J. Parallel Distrib. Comput. 73 (2013) 509-521

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Accurately modeling superscalar processor performance with

reduced trace

Kiyeon Lee ™!, Sangyeun Cho

@ CrossMark

Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 24 March 2012

Received in revised form

28 November 2012

Accepted 5 December 2012
Available online 20 December 2012

Keywords:

Simulation methodology
Trace-driven simulation
Out-of-order superscalar processor

Trace-driven simulation of out-of-order superscalar processors is far from straightforward. The dynamic
nature of out-of-order superscalar processors combined with the static nature of traces can lead to
large inaccuracies in the results when the traces contain only a subset of executed instructions for trace
reduction. In this paper, we describe and comprehensively evaluate the pairwise dependent cache miss
model (PDCM), a framework for fast and accurate trace-driven simulation of out-of-order superscalar
processors. The model determines how to treat a cache miss with respect to other cache misses recorded
in the trace by dynamically reconstructing the reorder buffer state during simulation and honoring
the dependencies between the trace items. Our experimental results demonstrate that a PDCM-based
simulator produces highly accurate simulation results (less than 3% error) with fast simulation speeds
(62.5x on average) compared with an execution-driven simulator. Moreover, we observed that the
proposed simulation method is capable of preserving a processor’s dynamic off-core memory access
behavior and accurately predicting the relative performance change when a processor’s low-level

memory hierarchy parameters are changed.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Simulation is an important tool for computer architects [30]. It
enables one to quickly analyze the behavior of a complex system
and to evaluate subtle design trade-offs in a controlled experimen-
tal environment. However, its use is limited to situations where it
is both reasonably accurate and fast. Trace-driven simulation is a
widely used simulation method when traces are prepared and fast
simulation is required especially in an early design stage.

Trace-driven simulation’s increased speed results from replac-
ing the detailed functional execution of a benchmark with a highly
representative trace of a program execution. The trace may cap-
ture every executed instruction of a program, or it may contain the
information of certain events, such as L2 cache accesses [27]. Trace-
driven simulation with a full instruction trace is a widely used
method to precisely model the performance of an out-of-order
superscalar processor? [3]. However, large disk space is required
to store a full trace file. Moreover, simulating the full instruction

* Correspondence to: San #24 Nongseo-Dong, Giheung-Gu, Yongin-City,
Gyeonggi-Do, South Korea.
E-mail addresses: kiyeon00.lee@samsung.com (K. Lee), cho@cs.pitt.edu
(S. Cho).
1 Currently working at the System LSI Division of Samsung Electronics.
2 In this paper, we use the terms “out-of-order superscalar processor” and
“superscalar processor” interchangeably.

0743-7315/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.12.002

trace slows down the trace simulation speed. Alternatively, one
may employ a filtered trace instead of a full trace to model super-
scalar processor performance. Compared with a full trace, a filtered
trace can achieve significantly faster simulation speed and smaller
storage space, while maintaining the simulation accuracy close to
execution-driven simulation [19].

Filtered trace-driven simulation works well for in-order single-
issue cores. For example, during the trace generation phase,
one might record the type and address of every memory
operation as well as the number of instructions executed and
the number of cycles elapsed since the last memory operation.
This filtered trace only includes memory accesses and summarizes
the instructions executed between operations. Because the core
executes instructions in order and blocks while waiting for a
memory access, the filtered trace would be the same regardless of
the memory configuration. Thus one could simulate many different
memory hierarchy configurations using the same trace.

However, many issues arise when the same “block-and-
go” scheme is applied to superscalar processors. A superscalar
processor does not necessarily block during a memory access.
Modern processors often execute instructions during the memory
access to hide its latency cost. Previously, we examined three
strategies to approximate the impact of a long-latency memory
access on superscalar processor performance with filtered traces,
based on isolated cache miss model, independent cache miss model,
and pairwise dependent cache miss model [18]. The isolated cache
miss model is capable of accurately quantifying the impact of

510 K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

an “isolated” L1 cache miss. The model compares the number of
elapsed cycles after processing an L1 cache miss as L2 cache hit and
L2 cache miss. However, the proposed approach cannot accurately
compute the impact of overlapping L1 cache misses. To accurately
model the impact of both isolated and overlapping L1 cache misses,
we proposed the independent cache miss model. The model
determines when an L1 cache miss trace item can be processed
by dynamically reconstructing a processor’s reorder buffer (ROB)
state during simulation. Lastly, the pairwise dependent cache
miss model improves the independent cache miss model by
honoring the dependency between L1 cache misses. Among the
three strategies, the pairwise dependent cache miss model (PDCM)
was shown to achieve the highest simulation accuracy. While
this previous work formed a strong basis for fast and accurate
trace-driven simulation of superscalar processors, it used a fairly
simple processor model without some key processor artifacts
like branch prediction, instruction caching, prefetching, and miss
status handling registers (MSHRs) [16]. Other related work also did
not study all artifacts together [5,7,14,22].

This work improves the accuracy of PDCM and extends PDCM
with techniques to incorporate previously ignored processor ar-
tifacts. The impact of these artifacts on program execution times
was measured to be large—up to 61% (prefetching), 48% (branch
prediction), and 329% (MSHRs). We explore and evaluate individ-
ual techniques to model the artifacts and assess their combined
effectiveness based on a full-fledged processor configuration. Our
results demonstrate that the proposed techniques are effective,
leading to very small errors of less than 3% and a fairly high sim-
ulation speedup of 62.5x on average, compared with detailed
execution-driven simulation.

Furthermore, we examined whether PDCM preserves the tem-
poral off-core memory access patterns of a program. This prop-
erty is important for studies targeting the usage and contention
behavior of system-wide resources such as shared L2 cache, on-
chip interconnect, and memory controller. We show experimen-
tally that a majority of program execution intervals (typically over
90% of all intervals) preserve temporal off-core memory access
patterns. The result suggests that our approach could potentially
be used in studies focusing on multicore system resources rather
than processor core parameters such as L1 cache configuration and
issue width.

Finally, PDCM is shown to robustly predict the relative per-
formance of a new machine configuration once the result for the
baseline machine configuration has been obtained. The perfor-
mance change direction is always predicted correctly and the per-
formance change amount is predicted with a small error of less
than 4% on average.

In summary, PDCM accurately models the performance of a
realistic superscalar processor by first replacing the processor core
simulation with a filtered trace and then simulating the accesses to
the uncore components using the filtered trace. Using PDCM, one
can quickly evaluate various optimization techniques on uncore
components or study the relative performance by changing the
uncore configurations.

In the remainder of this paper, Section 2 first describes our
superscalar processor model. Section 3 describes PDCM in detail,
and Section 4 describes the experimental setup. We quantitatively
evaluate PDCM in Section 5. Section 6 summarizes related work
and we draw our conclusions in Section 7.

2. Machine model

Our machine model is a superscalar processor system with two
levels of cache memory and a main memory, as shown in Fig. 1.
The superscalar processor core model we use is sketched inside the
dotted box. It has a front-end “fetch pipe” that fetches and buffers

decode &
dispatch pipe

fetch pipe

processor core boundary

Fig. 1. Machine model having a superscalar processor core, L2 cache, and main
memory.

instructions for further processing. Once fetched, instructions are
decoded and dispatched to various functional units such as an ALU,
branch unit, or data memory access unit. They may be temporarily
stored in buffers (or reservation stations) associated with a specific
functional unit until the unit becomes available or input operands
arrive. When an instruction is dispatched, a new entry is allocated
in the reorder buffer (ROB) so that the “update and commit pipe”
can change the architectural state properly in the program order as
instructions are committed in the presence of special events such
as exceptions, branch mis-predictions, and cache misses. When a
memory access misses inan L1 cache, it accesses an off-core unified
L2 cache. If the access misses in the L2 cache, it will access the main
memory.

Our processor pipeline design resembles that of MIPS R10k pro-
cessor [29] and Intel Core [11]. More general description of super-
scalar processor design and operation can be found in Johnson [12]
and Shen and Lipasti [23].

3. Pairwise Dependent Cache Miss Model (PDCM)

A superscalar processor dynamically selects and executes
multiple instructions in parallel. As a result, more than one cache
miss can be outstanding. However, there is a limit on the number of
pending L1 cache misses, given a processor’s limited hardware data
structures and inherent dependencies between L1 cache misses.
With a 96-entry reorder buffer (ROB), for example, two memory
instructions cannot be simultaneously outstanding if they are 96
or more instructions away from each other, or if one depends on
the other.

PDCM builds on this observation. It reconstructs the ROB during
trace simulation to process a trace item only after the trace
item enters the ROB and if the trace item does not have an
unresolved dependency on preceding trace items in the ROB. In a
nutshell, PDCM analyzes the ROB occupancy status to determine
the progress of trace simulation and additionally when each trace
item can issue a cache access.

