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Abstract—Trace-driven simulation is a widely practiced sim-
ulation method. However, its use has been typically limited to
modeling of in-order processors because of accuracy issues. In
this work, we propose and explore In-N-Out, a fast approximate
simulation method to reproduce the behavior of an out-of-
order superscalar processor with a reduced in-order trace.
During trace generation, we use a functional cache simulator
to capture interesting processor events such as uncore accesses
in the program order. We also collect key information about the
executed program. The prepared in-order trace then drives a
novel simulation algorithm that models an out-of-order processor.
Our experimental results demonstrate that In-N-Out produces
reasonably accurate absolute performance (7% difference on
average) and fast simulation speeds (115× on average), compared
with detailed execution-driven simulation. Moreover, In-N-Out
was shown to preserve a processor’s dynamic uncore access
patterns and predict the relative performance change when the
processor’s core- or uncore-level parameters are changed.

Keywords—Superscalar out-of-order processor, performance
modeling, trace-driven simulation.

I. INTRODUCTION

Various trace-driven simulation methods have been indispens-

able to computer architects for decades. To run a simulation,

a trace of interesting processor events need to be gener-

ated prior to simulation. Once the trace has been prepared

it is used multiple times (with different simulated system

configurations). Replacing detailed functional execution with

pre-captured trace results in a much faster simulation speed

than an execution-driven simulation method. Thanks to its

high speed, trace-driven simulation is especially favored at an

early design stage [19]. Unfortunately, the use of trace-driven

simulation has been typically limited to modeling relatively

simple in-order processors because of accuracy issues; the

static nature of the trace poses challenges when modeling

a dynamically scheduled out-of-order processor [3], [11].

To model an out-of-order superscalar processor (or simply

“superscalar processor” in this paper), it is believed that full

tracing and computationally expensive detailed modeling of

processor microarchitecture are required [2].

This paper explores In-N-Out, a novel fast and storage-

efficient approximate simulation method for reproducing a

superscalar processor’s dynamic execution behavior from a

reduced in-order trace. Our goal is to provide a practical

and effective simulation environment for evaluating a super-

scalar processor’s performance, especially when the focus of

the study is on uncore components like the L2 cache and

memory controller. Using our environment, one can employ

a fast functional simulator like sim-cache [1] or Pin [13] to

generate traces and perform simulations at high speeds. In-

N-Out achieves a reasonable absolute performance difference

compared with an execution-driven simulation method and can

accurately predict the relative performance of the simulated

machine when the machine’s uncore parameters are changed.

We also find that important processor artifacts like data

prefetching and miss status handling registers (MSHRs) [10]

can be easily incorporated in the In-N-Out framework.

While collecting a trace, In-N-Out monitors the length of

the instruction dependency chains, which can have a critical

impact on the program execution time. The memory access

information and the instruction dependency information are

recorded to construct a trace item. During trace simulation,

In-N-Out dynamically reconstructs the processor’s reorder

buffer (ROB) state, honors dependencies between the trace

items, and takes into account the length of the dependency

chains. Our experimental results demonstrate that In-N-Out,

based on simple yet effective ideas, achieves a small CPI

difference of 7% and high simulation speeds of 115× on

average with the SPEC2K benchmark suite [17], compared

with a widely used execution-driven architecture simulator.

More importantly, In-N-Out tightly follows the performance

changes seen by execution-driven simulation when the un-

core configurations, such as L2 cache size and associativity,

are changed. The performance change direction is always

predicted correctly and the performance change amount is

predicted with less than 4% on average.

A. Related work

Previously, researchers proposed analytical performance mod-

els to quickly derive the performance of superscalar proces-

sors. For example, Karkhanis and Smith [9] proposed a first-

order analytical performance model to estimate a superscalar

processor’s performance. Chen and Aamodt [4] and Eyerman

et al. [5] extended the first order model by improving its

accuracy and incorporating more processor artifacts. Michaud

et al. [14] built a simple analytical model based on the

observation that the instruction-level parallelism (ILP) grows

as the square root of the instruction window size. Like In-

N-Out, these proposals employ a target program’s in-order

trace; however, their goal is to derive the overall program
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Fig. 1. Overall structure of In-N-Out.

performance from a model constructed from the trace rather

than reproduce (or simulate) the dynamic behavior of the

processor being modeled. A more comparable recent work

by Lee et al. [11] shares the same goal with this work.

However, their work assumed that a trace generator is a cycle-

accurate architecture simulator so that architecture-dependent

timing information can be directly collected during trace

generation. We do not make such an assumption and use a

simple functional simulator to generate storage-efficient L1

cache filtered traces.

