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Abstract

Trace-driven simulation of superscalar processors is partic-

ularly complicated. The dynamic nature of superscalar pro-

cessors combined with the static nature of traces can lead

to large inaccuracies in the results, especially when traces

contain only a subset of executed instructions for trace re-

duction. The main problem in the filtered trace simulation

is that the trace does not contain enough information with

which one can predict the actual penalty of a cache miss.

In this paper, we discuss and evaluate three strategies to

quantify the impact of a long latency memory access in a su-

perscalar processor when traces have only L1 cache misses.

The strategies are based on models about how a cache miss

is treated with respect to other cache misses: (1) isolated

cache miss model, (2) independent cache miss model, and

(3) pairwise dependent cache miss model. Our experimental

results demonstrate that the pairwise dependent cache miss

model produces reasonably accurate results (4.8% RMS er-

ror) under perfect branch prediction. Our work forms a ba-

sis for fast, accurate, and configurable multicore processor

simulation using a pre-determined processor core design.

1. Introduction

Simulation is an important tool for computer architects [26].

It enables one to quickly analyze the behavior of a complex

system and to evaluate subtle design trade-offs in an experi-

mental environment. However, its use is limited to situations

where it is both reasonably accurate and fast. Trace-driven

simulation is a particularly fast simulation method consist-

ing of two phases [22, 26]. In the trace generation phase

a benchmark is executed and information about key events

is recorded in a trace file. In the trace simulation phase,

the information recorded in the first phase is used to drive

the simulation. Trace-driven simulation’s increased speed

is a result of replacing the detailed functional execution of

a benchmark with a pre-captured, but highly representative,

trace of an execution.

This technique works well for in-order single-issue cores.

For example, consider the detailed simulation of a simple

in-order core. During the trace generation phase, one might

1Shayne Evans is currently with the Lime Brokerage LLC.
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Figure 1. Naı̈ve trace-driven simulation of a superscalar proces-

sor may suffer from very poor accuracy.

record the type and address of every memory operation as

well as the number of instructions executed and the number

of cycles elapsed since the last memory operation. This fil-

tered trace only includes memory accesses, a subset of the

instructions, and summarizes the instructions executed be-

tween operations. Because the core executes instructions in

order and blocks while waiting for a memory access, the

filtered trace would be the same regardless of the memory

configuration. Thus using the same trace, one could simu-

late many different memory hierarchy configurations, such

as different cache latencies or cache sizes, with high cycle

accuracy and fast speed.

However, many issues arise when the same scheme is ap-

plied to out-of-order superscalar processors. For example,

a superscalar processor does not necessarily block during a

memory access. Modern processors often execute instruc-

tions during the memory access latency to hide the cost of

the latency. A complex processor core dynamically chooses

which instructions to execute, but a trace naturally contains

the choices made by a core in one particular instance of ex-

ecution. When parameters are varied outside of the core,

the trace loses its accuracy. This makes naı̈ve trace-driven

simulation of superscalar processor difficult. A naı̈ve trace-

driven simulation sequentially processes each trace item in

the order in the trace file. It adds the elapsed cycles recorded

in the trace items and the latencies returned from accessing

the L2 cache or memory to the total simulated clock cycle.

Figure 1, produced using a typical 4-issue processor model,

shows that such an approach results in very high errors.

Accurate trace-driven simulation of superscalar proces-
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Figure 2. (a) Machine model having a superscalar processor core, L2 cache, and main memory. (b) Trace-driven simulation setup.

sors is possible using full traces [3]. A full trace includes

a detailed trace item for every instruction. This enables

the processor model to determine dependencies between in-

structions and mimic the choices of an actual superscalar

processor without executing a benchmark. This paper, advo-

cates accurate trace-driven simulation using filtered traces

because it simplifies the complexity of modeling a processor

core, obtains results faster, and requires less storage space

than traditional trace-driven simulation using full traces. The

main problem is: When simulating a superscalar core using a

filtered trace it is difficult to obtain accurate results because

the trace does not contain enough information to faithfully

predict the core’s dynamic behavior.

