
Performance of Graceful Degradation for Cache Faults

Hyunjin Lee Sangyeun Cho Bruce R. Childers

Dept. of Computer Science, Univ. of Pittsburgh

{abraham,cho,childers}@cs.pitt.edu

Abstract

In sub-90nm technologies, more frequent hard faults
pose a serious burden on processor design and yield
control. In addition to manufacturing-time chip repair
schemes, microarchitectural techniques to make proces-
sor components resilient to hard faults will become in-
creasingly important. This paper considers defects in
cache memory and studies their impact on program per-
formance using a fault degradable cache model. We
first describe how defects at the circuit level in cache
manifest themselves at the microarchitecture level. We
then examine several strategies for masking faults, by
disabling faulty resources, such as lines, sets, ways,
ports, or even the whole cache. We also propose an ef-
ficient cache set remapping scheme to recover lost per-
formance due to failed sets. Using a new simulation
tool, called CAFÉ, we study how the cache faults im-
pact program performance under the various masking
schemes.

1 Introduction

As device and wire size continue to decrease, the
likelihood of permanent circuit faults in a micropro-
cessor increases, especially at very small sizes, below
90nm [11]. In current processors, hard faults typically
occur due to manufacturing defects. These defects are
identified through rigorous testing prior to chip deploy-
ment. In memory elements, such as caches, a number
of defects can be repaired by enabling spare capacity.
Chip repair techniques are vital to achieving good yield
and are widely used for processors [3].

Hardware faults also happen due to phenomena
other than manufacturing defects, such as process vari-
ation [1] and aging [13]. Such defects happen at any
time (e.g., due to thermal hot spots) and may man-
ifest themselves as operational faults at the micro-

Bruce Childers was supported in part by NSF awards CNS-
0551492, CNS-0509115 and CNS-0305198.

architecture level. Unfortunately, traditional tech-
niques that rigorously test and physically modify the
chip to make it functional are typically impractical af-
ter deployment.

Because simply testing and repairing chips during
manufacture is insufficient [4, 5, 11], architectural tech-
niques are needed to mask the inevitable operational
faults. Redundancy is one way to achieve this capabil-
ity [5]. Triple modular or duplex thread redundancy
can be used [10]. However, a significant disadvantage
to redundancy is its high resource and power/energy
cost.

Ideally, the redundancy that is used for protecting
against hard faults in traditional approaches should be
directly utilized. Graceful degradation approaches do
not replicate resources for fault tolerance, but use ex-
isting replication to overcome faults. Because caches
are employed only to improve program performance,
the graceful degradation approach can be used to mask
faults, by disabling (or “deleting”) the faulty portion
of the cache. Deleting a portion of the cache however
has a performance affect that is dependent on the fault
and the frequency of access to an address that would
normally be held in the disabled portion of the cache.

The goal of this paper is to explore how defects
manifest themselves as faults in cache structures and
how they affect performance. Based on the fault man-
ifestations and performance impact, we examine how
cache designs have to be changed to overcome faults
with minimal performance penalty. From our study,
we find that it is typically sufficient to disable individ-
ual cache lines, unless the whole set fails. When a set
fails, it leaves a “hole” in the cacheable address space,
which leads to a significant performance degradation
in some cases. To address this problem, in conjunc-
tion with disabling individual cache lines, we propose
a novel remapping scheme that can direct addresses
from a failed cache set to a functional one.



2 Background

2.1 Fault classification

Projections suggest that future microprocessors
based on an advanced nanometer-scale CMOS technol-
ogy will be subject to three classes of reliability threats
or faults: hard faults, intermittent faults, and tran-
sient faults [11]. Hard faults reflect irreversible phys-
ical damage, caused by imperfect material and pro-
cess. Also, aging phenomena such as electro-migration,
stress migration, gate-oxide breakdown, and negative
bias temperature instability (NBTI) can pose serious
reliability issues, leading to operational faults [13]. For
example, Kumar et al. [7] found that NBTI can sig-
nificantly degrade the read stability of SRAM cells by
reducing their static noise margin (SNM) by as much
as 9% in 3 years.

Intermittent faults happen because of unstable or
marginal hardware, activated by changed operating
conditions, e.g., higher temperature or lower voltage.
Transient, soft errors are caused by charge-assuming
particles striking sensitive devices and reversing stored
logic states.