B. Contributions

This paper makes the following contributions:

• We propose and present in detail In-N-Out, a practical trace-

driven simulation method effective for modeling superscalar

processors (Section II). We discuss the key design issues and

quantify their effect. We describe our main algorithms so that

future users can reproduce the results of this paper and build

their own tools. To the best of our knowledge, our work is the

first to study the usage of reduced in-order traces to simulate

superscalar processors, and report its quantitative evaluation

results.

• We demonstrate that In-N-Out is capable of faithfully

replaying how a superscalar processor exercises and is affected

by the uncore components (Section IV-B). Our study used a

relevant temporal metric—the profile of the distances between

two consecutive memory accesses (in cycles). Given that the

importance of simulation productivity will only grow with

multicore scaling, we believe that our work is the essential first

step for developing a very fast and scalable multicore simulator

that can model a large number of superscalar processor cores.

• We also present a case study that involves three uncore

artifacts: the number of MSHRs, data prefetching, and L2

cache configuration (Section IV-D). Our results reveal that In-

N-Out is capable of tightly tracking the performance estimated

by an equivalent yet much slower execution-driven simulator.

As a result, In-N-Out was able to identify a design point that

optimizes the processor design much faster than the execution-

driven simulation strategy.

II. IN-N-OUT

A. Overview

The overall structure of In-N-Out is illustrated in Fig. 1. In-

N-Out uses a functional cache simulator to quickly generate

trace items on L1 data cache misses and write backs. The L1

filtered trace is comprised of these trace items. Compared with

a full trace where each trace item corresponds to an executed

instruction, an L1 filtered trace only includes a small subset

of instructions. With no timing information available during

trace generation, we focus on the length of the instruction

dependency chains in a program by tracking data dependen-

cies between instructions and record the information in the

trace. The filtered trace is fed into the trace simulator with

the target machine definition. The target machine definition

includes the processor’s ROB size and the configuration of the

uncore components. The trace simulator runs the simulation

algorithm to dynamically reconstruct the ROB state, honor

the dependency between trace items, and exploit the recorded

length of the dependency chains. Finally, the simulation results

are obtained from the trace simulator. In what follows, we

will first discuss how we generate L1 filtered traces while

monitoring the instruction dependencies. We will then detail

the trace simulation algorithm.

B. Preparing L1 filtered traces

1) Identifying instruction data dependency: In trace gen-

eration, we measure the length of the dependency chains, by

detecting the data dependency between instructions. When an

instruction is processed, an instruction sequence number (ISN)

is given to the instruction in the program order. When an

instruction writes to a register, it labels the output register

with its ISN. Later, when an instruction reads data from

the same register, the labeled ISN is used to identify the

existing dependency. The length of the dependency chain is

incremented when a new instruction is included. When two

separate dependency chains merge at one instruction, we use

the length of the longer dependency chain.

The dependency between trace items is also identified and

recorded in the dependent trace item. The recorded depen-

dency information includes the ISN of the parent trace item

and the number of instructions between the two trace items in

the dependency chain. For instructions depending on multiple

trace items, we keep the ISNs of the two most recent trace

items in the dependency chain. While storing more than

two trace items may improve accuracy, we experimentally

determined that storing at most two ancestors is sufficient.

For a store trace item, we distinguish the data dependency in

memory address computation and store operand to correctly

handle memory dependencies during trace simulation.

Besides the direct dependency between trace items, an

indirect dependency may exist via a “delayed hit”. A delayed

hit occurs when a memory instruction accesses a cache block

that is still in transit from the lower-level cache or the memory.



The second access to the block after a miss is registered as a

hit, but the access has to wait for the data to be brought from

the memory. Consider an L1 data cache miss that depends on

an L1 delayed hit. This L1 data cache miss must be processed

after the previous data cache miss that caused the delayed hit,

since the delayed hit has to wait until the data is brought by the

previous data cache miss [4]. To take this indirect dependency

into account, when an L1 data cache miss occurs, the cache

block is labeled with the ISN of the memory instruction that

generated the miss. Later, when a memory instruction accesses

the same cache block, the labeled ISN on the cache block is

compared with the ISNs of the memory instruction’s ancestor

trace items. The two largest ISNs are then written in the

memory instruction’s output register. Note that a trace item

generated by a load can be marked as a dependent of a trace

item generated by a store, if it depends on delayed hits created

by the store.