This paper argues that with an understanding of the char-

acteristics of superscalar processors, one can produce both

fast and reasonably accurate simulation results using filtered

traces. Specifically, we present and evaluate three strate-

gies to quantify the impact of a long latency memory access

in a superscalar processor when traces have only L1 cache

misses (i.e., L1 cache hits are filtered). They are based on

three different models about how we treat a cache miss with

respect to other cache misses: (1) isolated cache miss model,

(2) independent cache miss model, and (3) pairwise depen-

dent cache miss model.

Our results show that the pairwise dependent cache miss

model obtains sufficiently small simulation errors (4.8%

RMS) at very high simulation speeds (over 30.7× on av-

erage) compared with the detailed execution-driven simula-

tion approach under perfect branch prediction. Given the fast

simulation speeds and small simulation errors, our approach

is particularly useful for studying large-scale multicore pro-

cessors at an early design stage when the focus in a series

of simulation studies is on system-wide parameters such as

the on-chip interconnection network and L2 cache configu-

rations rather than a superscalar processor’s internal param-

eters such as the L1 cache configuration, issue width, and

reorder buffer size. We expect that recent trace-driven multi-

core processor simulators such as Zauber [15] and TPTS [7]

can readily integrate our techniques.

The rest of this paper is organized as follows. Section 2

describes our superscalar machine model and experimental

setup. The three proposed cache miss models are presented

and evaluated in Sections 3, 4, and 5, respectively. In Sec-

tion 6 we compare the proposed models to place them in

perspective and discuss how our techniques can be applied to

fast multicore processor simulation. Section 7 summarizes

related work and in Section 8 we provide our conclusions.

2. Machine Model and Experimental Setup

2.1. Machine model

Our machine model is a superscalar processor system with

two levels of cache memory and a main memory, as shown

in Figure 2(a). The superscalar processor core model we use

is sketched inside the dotted box. It has a front-end “fetch

pipeline” that fetches and buffers instructions for further pro-

cessing. Once fetched, instructions are decoded and dis-

patched to various functional units such as an ALU, branch

unit, or data memory access unit. They may be temporarily

stored in buffers (or reservation stations) associated with a

specific functional unit until the unit becomes available or

input operands arrive. When an instruction is dispatched, a

new entry in the reorder buffer (ROB) is allocated so that the

“update and commit pipe” can change the architectural state

properly in the program order as instructions are committed

in the presence of special events such as exceptions, branch

mispredictions, and cache misses. More general description

of superscalar processor design and operation can be found

in Johnson [9] and Shen and Lipasti [19].

When a memory access misses in an L1 cache inside the

processor, it accesses an off-core unified L2 cache. If the ac-

cess misses in the L2 cache, it will access the main memory.

It is noted that the L2 cache and main memory are consid-

ered a system-wide resources in multicore processor archi-

tectures [2,14] because they are often shared among proces-

sor cores whereas L1 caches are not.



2.2. Experimental setup

As a trace-driven simulation framework, our experimental

setup employs two distinct tools, a trace generator and a

trace simulator. Unlike most previous trace-driven simula-

tion work [22], we introduce the notion of timing during the

trace generation phase and embed time-related information

in the trace. Similar timing-aware trace generation was done

in recent trace-driven multicore simulators [7, 15]. Hence,

the trace generator must be able to model the microarchi-

tecture of a processor using a user provided machine defi-

nition. Figure 2(b) illustrates the relationship between the

trace generator, trace simulator, machine definitions, and

trace files. The generic machine definition refers to the su-

perscalar processor core configuration that we use: the intra-

core parameters that shape the processor core in Figure 2(a).

The target machine definition is the system-level proces-

sor configuration such as L2 cache size, associativity, and

main memory latency, that completes the overall machine

model we wish to study. Throughout this paper, we use

sim-outorder, a detailed out-of-order processor simu-

lator (of the SimpleScalar tool set) [1] to generate traces.