The focus of this work is on hard and intermittent
faults caused by (hardware) defects. Faults due to de-
fects will become a more serious concern in the future.
First, they lead to unavailable hardware resources and
can degrade the performance continuously. Second,
future processors will inevitably confront more hard-
ware defects as the effectiveness of traditional test tech-
niques is challenged by continued device scaling [11].
Lastly, the manufacturing economy may force chip ven-
dors into selling processors with known defects. That
is, to maintain a profitable chip yield, processors with
defects may be considered “marketable” as long as the
resulting faults are maskable in the field. This trend
will become more prevalent in the future as chip life-
time reliability and manufacturing yields are critically
threatened [4, 5].

2.2 Related work

Sohi [12] looked at the performance impact of line
deletion. Using a trace-driven simulation method
and a set of unified cache models with three sizes
(256B/1kB/8kB), this work evaluated the degradation
in cache performance due to defects. Faults were in-
jected randomly into lines, and simulations were re-
peated several times with a different set of defective
cache lines to get an estimate of expected performance
degradation. Pour and Hill [9] extended Sohi’s work by
introducing a more systematic way to evaluate the im-

Figure 1. A 4-way set associative cache struc-
ture.

pact of defects in a cache memory. These earlier works
study a rather simple unified cache configuration using
ATUM traces. More recently, Agarwal et al. [1] pro-
posed a direct-mapped cache organization capable of
deleting cache lines.

3 Fault Degradable Caches

3.1 Fault manifestations in cache memory

Figure 1 depicts a typical set-associative cache
to motivate our discussion in this subsection. Ma-
jor components include memory cells in tag/data ar-
rays, wires (wordline/bitline/bus), supporting logic
(decoders/hit-miss logic) and peripheral circuits (sense
amps/drivers).

Though conceptually simple, a cache implementa-
tion can have many variations. For example, memory
arrays can be merged together, or partitioned further
into smaller sub-arrays or banks depending on speed,
power, and layout requirements. Contiguous cache
lines can be mapped to a single bank or distributed
over multiple banks. Address decoders can be shared
by a number of banks. In any case, cache operations
are done by a sequence of steps, utilizing different hard-
ware resources. For a read operation, it is 〈address
input, decoding, wordline (data array), memory cell,
bitline, sense amp, data bus, data output〉 (“data read
path”) and 〈address input, decoding, wordline (tag ar-
ray), memory cell, bitline, sense amp, comparator, hit-
miss logic〉 (“tag read path”). For a write operation, it
is 〈address input, address decoding, wordline (data/tag
array)〉 (“wordline select path”) and 〈data input, sense
amp, bitline, memory cell (data/tag array)〉 (“data/tag
write path”).



Manifestation Causes

Faulty cache line A memory cell in the cache line is unsta-
ble and does not retain its value; a pass
transistor connected to a memory cell is
faulty (e.g., gate-source is short) and the
attached bitline is stuck at zero/one/float.

Faulty cache set A group of memory cells are weak; row de-
coder logic has a fault and a wordline is
stuck at zero/one/float (when the row de-
coder is shared); a word line is marginal
and causes a timing delay; a memory bank
is marginal and affects the associated set
in a CAM-tag design.

Faulty cache way A bitline is open or marginal, barring fast
signal propagation from majority of cells;
bitline conditioning circuit is faulty and
would not precharge bitlines properly; a
sense amplifier is faulty and would not
recognize valid signal levels on reads and
would not enforce proper signal levels on
writes; power supply to a memory bank is
unstable; a bus driver in a memory bank is
faulty and the resulting signal is unstable.

Faulty cache port Address or data bus connected to a cache
port has marginal wires; sense amps asso-
ciated with a port are degraded and does
not match the target speed.

Faulty cache A set of faults (described above) that af-
fect all accesses; a critical DC path from
power supply to ground; IR drop causes an
overall speed problem; defects in hit logic,
address/data bus.

Table 1. Fault manifestations and possible
causes.

All major components in cache, including memory
cells, wires, logic, and peripheral circuits, are subject
to defects [7, 13]. A cache fault will occur if a defect in
cache components interferes with any step in a read or
write operation. Defects in cache can manifest them-
selves in a number of ways, as summarized in Table 1.