2) Estimating instruction execution time: Given a small

code fragment of a program, the execution time of the

fragment is bounded by the length of the longest depen-

dency chain in the fragment [5], [7], [9], [14]. Based on

this observation, we partition the full instruction stream into

fixed size “windows” and view the program execution as the

sequence of these windows. We then determine the length

of the longest dependency chain in each window to estimate

its execution time. The total execution time can be derived

by simply adding the execution times of all windows. The

instruction execution time between two trace items is estimated

by DC lengthcurr − DC lengthprev , which correspond to

the measured dependency chain length up to the current trace

item and the previous trace item, respectively.

However, there is complication to this approach. Consider

a superscalar processor fetching and executing instructions in

a basic block. If the processor can fetch and dispatch the

entire basic block into the ROB instantly, the length of the

longest dependency chain in the basic block can be used to

estimate the execution time of the basic block. However, since

a processor may need several cycles to fetch and dispatch

all the instructions in the basic block, the processor may

finish executing instructions in the longest dependency chain

before the entire basic block is fetched. Michaud et al. [14]

recognized this case and estimated the execution time of a

basic block as a function of the instruction fetch time and the

length of the dependency chains in the basic block.

In our work, we take a simpler approach. We set the

dependency monitoring window (DMW) size small enough to

eliminate the case discussed above. We set the DMW size to

a multiple of the processor’s dispatch-width and measure the

length of the longest dependency chain in the DMW. Using

this strategy, determining the right DMW size is critical to

achieve good estimation accuracy. If the DMW size is too

small, we may miss instructions that can actually execute in

parallel. However, if it is too large, we may consider more

instructions for parallel execution than we should. Moreover,

we observed that a single DMW size does not work equally

well for all programs. We evaluate the effect of using different
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Fig. 2. (a) Three independent L2 cache misses from memory instructions A,
B, and C. Inside parentheses is the ISN of the memory instruction. (b) The
status of the ROB: instruction C is not in the ROB with A and B.

DMW sizes on simulation accuracy in Section IV-A.

C. Out-of-Order Trace Simulation

At the heart of out-of-order trace simulation is the ROB

occupancy analysis. We will first discuss how the ROB state

can stall program execution, and then describe our trace

simulation algorithm.

1) ROB Occupancy Analysis: The ROB plays a central role

in parallel instruction execution, since only the instructions

that are in the ROB can be executed together. For example,

with a 96-entry ROB, two memory instructions cannot be

simultaneously outstanding if they are 96 or more instructions

away from each other [9]. The example in Fig. 2 shows how

instructions accessing the memory can stall the execution of

the program with limited ROB size.

Suppose all three memory instructions A, B, and C miss

in the L2 cache, and A becomes the head of the ROB. Given

their ISN, B can be placed in the ROB with A, since the

number of instructions between A and B is smaller than the

ROB size. However, the number of instructions between A

and C is larger than the ROB size. Consequently, C cannot

issue a cache access while A is in the ROB. Cache access

from B can overlap with the cache access from A. Once the

ROB is full and there are no more instructions to issue, the

program execution stalls until A commits. After A commits

and exits the ROB, the program execution resumes. The issued

instructions between A and B also commit at the processor’s

commit rate, which allows the instructions behind the tail of

the ROB, including C, to enter the ROB until ROB is not full.

Based on this observation, we reconstruct the ROB during

trace simulation. In trace generation, when a trace item is

generated on L1 cache miss, the ISN of the L1 cache miss

is recorded in the trace item. During simulation, we use the

ISN of the trace item to determine which trace items can be

dispatched to the ROB. We allow all L2 cache accesses (trace

items) with no dependency stalls in the ROB to issue, and stop

fetching trace items when the fetched trace item is farther from

the ROB head by at least the ROB size.

2) Implementing out-of-order trace simulation: Table I

lists the notations used in the rest of this section. In trace

simulation, we employ two lists to implement our simulation

algorithm: rob-list and issue-list. rob-list links trace items in

program order to reconstruct the ROB state during trace sim-

ulation. Trace items are inserted into rob-list if the difference



TABLE I
NOTATIONS USED IN SECTION II-C2.

