit optimization (e.g., cell sizing), the use of NOR gates rather than
inverters leads to no performance penalty.

5.2. Profile-Based Remapping

Although static remapping covers the whole address space, it may not select the best
target set because it does not use a profile about the expected workload to pick target
sets. Some applications may have lots of memory accesses in a single set while other
applications have evenly distributed access patterns. Utilizing profile data for each
application gives a good clue to decide the most appropriate target for each faulty set.
The profile includes access count and miss count. Two phases compose this scheme: the
profile collecting phase and the actual execution phase. First, a processor is simulated
assuming all sets are good to collect access patterns before the actual execution of the
application. Counters for each cache line are used to get access patterns. Miss counts
or access counts can be used for the whole application execution. This phase collects
profile data for all possible faulty sets. Next, the best target set can be decided for the
specific faulty set. The best target sets are the ones which produce the least additional
misses counts from remapping. Once target sets are established for the application, this
information can be used at run time directly. Therefore, if an application is executed N
times, profile-based remapping requires N + 1 times executions (i.e., one for the profile
collecting phase and N for the actual execution phase).

We suggest three strategies to choose the best target sets. First, the best target set
is chosen with the minimum hit count. When a faulty set is remapped to a target
set, maximum additional miss count is limited by the original hit count in target set.
Therefore, choosing the set with the smallest hit count will minimize additional misses.
Second, the minimal access count set is picked for the target set. Assuming the miss
count is the proportion to the access count, the set with the least access count can be a
good candidate target. Lastly, the last half of the LRU stack access count could be used
as the candidate. When one physical set shares two sets (the target set and the faulty
set), higher LRU stack accesses for the two sets may not contribute additional misses.
For example, in four way set associative cache, two higher LRU stack accesses (i.e.,
four LRU stack accesses in total) rather than two lower LRU stack accesses for each of
the two sets will have more chance to be safe from being evicted. Consequently, lower
LRU stack accesses will have more chance to sum up more additional misses. Based
on the assumption that LRU stack access counts are balanced between the target set
and the faulty set, the lower half of LRU stack access is counted.

5.3. Dynamic Remapping

Although profile-based remapping uses actual access information to determine target
sets, once the targets are chosen, it can not adapt the targets based on the actual
workload. It also requires the workload be executed once for profiling. Therefore, a

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:19

question can be raised: What if applications have significantly different access patterns
for different execution phases? Benefits will be limited even if we use access patterns
to determine appropriate target sets.

We suggest to gather online profile data during program execution. Applications
have many different phases during execution and each phase may have significantly
different memory access patterns. Therefore, up-to-date information from a program’s
current phase can lead to more accurate set selection. Utilizing current data requires
dynamically programmable address decoder in the cache. Time window is defined as
the period of execution in which data is accumulated. Target sets are reassigned from
the current profile data in the beginning of the new time window. After determining
target sets, all information is reset to “0” to be ready for accumulating the next phase’s
information. Whenever a new time window begins, there are additional cache misses for
two indexes, one for the old target set and the other for the new one. Therefore, dynamic
remapping may have worse performance than static or profile-based remapping. In this
case, instead of dynamic remapping, profile-based or static remapping is preferred. If
the application has a similar access pattern for its whole execution, the target sets
determined by dynamic remapping will be similar to static or profile-based remapping.

5.4. Experimental Results

Using DEFCAM, we examined the three remapping schemes for the same processor
models and benchmarks as the delete scheme study. Figure 8 compares the schemes
for all MiBench benchmarks on an ARM-based embedded processor, and Figure 9 does
the same for all SPEC2000 benchmarks on the superscalar processor. Figure 8(a), (c),
9(a) and (c) show the misses for static remapping normalized to the delete scheme.
“Fault free” is the number of misses without any fault. Figure 8(b), 8(d), 9(b), and
9(d) introduce the additional miss reductions for profile-based and dynamic remap-
ping per 1,000 instructions. “Full” can choose any set as a target set whereas “4” has
only 4 candidate target sets. Oracle chooses the best target set for each time window
and shows the minimum misses for dynamic remapping. Because dynamic remapping
must flush data for a dirty line that is remapped, a smaller window size is not always
good. After sample simulations, we determined 1M cycle window size is good. We sim-
ulated many possible combinations between faulty sets and target sets and averaged
them to get these numbers. As we see in Figure 8(a), 8(c), 9(a), and 9(c), static remap-
ping can reduce most of the additional misses arising from the set delete scheme.
Although static remapping for stringsearch incurs significant additional misses rel-
ative to the set delete scheme in Figure 8(c), stringsearch has a very small misses
for the delete scheme in Figure 6(b). Therefore, the role of dynamic or profile-based
remapping for stringsearch is very limited. In a similar fashion, static remapping re-
duces most of the additional misses of the delete scheme for SPEC2000 benchmarks
as shown in Figure 9(a) and (c). Although wupwise and sixtrack in Figure 9(c) have a
noticeable gap which cannot be eliminated by static remapping, Figure 9(d) shows that
dynamic or profile-based remapping scheme reduces small additional misses (i.e., less
than 0.11 per 1k instructions). Therefore, the benefit of using dynamic or profile-based
remapping for these applications is not significant. From these experimental results,
we conclude that static remapping is the best choice. It reduces the misses over the set
delete scheme but does not incur the overhead of profile-based or dynamic remapping.