We use filtered traces in this work. That is, trace files do

not contain all instructions executed during a program run

and rather focus on memory access instructions [22]. More-

over, we filter out L1 cache hits that do not access the L2

cache, further cutting down the number of trace items to

store in trace files, similar to [5,7,15]. Our traces are timing-

aware; each trace item carries information about when it can

be processed with regard to the preceding trace item. More

specifically, each trace item captures: (1) how many instruc-

tions were executed after the last trace item, (2) how many

cycles were spent executing those instructions, (3) informa-

tion about the L1 cache miss that gave birth to the trace item:

type (read, write, or instruction fetch) and its address, and fi-

nally (4) timing-related information to be used when a long

latency memory access is caused by the trace item. This

timing-related information depends on the generic machine

model used in the trace generation phase.

Table 1 captures our baseline machine configuration. We

note that we will use a perfect branch predictor in this paper

to isolate the interference caused by branch mispredictions

and avoid any confusion thereof. In this paper, we will only

focus on quantifying the impact of long-latency memory ac-

cess caused by a cache miss.

For experiments in the following three sections we use a

selected set of SPEC2k benchmarks [21] for clear presenta-

tion: mcf, art (benchmarks with high miss rates), gcc, ammp

(with medium miss rates), perl and facerec (with low miss

rates). Selection was based on their L1 cache miss rates

and the raw instruction level parallelism (ILP) present in the

programs, such that strengths and weaknesses of the studied

strategies can be exposed. In our current implementation,

we treat “delayed hits” (hits to a cache block that is still in

Dispatch/issue/commit width 4

Reorder buffer (ROB) 64 entries

Integer ALUs 4

Floating point ALUs 2

L1 i- & d-cache 1 cycle, 16KB, 4-way

64B line size, LRU

L2 cache (unified) 12 cycles, 1MB, 8-way

64B line size, LRU

Branch prediction Perfect

Main memory latency 300 cycles

Table 1. Baseline machine configuration for experiments.

transit from the L2 cache) as trace items. We will present

results for all SPEC2k benchmarks in Section 6. Programs

were compiled using the Compaq Alpha C compiler (V5.9)

with the -O3 optimization flag. For each simulation, we skip

the initialization phase of the target program [20], warm up

caches in the next 100M instructions, and simulate the next

1B instructions. To evaluate the studied simulation methods,

we use CPI error as the main metric. The CPI error is de-

fined as (Ttsim −Tesim)/Tesim, where Ttsim and Tesim are

the simulated program execution time (number of cycles) of

trace-driven simulation and execution-driven simulation re-

spectively.

3. Model 1: Isolated Cache Miss

3.1. Basic idea

The basic idea of this model is quite simple: The actual im-

pact of a particular cache miss on the overall program exe-

cution time is the time difference of two program runs, one

without the miss and one with the miss, assuming that all

other memory access latencies are unchanged.

Figure 3(a) captures this idea. Program run 1 has no L2

cache misses, whereas program run 2 of the same program

has a single L2 cache miss at a known L2 cache access.

The impact of the cache miss on the program execution time

is simply (Trun 2 − Trun 1). We can obtain Trun 1 using

a cycle-accurate simulator modeling an L2 cache having a

100% hit rate. Trun 2 can be obtained by using the same

cycle-accurate simulator and giving the miss penalty to a

specific L2 cache access. One can measure the impact of

each potential L2 cache miss by repeating this process.

3.2. Instruction permeability analysis

While the basic idea of our isolated cache miss model is in-

tuitive, the process of assessing the impact of each potential

L2 cache miss can be extremely time consuming. Suppose

that a program has N L1 cache misses. In an exhaustive ap-

proach to analyze this program, for instance, one will gen-

erate N traces (each having exactly one L2 cache miss) and

compare them against the trace having no L2 cache misses

to deduce the impact of each individual cache miss.