3.1. PDCM setup

Our trace-driven simulation framework employs two distinct
tools, a trace generator and a trace simulator. Fig. 2 illustrates
the relationship between the trace generator, trace simulator,
machine definitions, and trace files. The generic machine definition
refers to the superscalar processor core configuration that we use
in trace generation with a perfect L2 cache. The target machine
definition is the system-level processor configuration such as L2
cache configuration and main memory latency, that completes the
overall machine model we wish to study.

Following our previous work [18], we introduce the notion
of timing during the trace generation phase and embed time-

K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521 511

generic timing-aware
machine def. trace generator
program |
input
trace simulator sim. results
trace =
target
machine def.
Fig. 2. Trace-driven simulation setup.
a
| 15 cycles +— 25 cycles —{—— 20 cycles ——|— 10 cycles
A (100) B (130) C(180) D (220) E (240)
N 7
dependency
I A | 29 insts | B | 49 insts | C I 15 insts | -+ 24 insts - IE] 19 insts E

96-entry Reorder Buffer

Fig. 3. (a)Five trace items (A, B, C, D, and E) recorded in the trace file. Trace item B depends on trace item A, while all other trace items are independent of each other. Inside
parentheses is the instruction sequence number assigned to each trace item in program order. (b) The status of the ROB: Only the first three trace items are in the ROB.

related information in the trace. A trace item is generated from
an L1 data cache miss, similar to [4]. Each trace item captures:
the number of elapsed cycles since the last trace item and the
information of the memory instruction that generated the trace
item: cache access type (read or write), instruction sequence
number, instruction sequence number of the parent trace item (if it
depends on a previous trace item), cache address, and write-back
address (if a write-back occurs on a data cache miss). To extract
timing information, the trace generator must be able to model the
microarchitecture of a processor using a user-provided machine
definition. This work uses sim-outorder [1] to generate traces.
The trace simulator implements our out-of-order trace simulation
algorithm and the uncore component models.

In our PDCM framework, the processor core configuration used
in the trace generator must be identical to the core configuration
of the simulated machine. We assume that the processor core
parameters, such as branch prediction algorithm, ROB size,
available functional unit types, and L1 cache configuration, are
fixed when the focus of study is on the “uncore” components of
a processor chip.

3.2. Identifying the data dependency between traces

Identifying all data dependencies between trace items is critical
for accurate filtered trace simulation. In trace generation, to
detect the dependencies between trace items, we construct and
exploit data dependency chains during trace generation. In the
dependency chain, the instruction sequence number of a parent
trace item is propagated to the dependent trace items. We use
the dependency chains already implemented in the modified
sim-outorder simulator we use for trace generation. We note
that a single trace item may depend on multiple trace items.
However, we found that storing more than a single parent does
not produce noticeably better results [18]. Accordingly, we choose
to store at most one parent, the parent with the largest instruction
sequence number, in each trace item.

Besides the explicit dependency between trace items, there also
exists an implicit dependency due to delayed hits. A delayed hit
occurs when a memory instruction accesses a cache block that is
still in transit from the lower-level cache or the memory. Consider
an L1 data cache miss that depends on an L1 delayed hit. This L1
data cache miss must be processed after the previous L1 data cache
miss that caused the delayed hit, since there exists an implicit
dependency between the two L1 data cache misses via the L1
delayed hit in between [5].

To expose all dependencies between trace items during the
trace simulation phase, we generate trace items for L1 delayed hits
as well as L1 data cache misses. To identify delayed hits during
trace generation, when a cache block is brought into the cache on
a miss, we mark it with the instruction sequence number of the
memory instruction that generated the miss. We assume a hitin L1
data cache is a delayed hit, if the difference between the instruction
sequence number of the corresponding memory instruction and
the instruction sequence number recorded in the cache block is
smaller than a specified range.>

3.3. ROB occupancy analysis

ROB occupancy analysis examines the ROB occupancy status to
determine the progress of the trace simulation. More specifically,
we continue to run the trace simulation if the difference between
the instruction sequence number of a trace item and the head of
the ROB is smaller than the ROB size. A trace item can be processed
if it is in the ROB and if it has no unresolved data dependency. Let
us turn to the example in Fig. 3.

Suppose all five trace items A, B, C, D, and E miss in the L2 cache,
and A is the head of the ROB. Given their instruction sequence num-
ber, both B and C can be placed in the ROB with A, since the number
of instructions between A and C is smaller than the ROB size. How-
ever, the number of instructions between A and D is larger than the

3 The specified range should be at least the ROB size [5].

512 K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

Table 1
Notations used in Section 3.4.

current_time The current clock cycle time
ISN The instruction sequence number

rob-list The list used to reconstruct the ROB

robHead The trace item in the head of rob-list

issue-list The list used for out-of-order trace simulation

issueHead The trace item in the head of issue-list

robReadyTime The time when a trace item can be processed if it has no
data dependency stalls

traceProcessTime ~ The time to process a trace item

resolveTime The time when the cache access from a trace item is done

ROB size. Consequently, D and E cannot issue a cache access while
Ais in the ROB. C can issue a cache access in parallel with A, since
C is in the ROB and does not depend on A or B. However, B has to
wait until the cache access from A is done because it depends on
A. After A returns from L2 cache, B can issue a cache access and
A commits and exits the ROB. The issued instructions between A
and B also commit at the processor’s commit rate, which allows
the instructions between the tail of the ROB and D, as well as the
instruction in D, to advance to the ROB. Meanwhile, E cannot yet
enter the ROB. When B commits, the instructions between B and C
will follow and commit. As more and more entries become free, E
will finally move into the ROB and be issued.

Trace items generated for delayed hits help us correctly analyze
the ROB occupancy status. Assume that there is a memory
instruction with instruction sequence number 120, and it issues
a cache access after trace item B. If the cache access goes to the
same cache block as B, a delayed hit will occur. In this case, trace
item D cannot enter the ROB after trace item A commits, because
the memory instruction 120 will become the head of the ROB.

In essence, the ROB occupancy analysis monitors the ROB occu-
pancy after each successive trace item, allows all L2 cache accesses
without data dependency stalls in the ROB to issue, and blocks
any further processing of the following trace items if the ROB
is full.

3.4. Modeling a superscalar processor
Table 1 lists the notations used in this section.

3.4.1. Reconstructing the ROB

During trace simulation, we reconstruct the ROB with a linked
list referred to as rob-list. The trace items fetched from a trace
file are inserted in rob-list and sorted in increasing order of
their instruction sequence number (ISN). The trace item with the
smallest ISN in rob-list becomes the head of the ROB (robHead).

If a trace item has an ISN that is greater than or equal to the
sum of the ROB size and the ISN of robHead, the trace item cannot
enter the ROB. However, since the instructions are issued out of
order during trace generation, the trace items in a trace file are
not written in program order. Hence, when ROB is determined to
be full, the trace items that can enter the ROB may not have been
fetched from the trace file. To capture the correct ROB occupancy
status, trace items are fetched until the difference between a trace
item’s ISN and robHead’s ISN is larger than a specified range. The
size of the range does not affect the simulation accuracy, but it
should be larger than the ROB size in order to fetch all the trace
items that can enter the ROB. In our experiments, we continued to
fetch trace items until the difference was larger than two times the
ROB size. The trace items that cannot enter the ROB are marked as
“pending” trace items in rob-list. For instance, in our ROB example
in Fig. 3, trace items D and E are pending trace items when A
is robHead. When robHead commits, the pending trace items can
enter the ROB if there is enough room left in the ROB. New trace
items are fetched from the trace file if there are no pending trace
items.

3.4.2. Out-of-order trace simulation

We determine when to process a trace item (traceProcessTime)
based on our ROB occupancy analysis, the recorded cycle count,
and the dependency information. If a trace item has a parent
trace item, the trace item has to wait until its parent’s resolveTime
is known. Otherwise, we analyze the ROB occupancy status and
exploit the recorded cycle count to estimate when the trace
item can be processed (robReadyTime). Hence, traceProcessTime
of a trace item is the larger of robReadyTime and the parent’s
resolveTime. After we estimate traceProcessTime of a trace item,
we insert the trace item in a linked list that we will call issue-
list. issue-list sorts the trace items in increasing order based
on their traceProcessTime. In trace simulation, we process the
trace item in the head of issue-list (issueHead), which has the
smallest traceProcessTime. After issueHead is processed, we remove
issueHead from issue-list and the next trace item in the list becomes
the new issueHead.

Fig. 4 illustrates step by step how the trace items in the example
of Fig. 3 are handled by the ROB occupancy analysis. The first row
in the figure shows rob-list and issue-list with trace items A, B, C,
and D. Assume trace item A is robHead and A’s traceProcessTime is
(cycle) N. When trace items B and C are inserted in rob-list, we set
their robReadyTime to N 4 15 and N +40, respectively. Since C does
not have a parent trace item, C’s traceProcessTime is the same as ro-
bReadyTime. However, B depends on A, hence, we cannot estimate
B’s traceProcessTime until we know A’s resolveTime. Consequently,
only C is inserted in issue-list. Note that D is a pending trace item
when A is robHead.