6. YAP EVALUATION: A CASE STUDY

To investigate the utility of DEFCAM, we did a case study to select a yield-effective
cache design (with YAP) from a set of candidate designs. This study illustrates how

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:20 H. Lee et al.

Fig. 8. Total misses normalized to the set delete scheme and additional miss reductions from three “non-
static” remapping for MiBench; (a) and (b) are for Auto (Industrial)/Consumer/Network benchmarks, (c) and
(d) are Office/Security/Telecomm benchmarks; oracle in (b) and (d) shows the theoretical limit of dynamic
remapping (i.e., it knows the best target sets whenever new target sets are assigned). Dynamic remapping
predicts the best target and assigns it to the next execution window (e.g., 100M instruction interval) from the
information of the current execution window. Profile collects “profile” information in the “phase-collecting
phase” and assigns best target sets for whole execution time (i.e., it becomes static remapping after assigning
target sets).

a processor architect might use DEFCAM to evaluate several process/defect tolerant
cache designs to select one. The first part in this section explains how we specify
the design space for the case study, and the second part describes the evaluation of
candidate designs.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:21

Fig. 9. (a) and (b) are for SPEC2000 INT; (c) and (d) are for SPEC2000 FP. the meaning of oracle, dynamic
and profile follows the notation in Figure 8.

6.1. Specification

The case study is a system-on-a-chip (SoC) with an ARM processor in Table III. To
simplify the study, we assume that defects occur only in the caches. The internal cache
organization is derived with CACTI 4.1 [Tarjan et al. 2006].

The case study considers four yield management schemes for the cache: no redun-
dancy (baseline), 12.5% and 25% row redundancy, line delete, and static set remapping
(from Section 5.4). Row redundancy uses spare memory rows to cover defective ones;
spares can replace any defective row. The number of spares is the percentage 12.5% or

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:22 H. Lee et al.

25% of total cache lines. Line delete uses graceful degradation to permanently disable
defective lines. A spare line is not used in place of a defective one, and as a result,
program addresses that map to defective lines are not cached. Because error correc-
tion codes (ECC) can mitigate the effect of process variations [Agarwal et al. 2005],
we consider the designs with and without ECC. For set remapping, as suggested in
Section 5, we use the static scheme. The pool of target sets has four target set candi-
dates. Therefore, at most four faulty sets can be remapped. Any faulty sets beyond this
limit are deleted.

Our defect model uses a uniform distribution to select defect locations and a Gaussian
distribution for defect size. Process variation has a single parameter: σVth. The model is
configured with a tuple (defect density, σVth), which includes physical defect and process
variation informations in one tuple. The study uses the configurations (1, 30mV), (10,
30mV), (100, 30mV), (100, 20mV), and (100, 40mV).2 Defect density 1 and 10 conform
ITRS projection data [ITRS 2005]. We aggressively generate the heavy defect density to
100. σVth 30 comes from 45nm technology’s process variation [Agarwal et al. 2005]. σVth

20 and 40 are used to evaluate the impact of different parameter variations. Similarly,
we evaluated the yield management schemes for three cache organizations with same
cache capacity. We used three configurations with the 3-tuple, (Ndwl, Ndbl, Nspd) = (1, 4,
0.5), (4, 4, 0.5), (1, 4, 0.125). The study uses 1,000 total die samples.

To measure program performance, the SimpleScalar tool set [Austin et al. 2002] is
used in DEFCAM to simulate an ARM-like in-order pipelined processor. The workload
is MiBench [Guthaus et al. 2001] with the large data sets.

Using DEFCAM, we evaluated the yield management schemes. The results are in
Tables VI. In the tables, yield is the ratio of operational caches to total caches. Area is
the cache area relative to the baseline. Performance is an average of the benchmarks.
In this case study, we use four YAP metrics, labeled M1–M4, denoting Y · A−1 · P,
Y · A−1 · P2, Y 2 · A−1 · P, and Y · A−2 · P, respectively. As we describe in Section 3.7,
power terms of YAP can be defined by the user depending on design goals. There are
twelve designs with four cases for line delete and two cases for set remapping. 95% line
delete and set remapping discards all caches that have more than a 5% performance
degradation. Similarly, 99% line delete and set remapping discards caches above a 1%
degradation.