To reduce the overhead of generating many traces to com-
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Figure 3. (a) A single “isolated” L2 cache miss in a program

run. (b) Using two additional traces generated by interleaving hit

and miss to compute the impact of isolated misses efficiently.

pute the impact of each potential L2 cache miss, we use a

technique called instruction permeability analysis that sys-

tematically assigns a cache access latency to trace items as

they are generated in the trace generation phase. Figure 3(b)

shows three traces generated from a target program for in-

struction permeability analysis. One trace has only L2 cache

hits and the other two have alternating L2 cache hits and

misses. The alternation of cache hits and misses is skewed

in the two traces so that all trace items are covered. By com-

paring the actual number of cycles measured in trace inter-

vals, each surrounded by two trace items, we can compute

the impact of a single L2 cache miss as we would do with a

trace having only a single L2 cache miss. We call the config-

uration in Figure 3(b) 2-interleaving because the additional

traces have one L2 cache miss on every two trace items.

Let us turn our attention to how we actually analyze the

impact of a cache miss and how we associate the information

with trace items. Assume that S is the latency of a cache hit

and L is the latency of a cache miss. L is the latency penalty

paid on a specific cache miss (i.e., main memory access)

on top of a cache access latency S. From measurements

one can obtain a, the cycle count of the interval (n) after

trace item (n) in trace 1 and b, the cycle count of the same

interval in trace 2. We define dn = b − a. Because the nth

trace item in trace 2 has a longer latency (S + L) than the

corresponding trace item in trace 1 (S), b ≥ a holds and

equivalently dn ≥ 0. Once we obtain dn, we annotate trace

item (n) with the timing information (a, ∆n) where ∆n is

defined as (L−dn). Given this, the actual latency of interval

(n) during the trace-driven simulation is:

a if trace item n hits in L2 cache and

a + L′ − ∆n if trace item n misses in L2 cache

where L′ is the actual main memory access latency used in

the trace-driven simulation. When L = L′, our method guar-

antees that the actual latency computed for interval (n) is a
or b depending on the cache access outcome of trace item

(n), the same as those of the timing-aware trace generation.

If L 6= L′, the actual latency will be either a or (b+(L′−L)).

The above description of instruction permeability analy-

sis used a 2-interleaving configuration. One may choose to

employ a 3-interleaving configuration where there is one L2

cache miss on every three trace items. Obviously, the most

important factor affecting the effectiveness of this scheme is

how far in time trace items are separated from each other. If

a “missed” trace item is far away from the next missed trace

item in trace 2 and 3 in the example of Figure 3(b), the re-

sult of the analysis will be a close approximation of what we

would get from the exhaustive method. Hence, we expect

that an n-interleaving configuration will result in higher ac-

curacy than an m-interleaving configuration if n > m, at a

higher trace generation and analysis cost. If n = N where

N is the number of trace items, the n-interleaving configu-

ration degenerates to the exhaustive method.

3.3. Result

During experiments, we found that it is rather challenging

to correctly align matching trace items from multiple trace

files to perform instruction permeability analysis, especially

at a high interleaving factor. This is because the order of

trace items is not preserved across the trace files as we as-

sign different cache access latencies to different trace items.

Certain trace items occur in one trace file, but not in oth-

ers, mis-aligning the trace items that follow. While devising

better trace item annotation methods is certainly an inter-

esting question, we limit our presentation in this section to

the 2-interleaving configuration, improved with an ad hoc

method that uses a few more traces. With four more trace

files where long-latency trace items were chosen randomly,

we could annotate 56% (mcf), 66% (art), 75% (gcc), 73%

(ammp), 98% (perl), and 100% (facerec) of the trace items.

Despite being able to considerably reduce the magnitude

of CPI errors compared with the naı̈ve method, Figure 4(a)

shows that the isolated cache miss model fails to eliminate

errors robustly. Programs having a high L1 cache miss rate

(mcf and art) still see a large CPI error. These programs have

many independent, parallel cache misses in short intervals,

resulting in incorrect accumulation of cache miss penalties.