At cycle N, A is processed and we set A’s resolveTime to N+
memory access latency. After processing A, we remove A from
issue-list and C becomes the new issueHead. Since we know A’s
resolveTime now, we can set B’s traceProcessTime and insert B in
issue-list as shown in the second row. There are two approaches—
eager and lazy—when estimating the dependent trace item'’s trace-
ProcessTime. The eager approach processes a dependent trace item
immediately after its parent trace item is resolved. On the other
hand, the lazy approach delays the processing of the dependent
trace item by the number of cycles between the parent and the
dependent trace item. The rationale is that there may be other
instructions depending on the parent trace item and executed
before the dependent trace item. We studied both approaches and
observed that the lazy approach achieves higher accuracy on aver-
age than the eager approach. We show our results using both ap-
proaches in Section 5.1.

Continuing with our example, C is processed in cycle N + 40,
and C’s resolveTime is set to N + 404+ memory access latency. After
processing C, we remove C, and B becomes the new issueHead. At
cycle N+ memory access latency, we remove A from rob-list, and B
becomes the new robHead. The pending trace item D can now enter
the ROB as shown in the last row of the figure.

Now that we described how the two key ideas of PDCM—ROB
occupancy analysis and out-of-order trace simulation—are imple-
mented, we now move on to the details of our trace simulation al-
gorithm.

3.4.3. PDCM with the baseline configuration

Fig. 5 shows the main loop in our trace simulation algorithm.
PDCM operates in two major steps: (1) reconstructing the ROB (line
3)and (2) processing the scheduled trace items (line 6). The details
of each step are described below. The pseudo-codes presented in
this section contain a dot (-) notation to represent the association
between a trace item and the recorded information. For example,
robHead.ISN means ISN of robHead.

e ReconstructROB(): Fig. 6 describes how we reconstruct the ROB
in trace simulation. When the simulated clock cycle time (current_

K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521 513
| 15 cycles | 25 cycles | 20 cycles | rob-list issue-list
| p——— T T !
-0 @ ® @ + | @ ® .
A(100) B (130) C(180) D (220) A(100) (C(180)
+PT: N +PT:0 APT:N+40 ~tPT:0 IPTIN -tPT: N +40
T: 0 -rT: 0 -rT: 0 -rT: 0
now: N cycles
A(100) B (130 €(180 C(180) B (130)
-tPT: N -eager tPT: N + MEM -tPT: N +40 PT:N+40 -eagertPT: N+ MEM
-rT: N + MEM -lazy tPT: N + MEM + 15 -rT: 0 -lazy tPT: N + MEM + 15
-T: 0
now: N + 40 cycles
A (100) B (130) C(180) B (130)
4PT: N -eager tPT: N + MEM -tPT: N + 40 -eager tPT: N + MEM
oT:N+MEM -lazy tPT: N + MEM + 15 -rT: N +40 + MEM

-rT: 0
now: N + MEM cycles

-lazy tPT: N + MEM + 15

B (130) C(180) D (220) B (130) D (220)
-eager tPT: N + MEM -tPT: N + 40 -tPT: N + MEM + 20 -eager tPT 4PT: N + MEM + 20
-lazytPT:N+ MEM +15 T:N+40+ MEM -T: 0 -lazy tPT

-rT: 0

Fig. 4. Using rob-list and issue-list to reconstruct the ROB and issue L2 cache accesses out of order during trace simulation. The example builds on the ROB example in Fig. 3.
The red dotted arrow shows that trace item B depends on A. The cycle counts between trace items on the first row assume perfect L2 cache. Pending trace item D in the first
row is depicted with lighter color. Several abbreviations are used in the example. “tPT” represents traceProcessTime, “rT” represents resolveTime, and “MEM” is the memory
access latency. “eager tPT” and “lazy tPT” stand for eager and lazy estimation of traceProcessTime, respectively.

1: while (1) do

2 if (current_time >= next_commit_time) then
3 ReconstructROB();

4 end if

5: while (current_time == next_event_time) do
6: ProcessTraceltem();

7 end while

8 if (END_OF_FILE) then

9 return;

0: end if

1: end while

Fig. 5. High-level pseudo-code of trace simulation in PDCM. next_commit_time
indicates the time to reconstruct the ROB and next_event_time is the time to process
the trace items.

time) reaches the time to commit a trace item (next_commit_time),
we attempt to remove the trace item from rob-list (lines 2-9). If
current_time is larger than robHead’s resolveTime, robHead commits
and the next trace item in rob-list becomes the new robHead. If
robHead is a write trace item, we make a write access to the L2
cache before it is removed (lines 3-5). We commit the trace items
until either rob-list becomes empty or the new robHead is not
ready to commit. After committing the trace items, rob-list accepts
“pending” trace items (lines 10-15). If there is no pending trace
items and if the ROB is not full, we fetch new trace items from the
trace file (lines 16-26). After a trace item is inserted in rob-list, we
insert the trace item in issue-list if we can estimate the trace item’s
traceProcessTime.

e ProcessTraceltem(): The L2 cache is accessed by issueHead, as
described in Fig. 7. The L2 cache access latency is used to set
resolveTime of the corresponding node in rob-list (lines 3 and
4). After issueHead accesses the L2 cache, rob-list is searched to
find the dependent trace items. We set traceProcessTime of the
identified dependent trace items and insert them in issue-list (lines
6-12). After processing issueHead, the next trace item in issue-list
becomes the new issueHead (line 16), and we determine when to
process the new issueHead (line 17).

If issueHead is a write trace item, we do not access the L2 cache,
but we set issueHead's resolveTime to current_time. The write trace
item accesses the L2 cache when it commits from rob-list.

3.4.4. Modeling various processor artifacts in PDCM

The algorithm described above can be easily extended to model
important processor artifacts, such as MSHRs, data prefetching,
branch mis-predictions, and instruction caching. To add new
processor artifacts in the analytical models [5,7,14,22], the
constructed mathematical equations are revised or new equations
may be required. This can be a burden when new machine
configurations need to be modeled. Unlike analytical models,
PDCM does not rely on mathematical equations. The processor
artifacts can be modeled with a little programming effort—revising
the trace generator or the trace simulator. For instance, the effect of
branch mis-prediction is modeled by simulating a branch predictor
during trace generation and L2 data prefetching is modeled by
implementing a data prefetcher in the trace simulator.

e Modeling MSHRs: In this paper, we focus on MSHRs for L2 cache
misses; the number of outstanding L2 cache misses is limited by
the number of available L2 MSHRs.

Extending PDCM with L2 MSHRs is relatively straightforward.
When an L2 cache miss occurs from issueHead, the L2 cache miss
cannot be processed if there is no available MSHRs. In such case,
we change issueHead’s traceProcessTime to the time when an MSHR
becomes available and reorder issue-list.

e Modeling a data prefetcher: In our work, we model a tagged
prefetcher. The tagged prefetcher fetches the next sequential cache
block when a miss occurs, or when a hit occurs in a prefetched
block [25]. Since the trace items represent the L2 cache accesses,
the tagged prefetcher simply needs to monitor the L2 cache
accesses from the trace items and make a prefetch request to the
memory if necessary. However, some trace items are generated
from L1 data cache hits because we generated extra trace items
for the delayed hits during trace generation. Hence, if the L2 cache
accesses from the delayed hit trace items hit in the prefetched
blocks, the tagged prefetcher will make more prefetching requests
than it should. To correctly handle data prefetching, we distinguish
the data cache miss trace items from the delayed hit trace items.
In trace simulation, we monitor all L2 cache misses and the L2 hits
only from the data cache miss trace items.

514 K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

—_

robNode = NULL;

14

robHead.resolveTime) do

Issue a write access to L2 cache;
end if

robHead = robNode;
end while
while (robNode is not NULL) and

[y

if (robHead is a write trace item) then

while (robHead is not NULL) and (robHead.resolveTime > 0) and (current_time >

robNode = robHead.next; /*next trace item in rob-list*/
Commit robHead; /*remove robHead from rob-list*/

(robNode.ISN — robHead ISN < ROB size) do

11: if (robNode.pending == TRUE) then

12: robNode.pending = FALSE; /* insert pending trace items in rob-list */

13: end if

14: robNode = robNode.next;
15: end while

16: while (1) do

17: newTrace = new trace item from the trace file;
18: if (newTrace.ISN — robHead.ISN < ROB size) then

19: insert newTrace in rob-list;

20: else if (newTraceISN — robHead.ISN > ROB size) and
(newTrace.ISN — robHead. ISN < 2x ROB size) then

21: newTrace.pending = TRUE;
22: insert newTrace in rob-list;
23: else

24: break;

25: end if

26: end while

Fig. 6. High-level pseudo-code for reconstructing the ROB.