6.2. Evaluation with Different Defects and Process Variation Density

For different defects and process variation density, most interestingly, set remapping
has a very good yield for a small area cost. For example, in the (10, 30mV) configuration
from Table VI(a), 95% set remapping has 100% yield, while 25% redundancy has 94%
yield. For one and ten defects per cache from Table VI(a), set remapping achieves 100%
yield (the numbers in the table are rounded up from yields as high as 99.9% for 95%
set remapping). Yield is higher for line delete because it selects caches that meet the
degradation threshold without attempting to cover the faults. Although 12.5% and 25%
redundancy with ECC also attains 100% yield, its larger area cost makes it worse than
set remapping in terms of YAP. This trend continues for all defect and process variation
densities, and organizations.

YAP captures the trade-off between better yield and increased area/decreased per-
formance. The tables show that no redundancy has a reduced YAP as defect density
and process variation increase. In some cases, the yield gain is offset by the area cost.
Although ECC and redundancy generally improve YAP, it sometimes reduces the YAP
metrics with the line delete scheme. This shows the cases where area overhead is

2We scaled the defect densities for intuitive presentation and comparison. The defect density 1 corresponds
to 0.5/mm2.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:23

(a) A=16, Ndwl=1, Ndbl=4, Nspd=0.125 (b) A=16, Ndwl=1, Ndbl=4, Nspd=0.5 (c) A=16, Ndwl=4, Ndbl=4, Nspd=0.5

0, 2, ...14 1, 3, … 15
w 0
w 8

w 7
w 15

. . . w 0
w 8

w 7
w 15

. . .
8 word lines
for one set

2 word lines
for one set

Even way Odd way

Row
decoder

Fig. 10. Different organizational parameters.

greater than the benefit achieved as shown in (1, 30mV) and (10, 30mV) of Table VI(a).
Another example is (100, 20mV) in Table VI(b). 25% redundancy with ECC has a better
yield than 12.5% redundancy with ECC, but its YAP metrics are lower. Set remapping
has the overall highest YAP because yield is improved for a modest performance and
area cost. For example, in Table VI(a), 99% line delete in the (100, 30mV) case has a
66 YAP(M3). In this configuration, set remapping does much better than redundancy
and delete, even with ECC.

6.3. Evaluation with Different Organizational Parameters

Figure 10 compares three different cache organizations. For the organization in Fig-
ure 10(a), one word-line error affects two lines. However, Figure 10(b) has eight
unavailable lines with one word-line error. Interestingly, one word-line error in
Figure 10(b) affects four times as many lines as in Figure 10(a). One word-line er-
ror in Figure 10(c) is four times less than in Figure 10(b). Their bit-line error impacts
are the same. Table VI(c) illustrates yield management scheme evaluations for three
organizations with the same cache size. Different organizational parameters have dif-
ferent area overheads because of the number of row decoders. For example, the area
numbers in the (1, 4, 0.5) configuration from Table VI(c) are different from (4, 4, 0.5)
or (1, 4, 0.125). As we can see in the Table VI(c), different organizational parameters
have less difference than the fault masking schemes. For each design, the yield differs
between 1% to 4% among the configurations. Area difference between each design is not
significant. This is because the area occupied by decoders as very small as compared
with the area of cell array.

6.4. Discussion

DEFCAM simplifies the process to evaluate and select different cache design for a
processor architect. With user-defined YAP metrics, computer architects can evaluate
many designs for their own purpose. From our evaluations, we make the following
observations. First, adding ECC lines to cover hard fault works very well. For different
designs including redundant rows and delete schemes, ECC increases yield up to 45%.
However, using ECC for hard fault correction makes it unusable to cover soft error. In
that case, ECC should be extended to cover two bit error correction with extra area
cost. Next, set remapping achieves the best yield and YAP in most cases, even without

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:24 H. Lee et al.

Ta
bl

e
V

I.
Y

ie
ld

,
A

re
a,

P
er

fo
rm

an
ce

,
an

d
fo

ur
YA

P
m

et
ric

s
(M

1–
M

4)
in

%
fo

r
di

ffe
re

nt
:

(a
)

de
fe

ct
de

ns
iti

es
,

(b
)

pr
oc

es
s

va
ria

tio
ns

,
an

d
(c

)
or

ga
ni

za
tio

ns
.

T
he

YA
P

m
et

ric
s

M
1–

M
4

ar
e

Y
·A

−1
·P,

Y
·A

−1
·P

2
,Y

2
·A

−1
·P,

an
d

Y
·A

−2
·P,

re
sp

ec
tiv

el
y.