3.2 Degrading strategies

A number of graceful degradation strategies can
overcome the effect of various fault manifestations in
cache memory. We consider general strategies here.
Line delete. When a particular cache line is faulty,
it can be marked and excluded from normal cache line
allocation and use. A programmable fault map can
be provided to record the markings. As an implemen-
tation of the fault map, an “availability bit” may be
attached to each cache tag and treated as the second
valid bit [8].
Set delete. When a set becomes faulty, it can be
marked so and deleted. In certain cases, this can be
simply done by deleting all lines in the set if a line
delete scheme is employed. On the other hand, since
the nature of faults may not allow using the per-line or
per-set fault marking schemes utilizing the tag mem-
ory, more robust fault map techniques may be needed.
One such technique is to employ a second decoder logic
leading to an array of fault map bits.

Way delete. One can shut down a cache way if it be-
comes unavailable for use due to defects. Conceptually,
an N -bit fault map can tell which way(s) are unavail-
able in an N -way set-associative cache. Depending on
the nature of defects, one may shut down a cache way
by simply turning off a specific per-line availability bit
in all cache sets.
Cache shutdown. When defects are major and mem-
ory accesses as a whole do not benefit from using the
defective cache, it can be simply turned off.
Port delete. This strategy is somewhat different from
the other strategies, in the sense that it requires chang-
ing the outside view of the cache. When a cache port
is deleted, the instruction issue and steering logic must
be aware of this change and should not use the pipeline
leading to the faulty cache port.
Cache resizing. Considering that hard faults tend to
form a cluster [14], neighboring cache resources may be
affected together by a set of clustered faults. To mask
them altogether, one can reconfigure a programmable
decoders to exclude the faulty rows (lines or sets, de-
pending on implementation) and use only the available
resources. For example, we can tie a certain cache in-
dex bit to zero or one to delete faulty memory rows.
Row remapping. When memory rows (and cache
lines in them) are lost, accesses to the faulty rows can
be directed to other rows. As will be shown in Sec-
tion 5, this strategy is very effective in tackling the
performance loss due to a few faulty cache sets. The
proposed row remapping scheme calls for a change in
the decoder driver (typically a series of inverters) as
shown in Figure 2(a) and (b). In addition, a set of
programmable remap match registers (along with their
associated logic) are also needed (Figure 2(c)). The
match registers are programmed to record the (faulty)
cache sets to remap. When there is a cache access hit-
ting a “remapped” set, one of the registers will have
a match, which will drive the wordline leading to the
target set. By properly sizing the NOR gates, the pro-
posed row remapping scheme will not affect the critical
path in a typical pipelined cache implementation [15].

4 CAFÉ

To quantitatively assess the impact of faults in cache
memory on program performance, we have developed a
tool set, called CAFÉ (CAche Fault Evaluation tools)
on top of the SimpleScalar simulation infrastructure
(v4.0) [2]. CAFÉ comprises (1) a cache profiler; (2) sys-
tematic and random fault map generators; (3) an ana-
lytical performance estimator; and (4) a cycle-accurate
performance simulator. The key data structure used
during evaluation is fault map, which describes the



Figure 2. (a) Conventional decoder. (b)
Remap-enabled decoder. (c) Remap unit.

faults (their types and locations) to be injected into
cache memory under study. A fault map can be gen-
erated systematically based on profile data, randomly
using the random fault map generator, or manually.

Given a program and cache configuration, the cache
profiler generates a detailed cache access profile to feed
the systematic fault map generator and the analytical
performance estimator. The profiler collects per set
hit/miss count and per LRU entry access count using
a stack-based algorithm [9]. The stack-based algorithm
allows us to assess the impact of removing any number
of cache lines (with faults) from a set without profiling
for each different configuration. The profiler also sup-
ports FIFO-based caches by profiling for each configu-
ration with different associativity, from 1 to the original
associativity. Once the cache access profile is collected,
one can immediately evaluate the impact of a set of
faults, of different types and numbers, in terms of the
resulting miss rate and program execution time. For
example, the analytical performance estimator, with
help from the systematic fault map generator, can an-
swer questions like: “what is the maximum impact of
losing N cache lines due to faults?”, “what is the min-
imum impact of losing N cache sets?”, “what is the
average impact of losing N cache sets?”, and “what is
the impact of losing a cache way?”