1: rob = issueHead’s corresponding trace item in rob-list;
2: if (issueHead is a read trace item) then
3: make read access to L2 cache;
4: rob.resolveTime = current_time + L2 access latency;
5: node = robHead;
6: while (node is not NULL) do
T if (node’s parent.ISN == issueHead.ISN) then
8: node.traceProcessTime =
MAX(node.robReadyTime,
current_time + L2 access latency + elapsed cycles between issue-
Head and node);
9: Insert node in issue-list;
10: end if
11: node = node.next; /*next trace item in rob-list*/
12: end while
13: else
14: /* IssueHead is a write trace item*/
rob.resolveTime = current_time;
15: end if

16: issueHead = issueHead.next; /*next trace item in issue-list*/
17: next_event_time = issueHead.traceProcessTime;

Fig. 7. High-level pseudo-code for processing a trace item.

e Modeling branch prediction: Branch mis-predictions during
trace generation incur “speculative” trace items on mis-predicted
control paths. In trace generation, we distinguish the speculative
trace items from the non-speculative trace items, and the
dependency information is collected only if the parent trace item
is a non-speculative trace item. In trace simulation, a speculative
trace item accesses the L2 cache as a realistic superscalar processor
would do. However, we remove the speculative trace item from
rob-list after it is processed.

We observed two important aspects that can affect the accuracy
of branch handling. First, speculative trace items can affect the ROB
occupancy analysis, and second, a branch instruction depending on
the data brought by a memory instruction can affect the estimation
of traceProcessTime. Let us turn to Fig. 8 for illustration.

In Fig. 8(a), assume instruction 100 is the head of the ROB
and a branch mis-prediction occurs from instruction 110 allowing

the speculative instructions to enter the ROB. After the branch
is resolved, the instructions behind instruction 110 are squashed
and the processor fills the ROB with instructions fetched from
the correct path. Instruction 100 and 140 are in the ROB at the
same time even though they are more than ROB size number of
instructions away. To handle this case correctly in our analysis,
ISN is incremented only when it is assigned to the non-speculative
instructions.

Our second observation is about the perfect L2 cache assumed
in trace generation. If branch instructions depend on the data
brought by L2 cache misses, the number of speculative instructions
with a perfect L2 cache and a realistic L2 cache will be different.
Fig. 8(b) shows an example from mcf benchmark in SPEC2K
benchmark suite [26], where a branch instruction depends on
memory instructions. To address this issue, we generate an extra

K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521 515

a
Before [i200 | .. [i110 | [i120 | | [240 |
After | 100 | EY
h(e;ad 32-entry ROB
b

network_t *net;

if(net->m + MAX_NEW_ARCS > net->max_m
&& (net->n_trips*net->n_trips)/2 + net->m > net->max_m) {

Fig. 8. (a) The ROB occupancy status before and after the branch mis-prediction
is resolved. Assume instructions 110 through 120 are fetched from an incorrectly
predicted control path. (b) An example from mcf where a branch depends on
memory instructions.

trace item for a branch instruction if the branch depends on a trace
item. In trace simulation, the trace items behind a branch trace
item in rob-list are not processed until the branch trace item is
processed. In Section 5.1, we show that our approach accurately
models the effect of branch mis-predictions.

e Modeling instruction caching: Finally, to model the effect of
instruction caching, we employ a realistic instruction cache in
trace generation. If L2 cache is accessed by an L1 instruction cache
miss, we allow an L2 cache miss to occur in trace generation. The
timing information is recorded in the trace and exploited in trace
simulation.

3.5. Discussions

Before we evaluate our approach, we summarize and discuss
the limitations of PDCM in the following.

o PDCM requires an execution-driven simulator that models the
target processor to generate timing-aware filtered traces.

e PDCM requires an initial simulation to generate traces. Evidently,
our approach is not practical when running a simulation one time
only. However, the trace generation time is amortized as we run
many simulations reusing the generated trace. We note that it is
typical to run numerous simulations when studying the trade-offs
of different uncore configurations.

o PDCM focuses only on assessing the impact of uncore events, such
as L1 cache misses, on program execution time and assumes that
a superscalar processor core’s parameters are fixed during a series
of uncore experiments. Hence, the traces have to be regenerated if
the core parameter is changed.

4. Experimental setup

4.1. Machine configurations and benchmarks

Table 2 lists our “baseline” and “realistic” superscalar processor
configurations. The configurations are intended to resemble
the Intel Core 2 Duo processor [11]. However, the baseline
configuration does not incorporate any processor artifacts. We
will first demonstrate that our model is accurate with the
baseline configuration. We then further evaluate our model by
individually adding a key superscalar processor artifact to the
baseline configuration in consideration. Finally, we will use the
realistic superscalar processor configuration incorporating all the
artifacts. We use the entire SPEC2K benchmarks to evaluate our
model. The inputs for benchmarks are listed in Table 3.

Programs were compiled using the Compaq Alpha C compiler
(V5.9) with the —03 optimization flag. For each simulation, we
skip the initialization phase of the target program [24], warm up
caches in the next 100M instructions, and simulate the next 1B
instructions.

Table 2
Baseline and realistic superscalar processor configurations.
Baseline Realistic
Dispatch/issue/commit width 4
Reorder buffer 96 entries
Load/Store queue 96 entries
Integer ALUs 4
Floating point ALUs 2
L1 d-cache 2 cycles, 32 kB, 8-way 64B line size, LRU
L1 i-cache Perfect Same as L1 d-cache

L2 cache (unified) 12 cycles, 2 MB, 8-way 64B line size, LRU

Main memory latency 200 cycles
Branch predictor Perfect Combined
- bimodal and gshare
- 4 K meta-table size
L2 MSHRs Unlimited 8
L2 data prefetcher — Tagged prefetcher
Table 3
Inputs for the SPEC2k benchmarks used in experiments.
Integer Input Floating point Input
mcf inp.in art c756hel.in
gzip input.graphic galgel galgel.in
vpr route equake inp.in
twolf ref swim swim.in
gcc 166.i ammp ammp.in
crafty crafty.in applu applu.in
parser ref lucas lucas2.in
bzip2 input.graphic mgrid mgrid.in
perlbmk diffmail apsi apsi.in
vortex lendian1.raw fma3d fma3d.in
gap Ref.in facerec Ref.in
eon rushmeier wupwise wupwise.in
mesa mesa.in
sixtrack inp.in
4.2. Metrics

To demonstrate the efficacy of PDCM, we employ a PDCM-based
trace-driven simulator (PDCM) and compare it with a detailed
execution-driven simulator (sim-outorder). Our main metrics
are CPI error and relative CPI change. CPI error is defined as
(CPIpgem — CPlsoo) /CPlsoo, Where CPlpgen and CPlg,, are the CPI
obtained with PDCM and sim-outorder, respectively. The CPI
error of PDCM shows the difference in cycle count compared with
sim-outorder. The absolute value of the CPI error shows the
magnitude of the difference. The average CPI error is obtained
by taking the arithmetic mean of the absolute CPI errors, as
similarly defined in [5]. Relative CPI change is defined as (CPlconp —
CPlconf1) /CPleonsi, where CPlopy is the CPI of a base configuration
and CPl,np represents the CPI of a revised configuration [21]. We
use relative CPI change to measure the performance change of the
revised configuration relative to the performance of the baseline
configuration.

To compare the performance change amount shown by sim-
outorder and PDCM, we use relative CPI error. We define relative
CPl error as |rel_cpi_chg,, — rel_cpi_chg 4.y |, where rel_cpi_chg,,
and rel_cpi_chg,., are the relative CPI change reported by
sim-outorder and PDCM, respectively.

Lastly, we evaluate PDCM’s capability to reproduce the behavior
of a superscalar processor by tracking the temporal changes in
memory access patterns. We divide a program execution into
intervals and generate a histogram to collect the frequency
of the distance (in cycles) between two consecutive memory
accesses in each interval. We compare the frequency of the
collected distances in PDCM and sim-outorder to examine how
closely PDCM reproduces the off-core memory access patterns of
sim-outorder.

516 K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

6%

HICM PDCM-eager M PDCM-lazy

4%

8.4%

2% —I i
0% 1 ;

- T T N I .\ T T \. =
e o (=3 © <
Jll N A
P = g v T8
© 4% 4 2 =

-8% I

-10%

-73% -11% -18% -17% -20% -15% -28%

Fig.9. The CPI errors of the entire SPEC2K benchmarks using the baseline configuration. “ICM” is the independent cache miss model, and “PDCM-eager” and “PDCM-lazy”

stand for eager and lazy estimation of the dependent trace item’s processing time.
5. Evaluation results

5.1. Accuracy of PDCM

e PDCM with the baseline configuration: Fig. 9 presents the CPI error
of the SPEC2k benchmarks with the baseline configuration. The CPI
error of the independent cache miss model (ICM) [18]—equivalent
to PDCM without taking the data dependency into account—is
shown to reveal the importance of honoring the data dependency
between trace items. Since ICM does not consider the dependency
between trace items, it suffers large CPI errors for the benchmarks
that have many dependencies between L1 cache misses, e.g., mcf
(—73% CPI error). The CPI errors are significantly reduced with
PDCM.