N
um

be
rs

in
bo

ld
fa

ce
re

pr
es

en
tt

he
be

st
YA

P
va

lu
es

(a
)

(d
ef

ec
t,

σ
V

th
)

(1
,3

0m
V

)
(1

0,
30

m
V

)
(1

00
,3

0m
V

)
D

es
ig

n
Y

A
P

M
1

M
2

M
3

M
4

Y
A

P
M

1
M

2
M

3
M

4
Y

A
P

M
1

M
2

M
3

M
4

N
o

re
du

n
da

n
cy

83
10

0
10

0
83

83
69

83
80

10
0

10
0

80
80

64
80

51
10

0
10

0
51

51
26

51
N

o
re

du
n

.E
C

C
10

0
10

4
10

0
96

96
96

92
98

10
4

10
0

94
94

92
90

68
10

4
10

0
66

66
45

63
12

.5
%

re
du

n
da

n
cy

91
10

8
10

0
84

84
77

78
90

10
8

10
0

84
84

75
77

69
10

8
10

0
64

64
44

59
25

%
re

du
n

da
n

cy
94

11
6

10
0

81
81

76
70

94
11

6
10

0
83

83
77

73
82

11
6

10
0

72
72

59
64

12
.5

%
re

du
n

.E
C

C
10

0
11

3
10

0
88

88
88

78
10

0
11

3
10

0
86

86
86

74
95

11
3

10
0

82
82

78
71

25
%

re
du

n
.E

C
C

10
0

12
1

10
0

83
83

83
68

10
0

12
1

10
0

82
82

82
68

95
12

1
10

0
79

79
75

65
95

%
de

le
te

10
0

10
2

10
0

98
98

98
96

99
10

2
10

0
97

97
96

95
86

10
2

98
83

81
71

81
99

%
de

le
te

99
10

2
10

0
97

97
96

95
98

10
2

10
0

96
96

94
94

82
10

2
10

0
80

80
66

79
95

%
se

t
re

m
ap

10
0

10
3

10
0

97
97

97
94

10
0

10
3

10
0

97
97

97
94

98
10

3
10

0
95

95
93

92
99

%
se

t
re

m
ap

10
0

10
3

10
0

97
97

97
94

10
0

10
3

10
0

97
97

97
94

93
10

3
10

0
90

90
84

88

(b
)

(d
ef

ec
t,

σ
V

th
)

(1
00

,2
0m

V
)

(1
00

,3
0m

V
)

(1
00

,4
0m

V
)

D
es

ig
n

Y
A

P
M

1
M

2
M

3
M

4
Y

A
P

M
1

M
2

M
3

M
4

Y
A

P
M

1
M

2
M

3
M

4
N

o
re

du
n

da
n

cy
62

10
0

10
0

62
62

39
62

51
10

0
10

0
51

51
26

51
28

10
0

10
0

28
28

8
28

N
o

re
du

n
.E

C
C

71
10

4
10

0
68

68
48

66
68

10
4

10
0

66
66

45
63

68
10

4
10

0
65

65
44

63
12

.5
%

re
du

n
da

n
cy

78
10

8
10

0
72

72
56

66
69

10
8

10
0

64
64

44
59

47
10

8
10

0
43

43
20

40
25

%
re

du
n

da
n

cy
91

11
6

10
0

78
78

71
68

82
11

6
10

0
72

72
59

64
53

11
6

10
0

47
47

25
42

12
.5

%
re

du
n

.E
C

C
95

11
3

10
0

84
84

80
74

95
11

3
10

0
82

82
78

71
92

11
3

10
0

79
79

72
68

25
%

re
du

n
.E

C
C

97
12

1
10

0
80

80
77

66
95

12
1

10
0

79
79

75
65

95
12

1
10

0
78

78
74

65
95

%
de

le
te

90
10

2
97

88
88

79
87

84
10

2
98

82
82

69
81

83
10

2
97

80
78

66
78

99
%

de
le

te
88

10
2

10
0

86
86

76
85

82
10

2
10

0
80

80
66

79
81

10
2

10
0

79
79

64
78

95
%

se
t

re
m

ap
99

10
6

10
0

95
94

94
92

98
10

6
10

0
95

95
93

92
98

10
6

10
0

94
93

92
91

99
%

se
t

re
m

ap
94

10
6

10
0

91
91

86
89

93
10

6
10

0
90

90
84

88
93

10
6

10
0

90
90

84
88

(c
)

(N
dw

l,
N

db
l,

N
sp

d
)

(1
,4

,0
.5

)
(4

,4
,0

.5
)

(1
,4

,0
.1

25
)