We employ a set of greedy algorithms and the Monte
Carlo method while systematically generating fault
maps to obtain accurate results. Greedy algorithms
are used to create a fault map leading to a minimum
or maximum performance impact, given the detailed
cache profile data. The algorithm implementation is
relatively straightforward for caches with an LRU re-
placement policy. Figure 3 exemplifies how the algo-
rithms work, given the per block access counts. In-
terestingly, the choice of N cache blocks leading to a
maximum miss count may not depend on the choice

Figure 3. An example access count profile
and fault maps leading to a max. or min.
number of misses.

Conf. Parameters

M1 “Embedded Processor”

Single in-order pipeline
8kB 16-way I/D caches – 32B line, 1-cycle latency
50-cycle latency main memory via a 64-bit bus
2k-entry bi-mod branch predictor

M2 “High-Performance Processor”

8-issue out-of-order processor with 128 ROBs
32kB 4-way I/D caches – 128B line, 3-cycle latency
2MB 8-way L2 cache, 256B line size, 18-cycle latency
240-cycle latency main memory via a 128-bit bus
4k-entry combined branch predictor

Table 2. Key machine parameters.

of N−1 cache blocks. Generating a fault map sys-
tematically for a FIFO-based cache is much more in-
volved than an LRU cache, due to the well-known
Belady’s anomaly. We use a heuristic-based integer-
programming algorithm for FIFO-based caches. The
Monte Carlo method is used to quickly compute the
average impact of a given number of faults.

The random fault map generator can randomly pick
up N distinct cache lines or cache sets, as well as to
mark a specified number of cache ways to inject faults
into. During the selection process, we consider each
cache line or set either independently or in clusters.
Based on a simplified center-satellite model [14], we
pick up cluster centers randomly. Cluster size (i.e., the
number of faulty lines or sets in a cluster) can be set to
a constant value or based on the Poisson distribution
around a mean value.

Finally, we develop an execution-driven processor
simulator based on sim-outorder [2], extended with the
degradable cache organization. It is used to measure
detailed program performance given a fault map.



Figure 4. Impact of deleting (a) lines, (b) sets, and (c) ways on two different machine configurations.

5 Quantitative Evaluation

5.1 Machine models and workload setup

To evaluate graceful degradation, we examined two
machine models: a simple embedded processor and a
complex superscalar design. Table 2 summarizes the
models. For workload, we used six programs (art, eon,
gzip, mesa, mgrid, vortex) from the SPEC2k bench-
mark and six programs (basicmath, cjpeg, dijkstra,
fft, rijndaele, rsynth) from MiBench [6]. We picked
programs based on their different miss rates, ranging
from ∼0.0% (basicmath) to 13.7% (art). Programs
were compiled to target Alpha (SPEC2k) and ARM
(MiBench) using Compaq Alpha C compiler (V5.9)
with the -O3 optimization flag and gcc 2.95.2 with -O2.

5.2 Result

Among the cache degrading strategies discussed in
Section 3, we focus on line/set/way delete and row
remapping in the results. We assume that faults in
cache memory are detected and necessary cache recon-
figuration is done before program execution, similar to
current practices [5]. A detailed discussion on on-line
cache testing is beyond the scope of this paper.
Deleting lines and sets. The impact of deleting
cache lines or cache sets in terms of miss rate is pre-
sented in Figure 4(a)–(b). In general, capacity loss due
to line deletions results in a smaller impact than the
same capacity loss due to set deletions. This is be-
cause the remaining cache lines after deleting faulty

cache lines can continuously serve cache accesses di-
rected toward the partially deactivated cache sets. On
the other hand, deleted sets cause recurring holes in
the memory space that are not serviced by the cache
memory at all, leading to a much larger impact.

It is likely that in a highly set-associative cache, the
loss of cache lines will affect performance less, com-
pared with a cache that is not. When half of cache
capacity is lost due to deleted lines, for example, M1
(16 ways) has miss rates up to 12%, while M2 (4 ways)
sees higher miss rates, 17% and above. The shallow
region in the curves, where miss rate is less than 20%,
is much wider in M1 than M2. Similarly, the angular
point of each curve tends to reach farther to the south-
east in M1. If accesses in a program are distributed
equally on different LRU entries in each cache set, its
curve will become straighter (e.g., rijndaele). When
deleting sets, on the other hand, the expected impact
grows almost linearly.

Deleting ways. It is interesting to find that the im-
pact of deleting ways is quite limited, as shown in Fig-
ure 4(c). Even with only one way available (i.e., when
15 ways are deleted in M1 and 3 ways in M2), high hit
rates of 67–95% were achieved.