Figure 4(b) shows that the studied programs have many

L2 cache accesses in short intervals, confirming our obser-

vation. Facerec has a low L1 data cache miss rate and its L1

cache misses occur sparsely. This makes the isolated cache

miss model (and even the naı̈ve method) work well for fac-

erec. Interestingly, gcc and ammp have a negative CPI er-

ror, which was caused by our aggressive ad hoc trace item

annotation. We employed a search-based trace item match-

ing algorithm that exhaustively inspects trace items within a

specified range until it finds the matching interval given two

trace items. Some annotations (∆), especially in trace items

that exhibit different ordering in different trace files, become

inaccurate and often larger. As a result, at simulation time,

the computed penalty for cache misses that occur from the

corresponding trace items becomes smaller.
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L1 misses are assumed to hit in the L2 cache. The dotted box shows that there are potentially many independent L2 cache accesses. The

X-axis shows the number of cycles in each L1 miss interval.

4. Model 2: Independent Cache Miss

4.1. Basic idea

The main weakness of the isolated cache miss model lies in

its assumption that the impact of a long latency memory ac-

cess is accumulated. Hence, while the model is capable of

accurately quantifying the delay penalty of a relatively “iso-

lated” cache miss, it loses accuracy when cache misses are

close to each other; it pessimistically adds individually com-

puted delay penalties even if those misses can be overlapped

(“memory level parallelism”) in a real processor.

Unlike the isolated cache miss model, the independent

cache miss model is optimistic about when an L1 cache miss

in a trace item can proceed to the L2 cache. It assumes that

all L1 cache misses are independent of each other and can

be handled without regard to any outstanding cache misses.

The independent cache miss model can potentially result in

more accurate results than the isolated cache miss model be-

cause it enables a trace-driven simulator to process multiple

cache miss events simultaneously (rather than sequentially)

as a superscalar processor would do.

It is evident that there is a limit on how many L1 cache

misses can be pending at any given time considering a super-

scalar processor’s limited hardware data structures. For ex-

ample, our processor configuration in Table 1 has a 64-entry

ROB and hence will not allow two memory instructions to

be simultaneously outstanding if they are at least 64 instruc-

tions away from each other. Hence, under the independent

cache miss model we take each L1 cache miss independently

and make it proceed only when such a decision does not con-

tradict with the processor state that has been constructed up

to the point of the cache miss. In this paper, we focus on

the ROB among many processor data structures based on

our own experiments and a previous analytical performance

modeling work done by Karkhanis and Smith [11].

5 cycles  

A (100)

A 9 insts

64-entry Reorder Buffer

15 cycles  5 cycles  20 cycles  

B 29 insts C 23 insts D··· 6 insts ··· ··· 14 insts ··· E

B (110) C (140) E (185) D (170)

(b)

(a)

Figure 5. (a) Five trace items recorded in the trace file with infor-

mation collected during the trace generation phase. Inside paren-

theses are the instruction sequence numbers. (b) The status of the

ROB: Only the first three trace items are in the ROB.

4.2. ROB occupancy analysis

To implement the idea of the independent cache miss model,

we need to model the ROB in our trace-driven simulation.

In what follows, we will illustrate how we determine the

progress of each trace item using the proposed analysis tech-

nique via an elaborate example.

Figure 5 depicts an example of how the instruction se-

quence number attached to each trace item is used to deter-

mine when to process the trace items. In the example, all five

trace items (i.e., L2 cache accesses) miss in the L2 cache and

go to the main memory. A is the oldest (memory) instruc-

tion inside the ROB waiting for its data to come from the

memory. B and C are subsequent memory instructions that

are issued while A is pending. However, since the number

of instructions between C and D is larger than the available

free entries in the ROB, some instructions in D cannot be

issued until there is room in the ROB to hold them. After A

commits, the issued instructions between A and B are com-

mitted, which allows the instructions between the tail of the

ROB and D, as well as the instruction in D, to advance to the

ROB. However, the available entries are still not enough to

hold all 14 instructions between D and E, and only the next

three instructions behind D are placed in the ROB. After B is

resolved and commits, the instructions between B and C will
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Figure 6. (a) CPI error of the independent cache miss model when ROB size is 64. (b) CPI error with different ROB sizes.

follow and commit at the processor’s commit rate. As more

and more entries become free, E will finally move into the

ROB and be issued. In essence, the ROB occupancy analysis

keeps track of instructions in the ROB after each successive

trace items, allows all L2 cache accesses in the ROB to is-

sue independently, and blocks any further processing of the

following trace items if the ROB is full.