D
es

ig
n

Y
A

P
M

1
M

2
M

3
M

4
Y

A
P

M
1

M
2

M
3

M
4

Y
A

P
M

1
M

2
M

3
M

4
N

o
re

du
n

da
n

cy
55

99
10

0
55

55
30

55
51

10
0

10
0

51
51

26
51

51
10

0
10

0
51

51
26

51
N

o
re

du
n

.E
C

C
71

10
3

10
0

68
68

48
65

69
10

4
10

0
66

66
46

64
68

10
4

10
0

66
66

45
63

12
.5

%
re

du
n

da
n

cy
69

10
7

10
0

64
64

44
59

68
10

8
10

0
63

63
42

58
69

10
8

10
0

64
64

44
59

25
%

re
du

n
da

n
cy

81
11

5
10

0
72

72
58

64
81

11
6

10
0

70
70

57
60

82
11

6
10

0
72

72
59

64
12

.5
%

re
du

n
.E

C
C

96
11

2
10

0
82

82
79

71
94

11
3

10
0

83
83

78
74

95
11

3
10

0
82

82
78

71
25

%
re

du
n

.E
C

C
95

12
0

10
0

78
78

74
65

95
12

1
10

0
78

78
74

65
95

12
1

10
0

79
79

75
65

95
%

de
le

te
87

10
1

97
84

82
73

82
87

10
2

98
85

85
74

84
86

10
2

97
84

84
73

83
99

%
de

le
te

82
10

1
10

0
80

80
66

79
81

10
2

10
0

79
79

64
78

82
10

2
10

0
80

80
66

79
95

%
se

t
re

m
ap

99
10

3
10

0
95

94
94

92
98

10
3

10
0

95
95

93
92

98
10

3
10

0
95

95
93

92
99

%
se

t
re

m
ap

93
10

3
10

0
90

90
84

88
94

10
3

10
0

91
91

86
89

93
10

3
10

0
90

90
84

88

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:25

ECC. This result shows the benefit of set remapping. Lastly, different organizational
parameters lead to different yields and areas. YAP can capture these differences. Nev-
ertheless, in our experiments, the difference is very small; the YAP values differ from
1% to 4% for each metric.

To judge the computational demands of our tools, we measured the speed of DEFCAM
by continuously running simulations for 20 hours. With 10 cache designs, 1,000 samples
from 10 wafers, and 7 defect-process-organization variation configurations, the design
space has 70,000 caches. Using four 3.4GHz Intel Xeon-based Linux boxes, DEFCAM
evaluated all caches with no redundancy and redundancy schemes. For evaluating
caches with delete and set remapping, DEFCAM could simulate roughly 10% of all
caches, that is, 100 out of 1,000. This sampling results in a maximum error of as low
as 0.2% at the 95% confidence interval. This rate is fast enough to evaluate a large
design space overnight. The case study demonstrates how our flow and tools can be
used to evaluate yield, area and performance of many cache designs. It also highlights
the importance that set remapping schemes will play in yield management for future
cache designs and technologies.

7. RELATED WORK AND FUTURE PLAN

There is a large body of previous work on defect modeling and yield analysis [Milor
1999; Segal et al. 1999; Berglund 1996; Stapper and Rosner 1995; Maly 1985]. Phys-
ical defects have been a major factor undermining yield. Maly and Deszczka [1983]
developed a random defect model to compute defect distributions. Their model was
later extended to accommodate a submicron domain [Pleskacz and Maly 1997]. Dekker
et al. [1988] developed an efficient SRAM fault model and a set of linear march-based
test algorithms. Wang et al. [2005] categorized various defect models and established
a defect injection procedure. Stapper and Rosner [1995] analyzed yield for different
defect types which are manifested in various logic and circuit elements (e.g., DRAM,
SRAM, CMOS logic, ASIC and CMOS and biCMOS microprocessors). However, they
considered only cell-level faults and did not analyze defects affecting wires such as a
bitline or wordline.

Process variations have become a major reliability threat in modern deep sub-
micron (DSM) technologies, which are further classified into inter- and intra-die com-
ponents [Borkar 2003; SEMATECH 2003]. With aggressive technology scaling, the
random and correlated components of intradie variations exceed those of interdie vari-
ations [Duvall 2000]. Their work, however, considered only process variations (and not
physical defects). Agarwal et al. [2005] analyzed the impact of process variations on
cache yield and developed a direct-mapped cache structure to mask faulty memory
cells by substituting an adjacent sound line for a faulty line. However, their technique
is only for a direct-mapped cache and does not consider different fault manifestations
(i.e., word-line, bit-line, or cell).

There are several previous works studying the impact of redundancy techniques on
yield. Thomas and Anthony [1999] analyzed a set of redundancy schemes in terms of
yield and performance. They, however, assumed a simple defect model with only defect
density and probability of a faulty row. Shivakumar et al. [2003] developed a metric
called performance averaged yield which accounts for both fully functional chips and
those that exhibit some performance degradation. Unfortunately, their model only con-
siders performance degradation due to defects in logic blocks performing computations
(i.e., not in memory). Our work in this article studied the impact of memory array’s
defects in cache memory.