Range of impact. Now, we turn our attention to the
possible maximum and minimum impact of deleting
cache lines and sets. Figure 5 has three curves show-
ing maximum, average, and minimum impact for three
selected programs.

As shown, vortex has a large gap between the max-
imum and minimum curves and it becomes more dif-
ficult to predict performance accurately given a set of



Figure 5. Max./avg./min. impact of deleting
lines (left) and sets (right) on miss rate.

faulty cache lines or sets. These “big eyes” suggest
that cache set usages are heavily unbalanced and clus-
tered in these programs, and that only a few lines are
actively used in those sets. On the other hand, cjpeg
and mgrid have a narrower gap between the curves,
especially in the set graph. Except for a few outliers,
mgrid uses cache sets in a very uniform way, resulting
in near straight-line maximum curves. Although cjpeg
has uses cache sets relatively regularly, the minimum
curve due to line deletion is much shallower initially
and steeper later than that of mgrid. This is because
cache lines within each set, as sorted in the LRU list,
have much different access profiles. mgrid again has the
most balanced usage of cache lines within each set, as
shown in Figure 4(c), and the minimum impact curve
for line deletion becomes in essence a 4-segment (4-way
cache) piecewise linear curve.

It is further shown that there is criticality in the
lines (sets) deleted. At the loss of 12.5% capacity, the
maximum impact was 30%, 36%, and 59% for cjpeg,
mgrid and vortex, respectively. At the loss of 25% ca-
pacity, the impact can be as large as 46%, 45% and
80%.

Impact on program performance. To assess the
impact of faults on program performance, we measured
programs’ execution time as we incrementally inject
faults. For this experiment, we used two fixed fault
maps generated for all the benchmark programs. The
first fault map (dubbed FM-R) is randomly generated,

Figure 6. Impact of clustered faults on exe-
cution times. Error bars show the max./min.
impact.

while the second one (FM-S) is systematically gener-
ated to select the cache sets that are most frequently
accessed by all programs. We simulated two different
caches for each machines: The first one is with con-
ventional decoder in Figure 2(a), where as the other
(“w/ remapping”) is with the remap-enabled decoder
in Figure 2(b). Figure 6 presents the result.

From the results without the remap-enabled de-
coder, M1 has a large slowdown (it lacks an L2 cache)
and M2 has a noticeable slowdown. The average slow-
down for M1 is 1.5 to 3.7 (for one to four fault clusters)
when faults are randomly injected. M2’s average slow-
down is 1.01 to 1.05. The slowdown for the programs
in each workload varies due to memory behavior. For
two fault clusters, systematic fault injection shows that
the maximum slowdown is 1.15, which is significant in
an aggressive processor design.

The graphs also show how the remap-enabled de-
coder can overcome the performance lost due to failed
sets. The lightly shaded bars show the slowdown when
failed sets are remapped. Remapping can be quite ef-
fective. For M1 with the remap-enabled decoder, the
average slowdown is 1.1 to 1.5 (from one to four fault
clusters), which is a significant improvement over sim-
ply disabling the failed sets. Machine M2 also sees
a benefit: the average slowdown is reduced to a maxi-
mum of 1.02 for four fault clusters and systematic fault
injection (the last set of bars). From these results, we
conclude that a remap-enabled decoder is beneficial,
even for a small number of cluster faults.



5.3 Discussion

Based on our results, we discuss how caches in future
processors will have to be designed in response to the
growing threat from hard faults.
1. Future caches must tolerate faults. Given that de-
fects will happen during processor operation, and these
defects will lead to faults, it is imperative to develop
techniques for fault-tolerant caches. Because the per-
formance impact can be high in some programs, caches
should be designed in a way in which they offer graceful
degradation due to the faults. Further, the whole cache
hierarchy needs to be designed with faults in mind. Our
results show that the impact of faults is greatest when
there is only an L1 cache. However, there can be a
large impact for a cache hierarchy with multiple levels.
Thus, simple disabling strategies (from Figure 6 w/o
remapping), are likely insufficient for future processors
that will be subject to many more hard faults.
2. Covering the full address space is important. When
some portion of the address space cannot be cached due
to a fault, the performance impact can be high. This
situation may occur when a whole set (a line in a direct-
mapped cache) is lost. Thus, a cache should be designed
to be “adaptable” so that it can cache all addresses
when faults occur. Address re-mapping (see Figure 6
w/ remapping) is one way to achieve this capability.
An alternative is to provide spares, where additional
resources can be selectively enabled to take the place of
faulty ones. Similarly to address re-mapping, sparing
ensures that the address space can be covered, but it
also maintains the original cache’s capacity. It has an
area cost (for the spares) and a possible latency cost.
Of course, both techniques can be applied together.
3. The “criticality” of cache elements must be consid-
ered. Different cache elements have varying criticality
in terms of the program’s performance. A cache line
that is frequently accessed in an in-order processor is
quite important to good performance. If that cache
line is lost due to a fault, then performance suffers.
Criticality can be used to guide decisions about address
re-mapping and sparing.