The figure presents the results of PDCM with the eager and the
lazy approaches (used when estimating the time to process the
dependent trace items, see Section 3.4.2) separately. The results
show that the lazy approach has lower CPI errors in general
than the eager approach because there are often intervening
instructions dependent on the parent trace item. Accordingly, we
will use the lazy approach in the remainder of this section. The CPI
errors of the SPEC2k benchmarks range from —6% (equake) to 5%
(ammp) with an average of 1.9%.

The results show that some benchmarks, such as ammp, show
positive CPI error even with ICM. This is because we do not take
into account the overlap between an L2 cache miss and the cycle
count recorded in a pending trace item. Consider the case when
there is only one trace item in the ROB accessing the main memory
and a pending trace item waiting for the trace item to commit.
Since the cycle count in the pending trace item is the time spent
on executing the instructions between the two trace items, a
portion of that cycle should be overlapped with the memory access.
However, we simply used the entire cycle count to estimate the
processing time of the pending trace item in trace simulation. We
note that the individual direction of the CPI error using a particular
configuration is of relatively small interest (as compared with
experiments spanning multiple configurations, e.g., Section 5.3).
What is more important at this point is the magnitude, which is
fairly small.

To show that PDCM is robust to the variation in processor’s
inherent parameters, we used different ROB size, L1 data cache
size, and issue-width to study the sensitivity of our model. Our
results show that the CPI errors were less than 3% when we used
different processor core configuration in trace generation. Table 4
summarizes our study results.

Although we used a fixed main memory access latency in our
experiments, the accuracy of PDCM does not depend on the off-
chip access latency. We ran experiments with a DRAM model
in sim-outorder and PDCM that has 16 banks (8 banks x 2
ranks) with 16 kB row size and assumed an open-page policy. We
assumed the main memory access latency is 80 cycles when a hit
occurs in the row-buffer, and 180 cycles when a conflict occurs in

Table 4
The accuracy of PDCM with different processor core configurations.

Different issue-width

Width 2 8
Avg. CPI error (%) 2.2 2.1

Different L1 data cache sizes

Size 8 kB 16 kB 64 kB
Avg. CPI error (%) 25 2.1 1.8
Different ROB sizes

Size 32 64 128 256
Avg. CPI error (%) 15 1.9 23 2.8

the row-buffer. The average CPI error of PDCM was 4.1% over the
entire SPEC2k benchmarks.

Finally, we evaluated the accuracy of PDCM using a combination
of different processor core configurations and the DRAM model
described above. We assumed the processor core has 8 kB L1
data cache, 2 issue-width, and 256 entries in ROB. We configured
sim-outorder accordingly, and collected the filtered traces
using the same core configuration for PDCM. The average CPI
error of PDCM was 3.3% over the entire SPEC2k benchmarks,
which shows that the accuracy of PDCM is not affected by
different processor core configurations and a realistic memory
access latency.

In what follows, we evaluate PDCM using the relative CPI
change metric with the benchmarks that show a change in CPI
when superscalar processor artifacts are added in the baseline
configuration.

o Effect of limited MSHRs: Fig. 10 compares the relative CPI change
obtained with sim-outorder and PDCVM, when limited number of
MSHRSs is applied to the baseline configuration. Since the number
of outstanding cache misses is limited by the number of MSHRs,
the CPI increases with fewer MSHRs.

The results show that PDCM can closely follow the relative
CPI change of sim-outorder. The relative CPI error of the
benchmarks in the figure was 2% on average. fma3d has a very high
L2 cache miss rate and it is particularly sensitive to the number of
MSHRs. We observed that fima3d’s L2 cache accesses occur in a very
close distance only in certain periods during program execution.
PDCM was able to reproduce this unique behavior of fma3d. The
average CPI error was 2.1%, 2.2%, and 1.9%, when sim-outorder
and PDCM both used 4, 8, and 16 MSHRs respectively.

e Effect of data prefetching: Fig. 11 compares the relative CPI
change reported by sim-outorder and PDCM, when a tagged
prefetcher is added in the baseline configuration. The results show
that PDCM can accurately model the effect of data prefetching.
The two largest beneficiaries were swim and mgrid as shown by
both sim-outorder and PDCM. The relative CPI error of the
benchmarks in the figure was 1% on average. The CPI error with
the tagged prefetcher in the baseline configuration was 1.6% on
average.

K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

517

40%

30%

B sim-outorder
m PDCM

320%

20%

Relative CPI change

4 MSHRs

asimdnm
asimdnm

8 MSHRs ‘ 16 MSHRs ‘

Fig. 10. The relative CPI change when limited number of MSHRs (4, 8, and 16) is applied to the baseline configuration. Only the benchmarks that show at least 1% relative

CPI change are presented in the figure.

° - 5 [3 « 2 o = 3 E)) -§
3 Q < o a = =+ o o & 5 = g 3 s @ k] o S g %
3 - ¥ g8 ¢ ¥ ¢ ¥ 3 = 7 3 s = & a =& & 88 § 8§
0% -
o 5% -
2 -10% -
S -15% -
& -20% -
L 5%
5 30% -
K] ° M sim-outorder
€ .35%
20% HPDCM
-40%
-59% -56% -61% -58%
Fig. 11. The relative CPI change when a tagged prefetcher is incorporated in the baseline configuration.
30%
° ° 34% M sim-outorder
o
& 25% HPDCM
©
5 20%
& 15%
[
2 10% -
&
& 5% -
0% -

pw
diz8

ada
jjomy
208
Ayen
J9ssed
zdizq
ywqpad

X3}OA

de3

uoa

e
ayenba
dwwe
Isde
peewy
asimdnm
esaw
oeuxXIS

Fig. 12. The relative CPI change after incorporating a realistic branch predictor in the baseline configuration.

o Effect of branch prediction: The trace files used in the previous
sections are generated with a perfect branch predictor. In this
section, we study how the branch mis-predictions in trace
generation can affect trace simulation accuracy. PDCM is driven by
trace items generated with a combined branch predictor (bimodal
and gshare) in trace generation. We configured sim-outorder
with the identical branch predictor.

Fig. 12 compares the relative CPI change shown by sim-
outorder and PDCM. The largest branch mis-prediction penalties
was shown in perl from both sim-outorder and PDCM. The
relative CPI error of the benchmarks presented in the figure was
1% on average. The CPI error after incorporating a realistic branch
predictor was 1.8% on average.

One might question the validity of the timing information
recorded in the trace items. In trace generation, since a perfect
L2 cache is used, a fixed latency is returned on each L1 miss. On
the other hand, different latencies are returned depending on the
result of the L2 cache access in sim-outorder. If the memory
access latency significantly affects the branch prediction accuracy,
we cannot correctly model the branch mis-prediction penalties
using the cycle counts in the trace items. To investigate this aspect,
we quantified the effect of the memory access latency on branch
prediction accuracy using eight representative benchmarks in the
SPEC2k benchmark suite [13], as shown in Table 5.

We collect the branch prediction accuracy separately from two
simulation runs. The first simulation uses a fixed L2 hit latency and
the second simulation uses a random memory access latency—any

Table 5

The percent of stable branch instructions in the benchmarks.
Stability % of stable branch instructions in the program

<0.005 (%) <0.01 (%) <0.02 (%) <0.03 (%)

mcf 84 91 94 95
gcc 79 84 88 91
gzip 84 88 91 95
twolf 82 89 93 96
fma3d 96 97 97 97
applu 91 92 93 94
mesa 87 88 88 88
equake 88 91 94 95

integer number between the L2 hit latency (12) and a long memory
access latency (400)—on L1 misses. Using sim-outorder, for a
given branch instruction (say A), we collect the number of correct
branch predictions from A with a fixed latency (n_correcta_fiediat)
and arandom latency (n_correct a_randomiat)» and the number of total
branch predictions made from A (n_total,). The stability of a given
branch instruction A is defined by:

|n_correct a—fixediac — N_COTTECt A randomiat |

stability n_totl,
For instance, the last column in Table 5 shows that 88% of mesa’s
branch instructions and 97% of fma3d’s branch instructions are
stable, when the threshold is 0.03. The high stability values in the
table suggest that the L1 cache miss latency does not significantly
change the branch prediction accuracy.