The interdependency between circuit performance and yield at the circuit level has
been studied extensively. Datta et al. [2005] studied yield prediction methodology from
the process delay variation and showed that yield can be improved by an unbalanced

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:26 H. Lee et al.

pipeline design. Kim et al. [2005] analyzed process variation effects on microarchi-
tecture design and suggested optimal logic depth for a 1-wide processor due to delay
variations. Tschanz et al. [2002] suggested bidirectional adaptive body bias (ABB) can
be used to compensate for die-to-die parameter variations by applying an optimum body
bias voltage to maximize the die frequency. Forward body bias (FBB) for critical path
logic blocks has been studied to increase the operating frequency of a design [Narendra
et al. 2002; Vangal et al. 2002; Oowaki et al. 1998]. However, none of these works deal
with application-level performance.

A relatively small amount of work has been done for the system-level performance
estimation from low-level defects and variations. Recently, Liang and Brooks [2006]
presented a microarchitectural parameter model and a methodology for designing logic
blocks to reduce the frequency impact due to variations for distinct structures, while
minimizing IPC (instructions-per-cycle) loss. Marculescu and Talpes [2005] present
GALS (globally asynchronous, locally synchronous) microarchitecture-level models for
Within-Die (WID) process variability. Though they touch on system-level performance,
none of these works have studied a fully integrated fault-tolerant design methodol-
ogy that incorporates all the key parameters and metrics ranging from physical-level
defects and process variations to application performance.

There are a few studies that examined the performance of a fault-degradable cache
approach. Sohi [1989] looked at the performance impact of line deletion in a unified
cache using a trace-driven simulation method. Faults were injected randomly into lines,
and simulations were repeated several times with a different set of defective cache lines
to get an estimate of expected performance degradation. Pour and Hill [1993] extended
Sohi’s work by introducing a more systematic way to evaluate the impact of defects.
However, these earlier studies simulate a rather simple unified cache configuration us-
ing ATUM traces and use miss rate as the only metric. Shirvani and McCluskey [1999]
introduced “padded cache” which has a programmable row decoder to avoid accessing
faulty blocks. Their design has non-negligible timing penalty for the programmable de-
coder and significant area overhead (11%). More recently, Lee et al. [2007] analyzed the
performance impact of defects more rigorously using a generic fault degradable cache
model methodology with an execution-driven simulation method. Our work in this ar-
ticle focuses on studying the interplay between cache yield, cache area, and program
performance in an integrated framework and builds on these previous performance
studies.

In addition to the YAP metric, clock frequency could be added in our future work.
With the frequency metric, DEFCAM framework can be a more accurate tool for fault-
tolerant cache architecture study. Furthermore, lifetime reliability has been an inter-
esting topic in the fault-tolerant community. We also remain developing integrated
framework including yield and lifetime reliability as our future work.

8. CONCLUSION

Traditional cache optimizations have focused on the performance, area, and power as-
pect of the resulting design. Guaranteeing fault tolerance and enhancing chip yield
have been largely a separate effort made by low-level circuit quality engineers, layout
designers, and process engineers. As chips built with a future deep submicron tech-
nology are more susceptible to manufacturing defects, process variations, and aging
phenomena, it becomes imperative to consider reliability and yield together at an early
design time by the processor architect/cache designer.

This article presented DEFCAM, a new cache design flow that integrates cache
defect, yield, and performance models, and lays a solid foundation for evaluating a
cache memory designed on nanometer-scale technology in terms of its yield, area, and
performance. We also introduced a metric called YAP (yield-area-performance) which

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:27

enables a designer to quickly evaluate different cache designs with a single number.
Using DEFCAM and the YAP metric, a cache designer can directly compare cache
designs having different architectural, organizational, and defect-related parameters
at an early design stage.

With DEFCAM, we evaluated the performance impact from three different architec-
turally visible fault classes (line, set, and way) and discovered that masking set faults is
crucial to reducing cache misses, and hence, minimizing performance impact. To tackle
set faults, we proposed set remapping, which redirects memory accesses to faulty sets
to available sound cache sets. We also showed that set remapping can be done statically
or dynamically, using off-line or on-line profile information. Among these remapping
policies, the static remapping policy is the simplest in terms of design complexity and
it achieves much of the potential of an oracle based approach.

To illustrate how DEFCAM can be used in practice, we performed a case study to
compare a number of cache yield management strategies, including: redundant row,
ECC, line delete, and set remapping. When the redundant row and ECC schemes
are used in isolation, they fall short of other degradation-based schemes quickly as the
effect of defect and process variations is increased. Degradation-based schemes such as
line delete and set remapping were shown to offer much higher yield with limited area
overheads. Among the cache yield management strategies, we find that set remapping
consistently offers the highest YAP metrics under various defect and process variation
scenarios.