DC The instruction dependency chain
rob-list The list used to link trace items

with respect to trace item’s ISN
issue-list The list used to link trace items

with respect to trace item’s ready time
rob head The trace item in the head of rob-list
issue head The trace item in the head of issue-list

sim time The current clock cycle time
ready time The time when a trace item

is ready to be processed
return time The time when the trace item’s

cache access returns
trace process time The time to process issue head
rob head commit time The time to remove rob head from rob-list

1: while (1) do

2: sim time++;
3: if (sim time == rob head commit time) then
4: Commit Trace Items();
5: Update ROB();
6: update rob head commit time for the new rob head
7: end if
8: if (sim time == trace process time) then
9: Process Trace Items();

10: end if
11: if (no more trace items left in the trace file) then
12: break; /* END OF TRACE SIMULATION */
13: end if

14: end while

Fig. 3. Pseudo-code of our trace simulation algorithm.

between the trace item’s ISN and rob head’s ISN is smaller

than the ROB size. issue-list is used to process trace items out

of order. Modern superscalar processors can issue instructions

while long latency operations are still pending, if they are

in the ROB and have no unresolved dependency. Similarly,

we determine that a trace item is ready to be processed,

if it is in rob-list and has no unresolved dependency with

other preceding trace items in rob-list. Ready trace items

are inserted in issue-list and lined up with respect to their

ready time. The head of issue-list is always the one that

gets processed. issue-list and rob-list are used to mimic the

superscalar processor’s ability to issue instructions out of order

and commit completed instructions in program order. rob-

list stalls the trace simulation when there are no trace items

to process and new trace items are not inserted. The trace

simulation resumes when new trace items are inserted after

rob head is removed. This reflects how a superscalar processor

stalls the program execution when the head of the ROB is

a pending memory instruction and there are no instructions

to issue in the ROB. The processor execution resumes after

the memory instruction commits and new instructions are

dispatched into the ROB.

Fig. 3 presents the high-level pseudo-code of our trace

simulation algorithm to model the superscalar processor with

the baseline configuration described in Section III-A. The key

steps are described below.

Commit Trace Items. The time to remove rob head from

rob-list is indicated by rob head commit time. Depending on

the commit-width, more than one trace item can be removed

from rob-list. If rob head was generated by a store instruction,

we make a write access to L2 cache before we remove

rob head. After rob head is removed, the next trace item in

rob-list becomes the new rob head.

Update ROB. After committing trace items, we attempt to

insert new trace items in rob-list. Since multiple trace items are

inserted in rob-list simultaneously, we estimate when the new

trace item will actually be dispatched in the ROB. Assuming

that the ROB is full at rob head commit time, we define the

dispatch-time as,

dispatch-time = rob head commit time+
⌈

ISNnew trace item

dispatch-width

⌉

−

⌈

ISNcommit rob head + ROB size

dispatch-width

⌉

where ISNnew trace item represents the ISN of the new

trace item and ISNcommit rob head is the ISN of the

trace item that was committed at sim time. At the start

of the trace simulation, when rob-list is constructed for

the first time, the dispatch-time of the trace items is

sim time +
⌈

ISNnew trace item

dispatch-width

⌉

. If the inserted trace item

has no dependency to address, the trace item’s ready time

is set to “dispatch-time + 1”. If the trace item depends

on a preceding trace item in rob-list, the ready time is

set to MAX(dispatch-time+1, dependency-resolve-time),
where dependency-resolve-time is the parent trace item’s

return time plus the number of instructions between the parent

trace item and the new trace item in the dependency chain.

Update rob head commit time. After updating rob-list,

rob head commit time is set to MAX(sim time +
inst exec time, rob head′s return time + 1) for the new

rob head, where inst exec time is the time required to

issue and commit instructions between the previous and

current rob head. We estimate inst exec time as,

inst exec time =

MAX(

⌈

ISNrob head

commit-width

⌉

−

⌈

ISNprev rob head

commit-width

⌉

,

recorded DC length in rob head)

where ISNrob head and ISNprev rob head are the ISN of

current and previous rob head, respectively.

Process Trace Items. The time to process issue head is

indicated by trace process time. If issue head was generated

by a load instruction, we first make a read access to the L2

cache and then search for dependent trace items in rob-list. If

a dependent trace item is identified, we set its ready time to

dependency-resolve-time as described above. If issue head

was generated by a store instruction, we set issue head’s

return time to sim time and perform a write access when

it is removed from rob-list; i.e., when it commits. Memory

dependency is examined when we search rob-list to find ready

trace items after a cache access. If there is a store trace item

with unresolved memory address dependency in rob-list, all

load trace items behind the store trace item are not inserted

in issue-list.



TABLE II
BASELINE MACHINE MODEL.