6 Conclusion

A growing threat in the design of microprocessors
is the dramatically increasing probability of a hard-
ware defect in a deployed processor. Cache designers
for a future processor will have to consider and tackle
this challenge to achieve good overall product yield and
reliability. This paper examined how circuit defects
can cause faults in processor caches. Given the possi-
ble fault manifestations, the paper described different

graceful degradation strategies that disable unreliable
cache lines, sets, and ways. Our results show that los-
ing a cache set often has the most impact because a
portion of the address space cannot be cached. This
paper also showed that a simple remap scheme can re-
cover much performance loss due to faulty sets. More-
over, we show that different cache elements have vary-
ing criticality in terms of the program’s performance.
For a future cache design with a degree of reconfigura-
bility, criticality can be used to guide decisions about
address re-mapping and sparing. Our results provide
valuable insight into the performance and design of
fault-tolerant, degradable caches that will be necessary
in future processors.

References

[1] A. Agarwal et al. “A Process-Tolerant Cache Architecture
for Improved Yield in Nanoscale Technologies,” IEEE Trans.

VLSI Systems, 13(1): 27–38, Jan. 2005.

[2] T. Austin et al. “SimpleScalar: An Infrastructure for Com-
puter System Modeling,” IEEE Computer, Feb. 2002.

[3] D. K. Bhavsar. “An Algorithm for Row-Column Self-Repair
of RAMs and Its Implementation in the Alpha 21264,” Int’l

Test Conf., pp. 311–318, Sept. 1999.

[4] S. Borkar et al. “Platform 2015: Intel Processor and Plat-
form Evolution for the Next Decade,” Tech.@Intel, March
2005.

[5] D. C Bossen et al. “Power4 System Design for High Relia-
bility,” IEEE Micro, 22(1): 16–24, Jan. 2002.

[6] M. R. Guthaus et al. “MiBench: A Free, Commercially Rep-
resentative Embedded Benchmark Suite,” Workshop Work-

load Characterization, pp. 110 – 111. Dec. 2001.

[7] S. Kumar, C. Kim, and S. Sapatnekar. “Impact of NBTI
on SRAM Read Stability and Design for Reliability,” Int’l

Symp. Quality Electronics Design, March 2006.

[8] D. A. Patterson et al. “Architecture of a VLSI Instruction
Cache for a RISC,” Int’l Symp. Computer Arch., pp. 108–
115, June 1983.

[9] A. F. Pour and M. D. Hill. “Performance Implications of
Tolerating Cache Faults,” IEEE Trans. Computers, 42(3):
257–267, Mar. 1993.

[10] E. Rotenberg. “AR-SMT: A Microarchitectural Approach
to Fault Tolerance in Microprocessors,” Int’l Symp. Fault-

Tolerant Computing Systems, pp. 84–91, June 1999.

[11] SEMATECH. “Critical Reliability Challenges for the Inter-
national Technology Roadmap for Semiconductors (ITRS),”
Technology Transfer #03024377A-TR, March 2003.

[12] G. S. Sohi. “Cache Memory Organization to Enhance the
Yield of High-Performance VLSI Processors,” IEEE Trans.

Computers, 38(4): 484–492, April 1989.

[13] J. Srinivasan et al. “The Impact of Technology Scaling on
Lifetime Reliability,” Int’l Conf. Dependable Systems and

Networks, pp. 177–186, June 2004.

[14] B. Vinnakota and J. Andrews. “Repair of RAMs with Clus-
tered Faults,” Int’l Conf. Computer Design, Oct. 1992.

[15] C. Zhang, F. Vahid, and W. A. Najjar. “A Highly-
Configurable Cache Architecture for Embedded Systems,”
Int’l Symp. Computer Architecture, pp. 136–146, June 2003.