518 K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

4%

2%

-2%

CPl error

!

pw
diz8
ada
Homy
208
zdizq

Ay
9.

ywiqgpiad

asimdnm
agesane

4%

Fig. 13. The CPI errors of the SPEC2k benchmarks using the realistic processor configuration.

e PDCM with the realistic configuration: We finally present the sim-
ulation results for the realistic superscalar processor configura-
tion with PDCM. The trace files used in this section are generated
with branch mis-predictions and instruction cache misses. We also
modified sim-outorder to model the realistic superscalar pro-
cessor. The CPI errors of the SPEC2k benchmarks are reported in
Fig. 13. The increased CPI error of mgrid, compared with 1% CPI
error with the baseline configuration, comes from the error when
modeling the data prefetching effect. The results show that PDCM
achieves a very high accuracy with an average error of 1.6%, which
is even smaller than the average error (1.9%) with the baseline con-
figuration.

5.2. Reproducing temporal uncore access behavior

We have previously used CPI error and relative CPI change
computed over the entire execution span as the main metrics to
evaluate how closely PDCM approximates a realistic superscalar
processor’s performance. In this and the next subsection, we will
focus on two aspects of PDCM that are relevant at the system level:
(1) Does PDCM change how a processor core exercises “uncore”
resources such as L2 cache and memory controller? and (2) Can
PDCM predict a program’s relative performance when uncore
parameters such as L2 cache size are changed? These aspects are
especially important when evaluating a workload on a multicore
architecture where uncore resources are subject to contentions.

To explore the first aspect, for each benchmark, we build
histograms of the distance (in cycles) between two consecutive
memory accesses (from L2 cache misses, write backs, or L2 data
prefetching) in each interval of 100M instructions from both
sim-outorder and PDCM. Each bin in a histogram represents
a specific range of distances, and the value in a bin represents
the frequency of distances that fall into the specified range. We
assume that PDCM preserves the temporal memory access patterns
of sim-outorder if the frequency of distances between two
consecutive memory accesses that occur in each interval is similar
to sim-outorder. The histogram is generated for 10 consecutive
intervals from both sim-outorder and PDCM. We use the

C . o MIN(bin_soo;,bin_pdcm;) .
metric Similarity = Lizo (bin_s00, I PAT) 5 order to compare
> ieo bin_soo;

sim-outorder and PDCM with a single number, where i is the
bin index and n is the total number of bins. bin_soo; and bin_pdcm;
are the frequency value in iy, bin collected by sim-outorder
and PDCMN, respectively. High similarity implies PDCM’s ability to
preserve the memory access pattern of sim-outorder. If the
similarity is 1, it suggests that the observations made by the two
simulators are identical.

Fig. 14 depicts the representative interval of mesa and parser.
mesa shows that sim-outorder and PDCM agree well on the
memory access behavior, while parser shows that sim-outorder
and PDCM disagree somewhat on the frequency of the distances
between isolated memory accesses. Table 6 presents the computed
average Similarity over all intervals for all SPEC2k benchmarks. We
note that the similarity values of some benchmarks were affected
by having a few memory accesses in an interval of one simulator,

Table 6
The similarity in memory access patterns between sim-outorder and PDCM
(shown in percentage).

Similarity Benchmark (similarity)

<90% parser (81%), gzip (83%), fma3d (85%), mgrid (86%), facerec (88%),
swim, eon (89%)

art, gap (90%), galgel, gcc (91%), ammp, applu, equake,
>90% mcf (92%), vpr (93%)
twolf (94%), lucas (95%), wupwise (96%)
apsi, bzip2, crafty (97%), perl, vortex (98%), mesa, sixtrack (99%)

while the other simulator not showing any memory accesses
in the same interval. For instance, fma3d showed two memory
accesses in the first interval with PDCM, while having no memory
access in the first interval with sim-outorder. If we do not
take the first two memory accesses with PDCM into consideration,
the Similarity of fma3d increases from 85% to 99%. Overall, PDCM
preserves the memory access behavior of sim-outorder closely.
Most benchmarks, 19 out of 26, showed 90% or higher similarity.

5.3. Predicting the performance with different uncore parameters

We now attempt to answer the question of “Can PDCM correctly
predict the performance of a new machine configuration given
the performance of a baseline configuration?” The ability to
predict relative performance (i.e., performance trend) is often
more important in a system performance study. We make our
realistic superscalar processor configuration as the reference point
and simulate five configurations that differ in one of their L2
cache or main memory parameters as shown in Table 7. In
Configuration 1 and 2, the L2 cache is 1 MB and 4 MB instead of
2 MB (“smaller L2 cache” and “larger L2 cache”). In Configuration
3 and 4, the memory latency is 150 cycles and 300 cycles
instead of 200 cycles (“faster memory” and “slower memory”).
In Configuration 5, the L2 hit latency is 20 cycles instead of 12
cycles (“slower L2 cache”). Note that PDCM used the same traces
produced to study the realistic superscalar processor configuration
in Table 2 for all five different configurations. On the other hand,
we ran sim-outorder with each new machine configuration
examined.

The results in Table 7 show that PDCM was able to project
the relative performance very closely to sim-outorder. First of
all, the performance change direction (positive or negative), was
predicted correctly 100% of the time. Furthermore, Table 7 shows
that the relative CPI change seen by each benchmark and each
configuration, was nearly identical between the two simulators
for most of the benchmarks. gcc showed a large relative CPI error
when L2 cache size was reduced (Conf. 1). gcc’s CPI increased
78% in sim-outorder when L2 cache size is reduced from 2 MB
to 1 MB, whereas PDCM increased CPI by only 16%. PDCM shows
smaller CPI increase because it has smaller L2 cache misses with
1 MB L2 cache than sim-outorder. The different number of
L2 cache misses is caused by not generating trace items for L1
instruction cache misses, as mentioned in the end of Section 3.4.4.
Our simple approach does not accurately capture the case when L1

K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

519

M sim-outorder M PDCM

4
S
s 20
O -
-
£ 215
b
7}
- £
@ £10
]
S o
9 c
=%5
S I
S £
‘s 0
°©
N3 N w B (=)} ~ o] o = = [= = = = = N N \%2
o kyﬂ Tl &ID ll—l lIA) k;l'\ T‘ o N w Y w (2] 00 o o = N
CIEE- SRS R SR T T I B (o B O IO I A T
00 N w B w o 00 o o = N
o N S o 00 o N S (=} 00
mesa (0 - 100M) ‘
50
n
g
£ 40
- ©
2 3
% £ 30
- £
@ £
= 20
o o
o c
=
o ¢ 10
S £
-
) 0- —
X =) = N w IN o ~ 00 © = P I~ = [= I~ = N N
o N @ N o N % © = © ? P AN RN AN = » o N
= @ @ © ~ = o & S & = & o & o S = N
o N S a [} (=] N S (2} 0
parser (100 - 200M)

Fig. 14. The histogram of collected distances in an interval is depicted to compare the distance (in cycles) between two consecutive L2 cache misses in sim-outorder and
PDCM. The x-axis represents the bins used to generate the histogram and the y-axis represents the percent of collected distances in the interval of 100M instructions. The
bin size is 12 cycles. We only show the representative intervals of the benchmarks that show the highest (mesa) and lowest (parser) similarity for clear presentation.

Table 7
Relative CPI error between sim-outorder and PDCM. The five configurations are
identical to the baseline configuration (Table 2) except a single parameter.

Conf.1(%) Conf.2(%) Conf.3(%) Conf.4(%) Conf.5(%)
0

mcf
gzip
vpr
twolf
gcc
crafty
parser
bzip2
perl
vortex
gap
eon

—_

Q=

NR|mOOCO0OO0OO0OO0O0OO0OWOOWW | OOOO—_,OONN—=O=
_ =m0 MWW Q)= =

art
galgel
equake
swim
ammp
applu
lucas
mgrid
apsi
fma3d
facerec
wupwise
mesa
sixtrack

O | OO0 0L 000000000 W|0OO0OO0O0OO—=LOO0OO0OOO0
O | OO0 0O~ O—_LO—_~OWOON | OO0 =
O | OO0 0O —~ORO—-LO—LOON | OO0 O0O0O0O—_LOOO =

w
-
»|loo—m—moONMNO—~RO—,OON=

Avg.Error 3

instruction cache misses increase the number of L2 cache misses
with smaller L2 cache. In general, we were able to obtain fairly
accurate projections of the relative performance from our model.
The average relative CPI error of the five configurations ranged
from 0.3% (larger L2) to 3.4% (smaller L2).

In summary, the results presented in Fig. 14, Tables 6 and 7
suggest that PDCM is amenable for use in a multicore simulation
environment [20,19]. To simulate multiple processor cores that
run independent threads simultaneously (i.e., multiprogrammed
workload), one can prepare traces from a detailed uniprocessor
simulator (like sim-outorder) and run them together. Our
techniques can be applied to multithreaded shared memory
applications if individual threads can be traced [19]. One can

reliably study the overall system behavior thanks to the capability
of our technique to preserve each processor core’s memory access
behavior like an execution-driven simulation engine. At the same
time, one can examine how individual program performance is
affected by contentions in the shared resources.