Dispatch/issue/commit width 4

Reorder buffer 96 entries

Load/Store queue 96 entries

Integer ALUs (∀ FU lat. = 1) 4

Floating point ALUs (∀ FU lat. = 1) 2

L1 i- & d-cache (perfect i-cache) 1 cycle, 32KB,
8-way, 64B line size, LRU
(Perfect ITLB and DTLB)

L2 cache (unified) 12 cycles, 2MB,
8-way, 64B line size, LRU

Main memory latency 200 cycles

Branch predictor Perfect

3) Incorporating a data prefetcher and MSHRs: Important

processor artifacts such as data prefetching and MSHRs can

be easily added into our simulation algorithm.

Modeling the data prefetcher. Modeling the data prefetcher

in L2 cache is straightforward. Since the trace items represent

the L2 cache accesses, the prefetcher monitors the L2 cache

accesses from the trace items and generates a prefetch request

to the memory as necessary.

Modeling the MSHRs. We assume that an MSHR can hold

the miss and delayed hits to a cache block. Since the number

of outstanding cache accesses is now limited by the available

MSHRs, issue head or rob head cannot issue a cache access

if there is no free MSHR.

III. EXPERIMENTAL SETUP

A. Machine model

Table II lists our baseline model’s superscalar processor con-

figuration, which resembles the Intel Core 2 Duo processor [6].

In Section IV, like previous proposals [4], [11], we assume

perfect branch prediction and instruction caching as our focus

is on the out-of-order issue and the data memory hierarchy

of the superscalar processor architecture. We will separately

discuss how to incorporate branch prediction and instruction

caching within In-N-Out in Section IV-E.

We use two different machine models in experiments, “base-

line” and “combined.” The baseline model assumes infinite

MSHRs and no data prefetching. The more realistic combined

model incorporates data prefetching and MSHR. For prefetch-

ing, we implemented two sequential prefetching techniques,

prefetch-on-miss and tagged prefetch [16] and stream-based

prefetching [18].

The baseline and combined machine configurations will

be simulated with sim-outorder [1] (“esim”) and our

In-N-Out trace-driven simulator (“tsim”). sim-outorder

has been largely used as a counterpart when verifying a

new simulation method or an analytical model for super-

scalar processors [4], [5], [9], [11], [15], [20]. We extended

sim-outorder with data prefetching and MSHRs. tsim

implements the algorithm described in Section II-C2. To drive

tsim, we adapt sim-cache functional simulator [1] to

generate traces.

TABLE III
INPUTS USED FOR THE SPEC2K BENCHMARKS.

Integer Input Floating point Input

mcf inp.in art c756hel.in
gzip input.graphic galgel galgel.in
vpr route equake inp.in
twolf ref swim swim.in
gcc 166.i ammp ammp.in
crafty crafty.in applu applu.in
parser ref lucas lucas2.in
bzip2 input.graphic mgrid mgrid.in
perlbmk diffmail apsi apsi.in
vortex lendian1.raw fma3d fma3d.in
gap ref.in facerec ref.in
eon rushmeier wupwise wupwise.in

mesa mesa.in
sixtrack inp.in

B. Benchmarks

We use all benchmarks from the SPEC2K suite. SPEC2K

programs are valid benchmarks for our work, since it of-

fers a variety of core and uncore resource usage patterns.

When we show how closely tsim reproduces the superscalar

processor behavior, we use a selected set of benchmarks

rather than all benchmarks for more intuitive presentation:

mcf, gcc, gzip, twolf (integer), fma3d, applu, equake, and

mesa (floating point). Our selections are drawn from the eight

clusters present in the SPEC2K suite, formed with principal

component analysis (PCA) and K-means clustering techniques

applied to key microarchitecture-independent characteristics

of the benchmark programs [8]. Table III shows the inputs

used for the benchmarks. Programs were compiled using the

Compaq Alpha C compiler (V5.9) with the -O3 optimization

flag. For each simulation, we skip the initialization phase

of the benchmark [15], warm up caches in the next 100M

instructions, and simulate the next 1B instructions.

C. Metrics

Throughout Section IV we use CPI error and relative

CPI change as the main metrics. CPI error is defined

as (CPItsim − CPIesim)/CPIesim, where CPItsim and

CPIesim are the CPI obtained with tsim and esim, re-

spectively. The CPI error represents the percentage of cycle

count difference we obtain with tsim compared with esim.

A negative CPI error suggests that the simulated cycle count

with tsim is smaller. The average CPI error is obtained

by taking the arithmetic mean of the absolute CPI errors,

as similarly defined in [4]. Relative CPI change is used to

measure the performance change of a machine configuration

relative to the performance of another (baseline) configuration.