REFERENCES

AGARWAL, A., PAUL, B. C., MAHMOODI-MEIMAND, H., DATTA, A., AND ROY, K. 2005. A processtolerant cache
architecture for improved yield in nanoscale technologies. IEEE Trans. VLSI Syst. 13, 1.

ALBONESI, D. H. 1999. Selective cache ways: On-demand cache resource allocation. In Proceedings of the
International Symposium on Microarchitecture (MICRO). 248–259.

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer system modeling.
IEEE Comput. 35, 2, 59–67.

BERGLUND, C. N. 1996. A unified yield model incorporating both defect and parametric effects. IEEE Trans.
Semicond. Manuf. 9, 3, 447–4 4.

BORKAR, S. 2004. Microarchitecture and design challenges for gigascale integration. In Proceedings of the
speech at International Symposium on Microarchitecture (MICRO).

BORKAR, S. E. A. June 2003. Parameter variations and impact on circuits and microarchitecture. In Proceed-
ings of the Design Automation Conference. 338–342.

BOSSEN, D. C., TENDLER, J. M., AND REICK, K. 2002. Power4 system design for high reliability. IEEE Micro 22,
1, 16–24.

DATTA, A., MUKHOPADHYAY, S., BHUNIA, S., AND ROY, K. 2005. Yield prediction of high performance pipelined
circuit with respect to delay failures in sub-100nm technology. In Proceedings of the IEEE International
On-Line Testing Symposium. 275–280.

DEKKER, R., BEENKER, F., AND THIJSSEN, L. 1988. Fault modeling and test algorithm development for static
random access memories. In Proceedings of the International Test Conference (lTC). 343–352.

DUVALL, S. G. Aug. 2000. Statistical circuit modeling and optimization. In Proceedings of the 5th International
Workshop on Statistical Metrology. 56–63.

FRIEDMAN, D. J., HANSEN, M. H., NAIR, V. N., AND JAMES, D. A. 1997. Model-free estimation of defect clustering
in integrated circuit fabrication. IEEE Trans. Semicond. Manuf. 10, 3, 334–359.

GUTHAUS, M., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001. Mibench: A
free, commercially representative embedded benchmark suite. In Proceedings of the Workshop Workload
Characterization (WWC).

ITRS. 2005. International technology roadmap for semiconductors. http://public.itrs.net.
KIM, N. S., KGIL, T., BOWMAN, K., DE, V., AND MUDGE, T. 2005. Total power-optimal pipelining and parallel

processing under process variations in nanometer technology. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design (lCCAD). 535–540.

KUMAR, S., KIM, C., AND SAPATNEKAR, S. 2006. Impact of NBTI on SRAM read stability and design for reliability.
In Proceedings of the International Symposium on Quality Electronics Design (ISQED).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

17:28 H. Lee et al.

LAMET, D. AND FRENZEL, J. F. 1993. Defect-tolerant cache memory design. In Proceedings of the IEEE VLSI
Test Symposium. 159–163.

LEE, H., CHO, S., AND CHILDERS, B. 2007. Performance of graceful degradation for cache faults. In Proceedings
of the IEEE Computer Society Annual Symposium on VLSI (lSVLSI). 409–415.

LIANG, X. AND BROOKS, D. 2006. Microarchitecture parameter selection to optimize system performance under
process variation. In Proceedings of the IEEE International Conference on Computer-Aided Design.
429–436.

MALY, W. 1985. Modeling of lithography-related yield losses for cad of VLSI circuits. IEEE Trans. Comput.-
Aid. Des. 3.

MALY, W. AND DESZCZKA, J. 1983. Yield estimation model for VLSI artwork evaluation. Electron. Lett.
226–227.

MARCULESCU, D. AND TALPES, E. 2005. Variability and energy awareness: A microarchitecture-Ievel perspective.
In Proceedings of the 42nd Conference on Design Automation. 11–16.

MILOR, L. S. 1999. Yield modeling based on in-line scanner defect sizing and a circuit’s critical area. IEEE
Trans. Semicond. Manuf. 1, 26–35.

NARENDRA, S., HAYCOCK, M., GOVINDARAJULU, V., ERRAGUNTLA, V., WILSON, H., VANGAL, S., PANGAL, A., SELIGMAN,
E., NAIR, R., KESHAVARZI, A., BLOECHEL, B., DERMER, G., MOONEY, R., BORKAR, N., BORKAR, S., AND DE, V.
2002. 1.1 v 1 GHz communications router with on-chip body bias in 150nm CMOS. IEEE ISSCC Dig.
Tech. Papers, 270–271.

OOI, Y., KASHIMURA, M., TAKEUCHI, H., AND KAWAMURA, E. 1992. Fault-tolerant architecture in a cache memory
controllsi. IEEE J. Solid-State Circ. 4, 507–514.