5.4. Simulation speed and storage requirements

Lastly, we report the simulation speed and storage require-
ments of PDCM and a full trace-driven simulation strategy, a widely
practiced simulation method [2]. The trade-off between the two
methods is clear. The biggest advantage of using PDCM over the full
trace-driven simulation is its fast simulation speed. On the other
hand, the full trace-driven simulation strategy has the advantage
of being more accurate with the complete information of all in-
structions executed.

The simulation speeds of the two trace simulation methods
are compared using the speedups achieved over sim-outorder
with the baseline configuration. Because we model the full detail
of the target superscalar processor operation per every supported
instruction, our implementation of the full trace simulator is
essentially identical to sim-outorder. The observed simulation
speedups? of PDCM range from 3.8 x (gcc) up to 582.58 x (eon) and
their average (geometric mean) was 62.5x. On the other hand,
the speedups with the full trace-driven simulation was limited,
ranging from 1.06 x (mcf) to 1.35 x (sixtrack). The average speedup
was only 1.18 x.

In our current implementation, a single trace item in a full trace
is 12B. Because trace items are generated for 1.1B instructions, each
trace file is 12.3 GB. A single trace item with PDCM is 20B, and
the average trace file size is 1.5 GB, ranging from 20 MB (eon) to
9.6 GB (gcc). 22 out of 26 benchmarks were less than 1.9 GB, and
14 out of 26 were less than 1 GB. Certain benchmarks require many
trace items because of delayed hits, especially gcc. Since not all
delayed hits may be needed for accuracy, the trace file size can be
reduced significantly if we filter unnecessary delayed hits during

4 The trace generation time was not included when measuring the speedup. The
trace generation was 1.24x slower than an execution-driven simulation on average
(geometric mean) over the SPEC2k benchmarks.

520 K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521

trace generation as a possible optimization. Trace file sizes were
slightly larger with the realistic configuration with an average of
1.5 GB, and range from 25 MB (eon) to 9.7 GB (gcc).

As expected, simulation results of the full trace-driven simu-
lation method were almost identical to sim-outorder with 0%
CPI error on average. PDCM is not as accurate, but the error is very
limited as we discussed in this section. Considering the fast simu-
lation speed, small error, and much smaller storage overheads, we
believe PDCM is a more attractive simulation method than the full
trace-driven simulation, especially in the early design stages.

6. Related work

Trace-driven simulation has been an indispensable technique
for analyzing computer performance. Our work is a positive
response to the question “Can trace-driven simulators accurately
predict superscalar performance?” [3]. In their work, Black et al.
showed that sampling techniques present a problem to the
accuracy of trace-driven simulation for superscalar processors.
This paper advocated using timing-embedded filtered trace to
model superscalar processor performance.

In previous and current practice, much trace-driven simulation
work has focused on either tracing memory Refs. [27] or using
a full trace of executed instructions for relatively fast simulation
with complete fidelity [2]. In our previous works [18,17], we
demonstrated that filtered trace-driven simulation can accurately
approximate superscalar processor performance. In [18], we
introduced three different trace-driven simulation models using
filtered traces and discussed the strength and weakness of each
model. However, the simulation models require a cycle-accurate
execution-driven simulator that models the microarchitecture of
the target superscalar processor to generate filtered traces. In
a more recent work [17], we proposed an abstract simulation
method called In-N-Out to remove such limitation by using a
functional cache simulator to generate filtered traces. Since a
functional simulator does not provide timing information, In-
N-Out resorts to information about data dependency between
instructions to estimate the distance between L1 data cache
misses. In-N-Out uses a processor model that is more abstract than
this work—still more concrete than other proposals that we will
discuss below. Hence, In-N-Out is less accurate than PDCM, but can
attain potentially higher simulation speeds.

Michaud et al. [22] built an analytical model to study the re-
lations between instruction fetching, branch prediction accuracy,
and ILP. Their model is based on the observation that the number
of instructions that can issue per cycle grows as the square root of
the instruction window size. However, they assumed an idealized
superscalar processor, whereas our target processor is a realistic
superscalar processor. Karkhanis and Smith [14] built an analytical
model that divides program execution into intervals separated by
“miss-events” like branch mis-prediction, instruction cache miss,
and data cache miss. The overall performance of a program is com-
puted with the baseline CPI (measured with no miss-events) and
the CPI due to miss-events. They introduced the idea of exploit-
ing the ROB size and the distance between memory instructions to
model the performance penalty of L2 cache misses. Our work was
in part inspired by their analytical performance model. However,
their analytical model did not model the effect of limited MSHRs
and data prefetching. In contrast, PDCM can accurately model the
effect of limited MSHRs and data prefetching.

Chen and Aamodt [5] improved on the model of [14] by more
accurately estimating the CPI component due to long latency data
cache misses. They proposed a method to analytically model the
effect of pending data cache hits, data prefetching, and MSHRs,
which were not considered in [14]. However, they assumed
that both branch predictor and instruction cache are ideal, and

their simulator has to support prefetching when generating the
instruction trace to model the prefetching effect. Eyerman et al. [7]
proposed their “mechanistic model”, which is the new generation
of the first order model [14]. They describe the details of the
interval analysis proposed by Karkhanis and Smith and the revised
model. Similar to Karkhanis and Smith, they modeled branch
prediction, data cache misses, and instruction cache misses, but
did not consider the limited MSHRs or data prefetching. Genbrugge
et al. [10] extended the mechanistic model to raise the level of
abstraction for fast multicore simulation.

The analytical models [22,14,5,7] and PDCM all use trace files
as an input to the model for different purposes. The analytical
models analyze a full instruction trace before using their model
to get statistics for their mathematical equations. In our work,
we use a filtered trace for trace reduction and we do not need
to analyze the trace file before the trace simulation. PDCM
considers the timing and dependency information captured during
trace generation and focuses on fast dynamic simulation rather
than hybrid analytical modeling. Analytical models provide well-
constructed mathematical equations, while PDCM provides a novel
trace simulation framework for quick and accurate performance
modeling. In our work, we studied the temporal uncore access
behavior of a superscalar processor with our model. Such study
was not conducted by the analytical models.

While not directly comparable to our approach, there are other
interesting works done to reduce the simulation time overhead.
One such example is synthetic workloads. Synthetic workloads are
not a user program, but they capture the characteristics of the real
benchmarks that they wish to represent. Ganesan et al. [8] devel-
oped a framework that generates synthetic clones for the target
benchmarks using the characterized information of the bench-
marks. On the other hand, MinneSPEC tries to reflect the behavior
of SPEC2k benchmarks while using a smaller, but representative in-
put set [15]. Genbrugge and Eeckhout [9] improved the statistical
simulation methodology by using synthetic trace and an accurate
memory data flow model, which models delayed hits, RAW (read
after write) memory dependencies, and cache miss correlation.

Sampling techniques have been developed to reduce the scope
of (detailed) simulation during execution-driven simulation. Sher-
wood et al. [24] proposed SimPoint, a technique to automatically
identify “representative” program intervals that exhibit stable be-
havior (called “phases”). One could choose to simulate portions of
these intervals (e.g., 100M instructions) to predict a benchmark’s
execution time and other metrics rather than simulate the whole
execution, thereby effectively reducing the time needed for sim-
ulation. According to [24], each SPEC2k benchmark program has
up to 10 phases. Considering that typical SPEC2k benchmarks ex-
ecute hundreds of billions of instructions, SimPoint has the po-
tential to reduce the amount of detailed simulation by a factor of
~100 (100 M per phase x 10 phases/100 B instructions). The av-
erage IPC error of SimPoint based simulation, compared with sim-
outorder, was reported to be ~3% over the SPEC2k benchmarks.
Another sampling method, SMARTS, was proposed by Wunderlich
et al. [28]. Unlike SimPoint that reduces the scope of detailed simu-
lation to specific phases, SMARTS systematically samples program
execution intervals with relatively fine granularity without pay-
ing attention to program behavior changes. The number of samples
and the length of each sample depend on the desired target confi-
dence level. Compared with sim-outorder, SMARTS was shown to
achieve 60x simulation speedup and less than 1% error (on aver-
age). Compared with SimPoint and SMARTS, PDCM resorts to cache
filtering, a fundamentally different sampling strategy with no bear-
ing on simulation intervals. PDCM offers an orthogonal method
to speed up detailed simulation itself by focusing on a subset of
processor events (cache misses) and abstracting away other de-
tails. Naturally, PDCM could work together with either SimPoint
or SMARTS (in the context of trace-driven simulation).