It is defined as (CPIconf2 − CPIconf1)/CPIconf1, where

CPIconf1 represents the CPI of a base configuration and

CPIconf2 represents the CPI of a revised configuration [12]. A

negative relative CPI change suggests that the simulated cycle

count with CPIconf2 is smaller than CPIconf1, i.e., perfor-

mance improved with conf2 relative to conf1. In addition,

we use relative CPI difference to compare the performance

change amount of esim and tsim. Relative CPI difference
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Fig. 4. The CPI error with different DMW sizes. Inside parenthesis is the average CPI error of each DMW size.

is defined as |rel cpi chgesim − rel cpi chgtsim|, where

rel cpi chgesim and rel cpi chgtsim are the relative CPI

change reported by esim and tsim, respectively.

IV. QUANTITATIVE EVALUATION RESULTS

In this section, we comprehensively evaluate In-N-Out. Note

that only a single trace file is used for each benchmark to run

all experiments.

A. Model accuracy

Baseline configuration. We start evaluating tsim with the

baseline configuration. Fig. 4 shows the effect of using dif-

ferent DMW sizes on trace simulation accuracy. The size

of the DMW has a large effect on the accuracy except for

memory-intensive benchmarks, such as mcf and swim. For all

benchmarks, tsim showed smaller CPI when larger DMW

was used in trace generation.

When DMW size was 4, it was not big enough to bring in

instructions in independent dependency chains, whereas esim

could contain up to 96 instructions in its window (ROB) and

execute instructions from independent dependency chains in

parallel. tsim showed larger CPI than esim for 20 (out of

26) benchmarks. When DMW size was increased to 8, the

CPI error decreased significantly for many benchmarks, since

we were able to monitor more independent dependency chains

together.

gzip, galgel, and fma3d showed steady improvement in

trace simulation accuracy with larger DMW. However, many

benchmarks showed larger CPI error, smaller CPI compared

with esim, when DMW size was larger than 8. This is because

we assume all instructions in the DMW are fetched instantly,

whereas the instructions that we monitor in the DMW are

not fetched at once in esim. Hence, the estimated instruction

execution time in trace generation becomes smaller than the

time measured with esim. The discrepancy becomes larger

when larger DMW is used in trace generation.

The results show that our method provides relatively small

CPI error. The average CPI error was 7% when DMW size was

8 and 10% when DMW size was 16. There are benchmarks

that show large CPI errors regardless of the DMW size, such

as gcc and eon. We suspect that there may be other important

resource conflicts to consider besides the ROB size. Our result

suggests that adjusting the DMW size adaptively may increase

the simulation accuracy. We leave reducing the CPI errors as

our future work. In the rest of this section, we will fix the

DMW size to 8 for all benchmarks.

To explore a large design space in early design stages, it

is less critical to obtain very accurate (absolute) performance

results of a target machine configuration. The performance

model should rather quickly provide the performance change

directions and amounts to correctly expose trade-offs among

many different configurations. In the following results, we will

present tsim’s capability to closely predict the relative CPI

change seen by esim.

Combined configuration. Let us turn our attention to how

tsim performs with regard to data prefetching and MSHRs.

We use a relative metric here to compare the configurations

with and without these artifacts. Fig. 5(a) presents our results,

comparing the relative CPI change with esim and tsim

when different prefetching techniques are employed. Among

the eight selected benchmarks, equake obtained the largest

benefit from data prefetching. applu shows good performance

improvement with tagged prefetching. Overall, tsim closely

follows the performance trend revealed by esim.

Fig. 5(b) compares the relative CPI change with finite

MSHRs. Again, the result demonstrates that tsim closely

reproduces the increase in cycle count. The largest relative

CPI change was shown by fma3d with 4 MSHRs—325% with

esim and 309% with tsim.

Finally, the CPI error with the combined configuration is

presented in Fig. 6. Comparing Fig. 4 and Fig. 6, we observe

that tsim maintains the average CPI error of the baseline

configuration.

B. Impact of uncore components

Until now, our evaluation of tsim has focused on comparing

the CPI of esim and tsim by measuring the CPI error or

the relative CPI change. In this subsection we will address

two important questions about how well tsim captures the

interaction of a processor core and its uncore components:

(1) Does tsim faithfully reproduce how a processor core

exercises uncore resources? and (2) Can tsim correctly reflect

changes in the uncore resource parameters in the measured

performance? These questions are especially relevant when

validating the proposed In-N-Out approach in the context
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of multicore simulation; the shared uncore resources in a

multicore processor are subject to contention as they are

exercised and present variable latencies to the processor cores.