The ROB occupancy analysis considers the instruction

sequence number (instseq) and the number of elapsed cy-

cles (cycelapsed) between two trace items to determine when

to process the trace items. According to the ROB occupancy

analysis, L2 cache misses are treated in the following way.

If instseq of the next trace item is smaller than the maxi-

mum instseq in the ROB, this indicates that the next trace

item is already inside the ROB, and hence, the instruction in

the next trace item can be issued independently. If instseq

of the next trace item is larger than the maximum instseq

in the ROB and the difference between the two is smaller or

equal to the number of free entries, the instructions in the

trace item are moved into the ROB at a speed determined by

cycelapsed. The number of instructions inside the ROB can

be calculated by comparing the head and tail of the ROB.

When a trace item cannot be immediately processed as in

the case of D and E of the above example, it has to wait until

presently outstanding L2 misses are resolved.

The ROB occupancy analysis is done within the trace-

driven simulation. Therefore, the independent cache miss

model does not require any trace analysis before simulation.

Note that the isolated cache miss model requires that multi-

ple traces be generated and analyzed.

4.3. Result

Figure 6(a) compares the result of the independent cache

miss model and sim-outorder. It shows that the

program execution times obtained by the independent

cache miss model are in general smaller than those of

sim-outorder (negative CPI errors). This is because the

independent cache miss model is optimistic about when a

trace item can be processed (i.e., L2 cache is accessed) and

aggressively processes memory accesses in parallel. In the

case of mcf we observed a large simulated execution time

deviation. We attribute this large magnitude of error to the

memory access pattern of mcf–there are many trace items

that are dependent on other trace items. Our profiling reveals

that 80% of mcf’s trace items have dependencies which are

neglected in the independent cache miss model.

We saw the largest improvement in art compared to the

naı̈ve method because the majority of its L1 cache misses

occur very closely to each other, as indicated in Figure 4(b).

This suggests that there are potentially many independent L2

cache misses in art which are accurately quantified using the

independent cache miss model.

Finally, we note that the degree of MLP is constrained

by the ROB size, thus affects the accuracy of the indepen-

dent cache miss model. Figure 6(b) depicts how CPI errors

change when the ROB size is varied. The CPI error tends to

decrease as we reduce the ROB size. In mcf, the large CPI

error persisted until the ROB size was reduced to 4. Besides

art showing −7% CPI error, other five benchmarks showed

a CPI error that is smaller than −2% (0% for mcf) when

the ROB size is four, since memory accesses that have inter-

dependence are often not placed in the ROB together (and

are not issued together).

5. Model 3: Pairwise Dependent Cache Miss

5.1. Basic idea

The independent cache miss model we studied in the pre-

vious section can be too optimistic. It works well for the

programs that have few dependencies between cache misses

but it results in smaller program execution times by schedul-

ing memory accesses aggressively. On the other hand, the

isolated cache miss model in Section 3 is pessimistic about

the dependences between trace items and processes them se-

quentially. Hence, the impact of each long-latency memory

access is simply accumulated. This approach works well for

the programs that inherently have few parallel memory ac-

cesses but it results in large CPI errors for the programs that

have many independent memory accesses that are clustered.

In this section, we propose yet another model that com-

bines the strengths of the two previous models. The new

model exploits the parallel scheduling capability of the in-
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dependent cache miss model as well as the explicit depen-

dencies between trace items collected during the trace gen-

eration phase. Unlike the independent cache miss model

that was shown to be “overly optimistic” for some bench-

marks, the pairwise dependent cache miss model honors de-

pendencies between trace items when scheduling them. To

do so, in the trace generation phase we detect dependencies

between trace items and record them. In the trace simulation

phase, if a trace item in the ROB depends on a previous trace

item (i.e., ancestor), it is not issued until the previous ances-

tor trace item gets its data back from the cache or memory.