OOWAKI, Y., NOGUCHI, M., AND TAKAGI, S. 1998. A sub-0.1 um circuit design with substrate-over-biasing. IEEE
ISSCC Dig. Tech. Papers, 88–89.

PATTERSON, D. A., GARRISON, P., HILL, M., LIOUPIS, D., NYBERG, C., SIPPEL, T., AND VAN DYKE, K. 1983. Architecture
of a VLSI instruction cache for a rise. In Proceedings of the International Symposium on Computer
Architecture (ISCA). 108–115.

PLESKACZ, W. A. AND MALY, W. 1997. Improved yield model for submicron domain. In Proceedings of the
Workshop on Defect and Fault-Tolerance in VLSI Systems (DFT), 2–10.

POUR, A. F. AND HILL, M. D. 1993. Performance implications of tolerating cache faults. IEEE Trans. Comput.
3, 257–267.

RUSU, S., TAM, S., MULIJONO, H., STINSON, J., AYERS, D., CHANG, J., VARADA, R., RATTA, M., AND KOTTAPALLI, S.
2009. A 45nm 8-core enterprise xeon processor. In Proceedings of the IEEE International Solid-State
Circuits Conference (ISSCC).

SEGAL, J., GORDON, A., SAJOTO, D., DUFFY, B., AND KUMAR, M. 1999. A framework for extracting defect density
information for yield modeling from in-line defect inspection for real-time prediction of random defect
limited yields. In Proceedings of the IEEE International Symposium on Semiconductor Manufacturing
(ISSM).

SEMATECH. Mar. 2003. Critical reliability challenges for itrs. Tech. transfer #03024377A-TR.
SHIRVANI, P. P. AND MCCLUSKEY, E. J. 1999. Padded cache: A new fault-tolerance technique for cache memories.

In Proceedings of the IEEE VLSI Test Symposium (VTS). 440–445.
SRIVAKUMAR, P., KECKLER, S. W., MOORE, C. R., AND BURGER, D. 2003. Exploiting microarchitectural redundancy

for defect tolerance. In Proceedings of the International Conference on Computer Design (ICCD). 481–488.
SORI, G. S. 1989. Cache memory organization to enhance the yield of high-performance vlsi processors. IEEE

Trans. Comput.
SRINIVASAN, J., ADVE, S. V., BOSE, P., AND RIVERS, J. A. 2004. The impact of technology scaling on lifetime

reliability. In Proceedings of the International Conference on Dependable Systems and Networks (DSN).
STAPPER, C. H. AND ROSNER, R. J. 1995. Integrated circuit yield management and yield analysis: Development

and implementation. IEEE Trans. Semicond. Manuf. 2.
TANG, T., DE, V., AND MEINDL, J. D. 1997. Intrinsic mosfet parameter fluctuations due to random dopant

placement. IEEE Trans. VLSI Syst. 369–376.
TARJAN, D., THOZIYOOR, S., AND JOUPPI, N. P. 2006. Cacti 4.0. Tech. rep. HPL-2006-86, AP Labs.
THOMAS, T. AND ANTHONY, B. 1999. Area, performance, and yield implications of redundancy in onchip caches.

In Proceedings of the International Conference on Computer Design (ICCD). 291–292.
TSCHANZ, J. W., KAO, J. T., AND NARENDRA, S. G. 2002. Adaptive body bias for reducing impacts of die-to-die

and within-die parameter variations on microprocessor frequency and leakage. IEEE J. Solid-State Circ.
422–478.

VANGAL, S., BORKAR, N., SELIGMAN, E., AND GOVINDARAJULU, V. 2002. A 2.5 GHz 32b integer execution core in
130 nm dual-vt cmos. IEEE ISSCC Deg. Tech. Papers, 412–413.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

DEFCAM: A Design and Evaluation Framework for Defect-Tolerant Cache Memories 17:29

WADA, T., RAJAN, S., AND PRZYBYLSKI, S. A. 1992. An analytical access time model for on-chip cache memories.
IEEE J. Solid-State Circ. 8, 1147–1156.

WANG, X., OTTAVI, M., MEYER, F. J., AND LOBBARDI, F. 2005. Estimating the manufacturing yield of compiler-
based embedded srams. IEEE Trans. Semicond. Manuf. 3, 412–421.

YE, W., VIJAYKRISHNAN, N., KANDEMIR, M., AND IRWIN, M. J. 2000. The design and use of simple power: A
cycle-accurate energy estimation tool. In Proceedings of the Design Automation Conference (DAC).

ZHANG, C. 2006. Balanced cache: Reducing conflict misses of direct-mapped caches through programmable
decoders. In Proceedings of the International Symposium on Computer Architecture (ISCA). 155–166.

Received January 2009; revised February 2010, January 2011; accepted July 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 3, Article 17, Publication date: October 2011.