K. Lee, S. Cho /]. Parallel Distrib. Comput. 73 (2013) 509-521 521

Chou et al. [6] introduced a simulation method based on
their epoch model to quickly derive the memory-level parallelism
(MLP) of a program. Their simulator, MLPsim, is a very simplified
processor model based on several assumptions. Nonetheless, the
simulator shows accurate MLP results, especially when a long off-
chip access latency is assumed.

Finally, there are trace-driven multicore simulators, TPTS [19]
and Zauber [20], that also use timing-embedded filtered traces. We
expect that our model can be easily integrated in such trace-driven
multicore simulators.

7. Conclusions

The pairwise dependent cache miss model (PDCM) enables a
trace-driven superscalar processor simulation method using re-
duced traces. We use PDCM to study how the out-of-order instruc-
tion execution capability of a superscalar processor, as a function of
the ROB size, affects the trace-driven simulation methodology. We
focus on assessing the impact of uncore events on program execu-
tion times and assume that a superscalar processor’s parameters
are fixed during a series of experiments. We make the following
contributions:

o We develop techniques to incorporate the effect of key processor
architecture artifacts on the program execution time and model
a realistic superscalar processor incorporating those artifacts at
length using reduced trace.

e Compared with a full trace-driven simulation method that
incurs large simulation time and storage overheads, our work uses
storage efficient filtered traces that carry enough information to
compute latencies between trace items at simulation time. Our
approach obtains competitive or better accuracy than previously
published simulation methods that use memory traces, both
filtered and unfiltered.

e Compared with a detailed execution-driven simulation method,
PDCM achieves a simulation speedup of 62.5x on average
(geometric mean) while giving sufficiently small errors across
benchmarks (less than 3% on average).

e PDCM is an attractive simulation method especially in early
processor design stages. It robustly predicts the relative perfor-
mance change for different machine configurations. The perfor-
mance change direction is always predicted correctly and the
performance change amount is predicted with small errors of less
than 4% on average.

As current and future processor research is centered on
multicore architectures, the importance of studying system-wide
resources will continue to grow. Our study forms a basis for tools
that enable fast and accurate multicore simulations focusing on
system-wide resources, such as shared L2 cache, on-chip network,
and memory controller.

References

[1] T. Austin, E. Larson, D. Ernst, Simplescalar: an infrastructure for computer
system modeling, [EEE Computer 35 (2) (2002) 59-67.

[2] L. Barnes, Performance modeling and analysis for AMD’s high performance
microprocessors, in: Keynote at Int’l Symp. Performance Analysis of Systems
and Software, ISPASS, 2007.

[3] B. Black, A.S. Huang, M.H. Lipasti, J.P. Shen, Can trace-driven simulators
accurately predict superscalar performance? in: Proc. Int'l Conf. Computer
Design, ICCD, 1996, pp. 478-485.

[4] J.Chame, M. Dubois, Cache inclusion and processor sampling in multiprocessor
simulations, in: Proc. ACM SIGMETRICS Conf., 1993, pp. 36-47.

[5] X. Chen, T. Aamodt, Hybrid analytical modeling of pending cache hits, data
prefetching, and MSHRs, in: Proc. Int’l Symp. Microarchitecture, MICRO, 2008,
pp. 455-465.

[6] Y. Chou, B. Fahs, S. Abraham, Microarchitecture optimizations for exploiting
memory-level parallelism, in: Proc. Int'l Symp. Computer Architecture, ISCA,
2004, pp. 76-87.

[7] S. Eyerman, L. Eeckhout, T. Karkhanis, J.E. Smith, A mechanistic performance
model for superscalar out-of-order processors, ACM Transactions on Com-
puter Systems 27 (2) (2009) 1-37.

[8] K. Ganesan,]. Jo, LK. John, Synthesizing memory-level parallelism aware
miniature clones for SPEC CPU2006 and ImplantBench workloads, in: Int’l
Symp. Performance Analysis of Systems and Software, ISPASS, 2010, pp. 33-44.

[9] D. Genbrugge, L. Eeckhout, Memory data flow modeling in statistical
simulation for the efficient exploration of microprocessor design spaces, IEEE
Transactions on Computers 57 (10) (2008) 41-54.

[10] D. Genbrugge, S. Eyerman, L. Eeckhout, Interval simulation: raising the level
of abstraction in architectural simulation, in: Proc. Int'l High-Performance
Computer Architecture, HPCA, 2010, pp. 307-318.

[11] Intel Corp., Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol
3A: System Programming Guide, Part1, 2010.

[12] M. Johnson, Superscalar Microprocessor Design, Prentice Hall, 1991.

[13] A.]Joshi, A. Phansalkar, L. Eeckhout, L.K. John, Measuring benchmark similarity
using inherent program characteristics, IEEE Transactions on Computers 55 (6)
(2006) 769-782.

[14] T. Karkhanis, J.E. Smith, The first-order superscalar processor model, in: Proc.
Int’l Symp. Computer Architecture, ISCA, 2004, pp. 338-349.

[15] A. KleinOsowski, D.J. Lilja, MinneSPEC: a new SPEC benchmark workload
for simulation-based computer architecture research, Computer Architecture
Letters (CAL) 1 (2002).

[16] D. Kroft, Lockup-free instruction fetch/prefetch cache organization, in: Proc.
Int’l Symp. Computer Architecture, ISCA, 1981.

[17] K. Lee, S. Cho, In-N-Out: reproducing out-of-order superscalar processor
behavior from reduced in-order traces, in: Int'l Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
MASCOTS, 2011, pp. 126-135.

[18] K. Lee, S. Evans, S. Cho, Accurately approximating superscalar processor
performance from traces, in: Int’l Symp. Performance Analysis of Systems and
Software, ISPASS, 2009, pp. 238-248.

[19] H. Lee, L. Jin, K. Lee, S. Demetriades, M. Moeng, S. Cho, Two-phase trace-
driven simulation (TPTS): a fast multicore processor architecture simulation
approach, Software: Practice and Experience (SPE) 40 (3) (2010) 239-258.

[20] Y.Li,B. Lee, D. Brooks, Z. Hu, K. Skadron, CMP design space exploration subject
to physical constraints, in: Proc. Int’l Symp. High-Performance Computer
Architecture, HPCA, 2006, pp. 62-72.

[21] DJ.Lilja, Measuring Computer Performance: A Practitioner’s Guide, Cambridge
University Press, 2000.

[22] P. Michaud, A. Seznec, S. Jourdan, An exploration of instruction fetch
requirement in out-of-order superscalar processors, International Journal of
Parallel Programming 29 (1) (2001) 35-58.

[23] J.P. Shen, M.H. Lipasti, Modern Processor Design: Fundamentals of Superscalar
Processors, McGraw-Hill, 2004.

[24] T. Sherwood, E. Perelman, G. Hamerly, B. Calder, Automatically characterizing
large scale program behavior, in: Proc. Int'l Conf. Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2002, pp. 45-57.

[25] AlJ. Smith, Cache memories, ACM Computing Surveys 14 (3) (1982) 473-530.

[26] Standard Performance Evaluation Corporation. http://www.spec.org.

[27] R.A. Uhlig, T.N. Mudge, Trace-driven memory simulation: a survey, ACM
Computing Surveys 29 (2) (1997) 128-170.

[28] R.E. Wunderlich, T.F. Wenisch, B. Falsafi,].C. Hoe, SMARTS: accelerating
microarchitecture simulation via rigorous statistical sampling, in: Proc. Int’l.
Symp. Computer Architecture, ISCA, 2003, pp. 84-95.

[29] K.C. Yeager, The MIPS R10000 superscalar microprocessor, IEEE Micro 16 (2)
(1996) 28-40.

[30] JJ. Yi, L. Eeckhout, DJ. Lilja, B. Calder, LK. John, J.E. Smith, The future of
simulation: a field of dreams, IEEE Computer 39 (11) (2006) 22-29.

Kiyeon Lee received his B.S. degree in Computer Science
and Technology from Tsinghua University in 2006. He
has been pursuing a Ph.D. in Computer Science from the
University of Pittsburgh since 2006. His research interests
are in the area of computer architecture, with particular
focus on simulation methodologies.

Sangyeun Cho received his B.S. degree in Computer Engi-
neering from Seoul National University in 1994 and a Ph.D.
in Computer Science from the University of Minnesota in
2002. In 1999, he joined the System LSI Division of Sam-
sung Electronics Co., Giheung, Korea, and contributed to
the development of Samsung’s flagship embedded proces-
sor core family named CalmRISC(TM). He was a lead ar-
chitect of CalmRISC-32, a 32-bit microprocessor core, and
designed its memory hierarchy including caches, DMA,
and stream buffers. Since 2004, he has been with the Com-

: puter Science Department at the University of Pittsburgh,
where he is an Associate Professor. His research interests are in the area of computer
architecture and embedded systems, with particular focus on performance, power,
and reliability aspects of memory and storage hierarchy design for next-generation
multicore platforms.