Hence, if there exists a dependency between two trace items,

even if both of them are already in the ROB, the second, the

dependent cache access is not processed immediately.

To detect dependencies among trace items efficiently,

we can exploit the existing dependence analysis facili-

ties in a superscalar processor simulator. In the modified

sim-outorder simulator we use during trace generation,

we take advantage of the “dependency chains” constructed

when instructions are dispatched. Specifically, to determine

if there is a dependency between a pair of distinct memory

accesses, we walk through the dependency chains to see if

there exists a linkage between them. Detected dependen-

cies are then recorded in trace items. We note that a single

trace item may depend on multiple preceding trace items.

However, our experiments show that storing more than a sin-

gle ancestor does not produce significantly better results and

thus, we store only one ancestor or none (no dependence) in

each trace item. In the presence of multiple ancestors, we

use a heuristic to choose the latest ancestor in the instruction

sequence, the closest to the trace item under consideration.

5.2. Result

Figure 7(a) compares the accuracy of the independent cache

miss model and the pairwise dependent cache miss model. It

is shown that the pairwise dependent cache miss model sig-

nificantly reduces the errors of the independent cache miss

model. All the programs we examined have a CPI error that

is within ±3%. When the independent cache miss model

was used, mcf had a large CPI error (−44%). The proposed

pairwise cache miss model, by exploiting the dependence

information embedded in trace items, reduced the CPI error

from −44% to 0% for mcf . Facerec and perl have few de-

pendencies between trace items, hence the CPI error did not

change.

Figure 7(b) shows how the CPI error of the pairwise de-

pendent cache miss model changes when the ROB size is

varied. As was the case with the independent cache miss

model, the CPI error becomes smaller as we reduce the ROB

size. When the ROB size is as small as four, the processor

starts to behave like an in-order processor and both the inde-

pendent cache miss model and the pairwise dependent cache

miss model give very small CPI errors compared with the

execution-driven simulation.

6. Putting It All Together

6.1. Comparing three cache miss models

The three cache miss models we have examined so far have

different strengths and weaknesses. The isolated cache miss

model works well when the simulated program has a high

L1 cache hit rate and L1 cache misses are “isolated” and oc-

cur apart from each other. It is pessimistic about how trace

items (cache misses) can be scheduled during simulation; a

long latency cache miss will simply block and delay all fol-

lowing trace items. It also requires that the potential penalty

of individual cache misses be pre-calculated before simula-

tion during the trace generation phase. The related analysis

entails generating multiple traces and comparing trace items

in those traces. The process was shown to be error-prone for

programs that have many clustered misses.

The independent cache miss model is optimistic about

when a trace item can be scheduled; trace items are pro-

cessed immediately as long as there is space in the ROB to

hold them. It produces much smaller CPI errors than the iso-

lated cache miss model when cache misses occur frequently

and the misses overlap in time in a real superscalar proces-

sor. This model does not require any pre-analysis of traces.

Traces simply capture the L1 cache misses and the trace sim-
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Figure 8. CPI error of all 26 SPEC2k benchmarks using the pairwise dependent cache miss model and the baseline machine configuration.

ulator would determine the timing of each trace item in the

trace using the ROB status constructed on the fly. However,

if there are dependencies among trace items, this overly op-

timistic model becomes inaccurate.

Our third model, the pairwise dependent cache miss

model, builds on the independent cache miss model. It

considers dependencies between trace items as it schedules

them. If a benchmark program does not present dependen-

cies between trace items, the pairwise dependent cache miss

model behaves just like the independent cache miss model.

In other cases, it reduces the CPI error of the independent

cache miss model by properly delaying trace items that de-

pend on an unresolved trace item. Figure 7(a) showed that

the pairwise dependent cache miss model consistently out-

performs the independent cache miss model in terms of the

CPI error metric. We conclude that the pairwise dependent

cache miss model is the most accurate model among the

three when modeling the superscalar processor performance

from traces. Figure 8 presents the CPI error of all SPEC2k

benchmarks, produced using the pairwise dependent cache

miss model when the ROB size is 64. As many as 23 out of

26 programs had an error that is less than 5%. The average

CPI error was 4.8% RMS.