To explore the first question, for each benchmark, we build

histograms of the distance (in cycles) between two consecutive

memory accesses (from L2 cache misses, write backs, or L2

data prefetching) over the program execution with esim and

tsim. Our intuition is that if tsim preserves the memory

access patterns of esim, the two histograms should be similar.

To track the temporal changes in a program, the program

execution is first divided into intervals of 100M instructions

and a histogram is generated for each interval. Each bin in a

histogram represents a specific range of distances between two

consecutive memory accesses. The value in a bin represents the

frequency of distances that fall into the corresponding range.

Fig. 7(a) and (b) depict the histograms of the first interval

of mgrid and gcc. Both plots show that tsim preserves the

temporal memory access patterns of the programs fairly well.

We define a metric to compare esim and tsim with a single

number as follows,

Similarity =

∑n

i=0
MIN(bin esimi, bin tsimi)

∑n

i=0
bin esimi

where i is the bin index and bin esimi and bin tsimi are

the frequency value in ith bin collected by esim and tsim,

respectively. The MIN(bin esimi, bin tsimi) returns the

common population between esim and tsim in ith bin. High

similarity value implies tsim’s ability to preserve the memory

access pattern of esim. If the similarity is 1, it suggests

that the frequency of the collected distances between memory

accesses in the two simulators is identical. Table IV presents

the computed average Similarity over all intervals for all

SPEC2K benchmarks. All, except one, showed 90% or higher

similarity (18 was higher than 95%).

To address the second question, Fig. 8 compares the relative

CPI change obtained with esim and tsim when six important

uncore parameters are changed. Changing an uncore parameter

makes the memory access latencies seen by the processor

core different. The average relative CPI difference is reported

for all SPEC2K benchmarks. A short bar simply means a
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TABLE IV
THE SIMILARITY IN MEMORY ACCESS PATTERNS BETWEEN esim AND

tsim (SHOWN IN PERCENTAGE).

Similarity Benchmark (similarity)

< 90% mgrid (84%)

gzip (91%)
art, equake (92%), lucas (93%)
wupwise, parser, swim (94%)

≥ 90% fma3d, gap, ammp, applu (96%)
bzip2, vpr (97%), perl, galgel (98%)
crafty, mesa, mcf, gcc, apsi
vortex, facerec (99%)
sixtrack, eon, twolf (100%)

small relative CPI difference between esim and tsim. For

example, when 2MB L2 cache is changed to 1MB L2 cache,

gcc experiences a relative CPI change of 18% with esim and

26% with tsim. The relative CPI difference of the two is

8%, which is shown on the gcc’s leftmost bar in Fig. 8. Note

that the performance change directions predicted by esim and

tsim always agreed. The largest relative CPI difference (37%)

was shown by mgrid when the tagged prefetcher is replaced

with a stream prefetcher. Overall, the relative CPI differences

were very small—the arithmetic mean of the relative CPI

difference was under 4% for all six new configurations.

C. Simulation speed

The biggest advantage of using tsim over esim is its very

fast simulation speed. We measured the absolute simulation

speed of tsim and speedups over esim with the combined

configuration on a 2.26GHz Xeon-based Linux box with an

8GB main memory. The observed absolute simulation speeds

range from 10 MIPS (mcf) to 949 MIPS (sixtrack) and

their average is 156 MIPS (geometric mean). The observed

simulation speedups range from 13× (art) to 684× (eon) and

their average (geometric mean) is 115×. Note that this is the

actual simulation speedup without including the time spent for

fast-forwarding in esim. When we take the fast-forwarding

period of the execution-driven simulation into account, the

average simulation speedup was 180×.

The actual trace file size used was 11 (sixtrack) to 4,168

(mcf) in bytes per 1,000 simulated instructions. We can further

reduce the size by compressing the trace file when it is not

used. Note that trace file size reductions of over 70% are not

uncommon when using well known compression tools like

gzip.

D. Case study

Our evaluation results so far strongly suggest that In-N-Out

offers adequate performance prediction accuracy for studies

comparing different machine configurations. Moreover, In-N-
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Out was shown to successfully reconstruct a superscalar pro-

cessor’s dynamic uncore access behavior. To further show the

effectiveness of In-N-Out, we design and perform a case study

which involves MSHRs, a stream prefetcher, and L2 cache. In

this study, we selected three different sets of programs for

each experiment. Each set has eight programs that are most

sensitive to the studied parameter.

When the number of MSHRs increases, the CPI decreases

because more memory accesses can be outstanding simulta-

neously. Both esim and tsim reported the largest decrease

in CPI when the number of MSHRs increased from 4 to 8

as shown in Fig. 9(a). The CPI becomes stable when more

MSHRs are provided. The close CPI change is a result of

tsim’s good reproduction of esim’s temporal memory access

behavior.

In the stream prefetcher, the larger (smaller) prefetch dis-

tance and prefetch degree makes the prefetcher more aggres-

sive (conservative) when making prefetching decisions [18].

In general, the CPI increases if the prefetcher becomes more

conservative. In Fig. 9(b), both esim and tsim reported the

largest CPI increase when the performance distance and degree

were changed from (16, 2) to (8, 1). Finally, Fig. 9(c) shows

that when the L2 cache associativity is increased, both esim

and tsim reported the largest decrease in CPI when the L2

cache associativity changed from 1-way to 2-way associativity.

Different stream prefetcher configuration or different set-

associativity has an effect on CPI by changing the cache miss

rate. The close CPI trend obtained with esim and tsim

shows that tsim correctly follows how the core responds

to different uncore access latencies (e.g., cache misses). The

results shown in our case study suggest that tsim can be

effectively used in the place of esim to study the relatively

fine-grain configuration changes.

E. Effect of i-caching and branch prediction

There are two reasons why we discuss the issues with instruc-

tion caching and branch prediction separately in this paper.

First, the main target of the proposed In-N-Out approach is

not to study “in-core” parameters like L1 instruction cache and

branch predictor, but rather to abstract a superscalar processor

core. Second, our goal is to validate In-N-Out by focusing

on two aspects of a superscalar processor—handling dynamic

out-of-order issue and reproducing (parallel) memory access

behavior. Nevertheless, we briefly describe below strategies

one can use to model the effect of instruction caching and

branch prediction.

To model the instruction caching effect, during trace gen-

eration, we can generate trace items on L1 instruction cache

misses. The penalties from instruction cache misses can be

accounted for at the simulation time by stalling simulation

when an instruction cache miss trace item is encountered and

if there are no trace items left in the ROB. Our experiments

reveal that with this simple strategy In-N-Out can accurately

predict the increased clock cycles due to instruction cache

misses. In fact, compared with a perfect instruction cache, the

CPI increase with a realistic 32KB instruction cache (similar

to the data cache in Table II) was 1% on average in both esim

and tsim. Hence, our evaluation of In-N-Out is not affected

by the perfect instruction cache used in the experiments.

To account for the effect of branch prediction, we can

employ a branch predictor in the trace generator. This task is

more involving than modeling the instruction caching effect

because branch misprediction penalty depends on microar-

chitectural parameters like the number of pipeline stages.

In our preliminary investigation, we use sim-outorder

with a combined branch predictor to generate and annotate

traces. We record the timing information, including the branch

misprediction penalties, in trace items and generate trace items

on both correctly and incorrectly predicted control paths.

The information is then utilized in simulation time. Using

our representative benchmarks we found that branch handling

overheads in esim and tsim agree across the examined

programs and the CPI increase due to branch mispredictions

was 10% in esim and 9% in tsim on average. We also found

a majority of branch instructions’ dynamic behavior (e.g., the

number of correct or incorrect predictions) to be fairly stable

and robust even if memory access latency changes.

In summary, our empirical results reveal that we can rea-

sonably accurately model the effect of instruction caching and

branch prediction within the In-N-Out framework. Incorporat-



ing these two “in-core” artifacts do not affect the effectiveness

of our main algorithm.

V. CONCLUSIONS

This paper introduced In-N-Out, a novel trace-driven simu-

lation strategy to evaluate out-of-order superscalar processor

performance with reduced in-order traces. By using filtered

traces instead of full traces, In-N-Out requires less storage

space to prepare traces and reduces the simulation time. We

demonstrated that In-N-Out achieves reasonable accuracy in

terms of absolute performance estimation, and more impor-

tantly, it can accurately predict the relative performance change

when the uncore parameters such as L2 cache configuration

are changed. We also showed that it can easily incorporate

important processor artifacts such as data prefetching and

MSHRs, and track the relative performance change caused

by those artifacts. Compared with a detailed execution-driven

simulation, In-N-Out achieves a simulation speedup of 115×
on average when running the SPEC2K benchmark suite. We

conclude that In-N-Out provides a very practical and versatile

framework for superscalar processor performance evaluation.
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