Our models are fed with filtered traces that contain only

L2 cache accesses. This filtering method is simple and ef-

fective in reducing the trace file size. The average number of

instructions in trace items (# of instructions before hitting an

L1 miss) ranged from 5 (gcc) to 1,418 (sixtrack). The maxi-

mum number of instructions in a trace item was between 162

(art) to 65,513 (perl), and the minimum number of instruc-

tions was 1 for all benchmarks. We note that the average

number of instructions represented in a trace item will in-

crease if we make the L1 data cache larger in the simulated

machine configuration. This will in turn reduce the trace file

size. In our study, the L1 cache size was 16KB.

Trace-driven simulation using filtered traces is fast. We

have observed simulation speedups roughly comparable to

those reported in [7, 15]. The observed simulation speedups

range from 2 (gcc) to 306 (gap) and their average (geometric

mean) was 30.7.

6.2. Toward efficient multicore system simulation

We have previously used “CPI error” as the metric to eval-

uate how closely our trace-driven simulation approach ap-

proximates a superscalar processor’s performance compared

with an execution-driven simulator, given the same bench-

mark program and the same machine configuration. In this

subsection, we will evaluate two other aspects of our trace-

driven simulation model: (1) When a processor core is mod-

eled using our approach, does it change how the core exer-

cises system-wide resources such as shared cache and on-

chip network? and (2) Can our scheme predict a program’s

relative performance when a system parameter (such as L2

cache size) is changed? These aspects are especially im-

portant for accurate and efficient multicore simulation. The

efficiency of our approach is its simulation speed advantage

over the execution-driven simulation approach.

To examine the first aspect, Figure 9 compares

the L2 cache miss intervals of the two simulators,

sim-outorder and our trace-driven simulator using the

pairwise dependent cache miss model. Our intuition here

is that they should produce similar histograms if our model

faithfully simulates the superscalar processor from traces.

Overall, the pairwise dependent cache miss model preserves

the memory system access behavior of sim-outorder

closely. In mcf, some very short intervals (“0–15”) have

shifted into the next, longer interval range (“16–31”). In gcc,

some of the very long intervals (“208+”) have shifted into

relatively short intervals. Using the percentage of common

populations across different bins as the metric, the similarity

of the two simulator is: 95.8% (mcf), 93.5% (gcc), 99.7%

(perl), 94.6% (art), 98% (ammp), and 100% (facerec).

We now attempt to answer the second question “Can the

proposed pairwise dependent cache miss model correctly

predict the performance of a new machine configuration

given the performance of a baseline machine configuration?”

The ability to measure relative performance is important in a

multicore system performance study where some resources
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Figure 9. Comparing the distance (in clock cycles) between two consecutive L2 cache misses returned from the detailed execution-driven

simulation (sim-outorder) and our pairwise dependent cache miss model.

are shared among threads. For instance, Kim et al. [12] uses

“relative slowdown,” the ratio of a program’s execution time

on a “shared” multicore system to the same program’s exe-

cution time on an “unshared” system. We make our baseline

configuration in Table 1 as the reference point and simulate

five configurations that differ in one of their L2 cache or

main memory parameters (described in Table 2). Note that

our trace-driven simulations used the same traces produced

to study the baseline configuration. On the other hand, we

ran sim-outorder with each new machine configuration

examined. The numbers in Table 2 are relative execution

time differences of the two simulators. Relative performance

is defined as the ratio of the execution time on a given config-

uration to the execution time on the baseline configuration.

Our results show that the trace-driven simulator was

able to project the relative performance very closely to the

execution-driven simulator, sim-outorder. First of all,

the performance direction (positive or negative), was pre-

dicted correctly 100% of the time. Furthermore, Table 2

shows that the magnitude of relative performance seen by

each benchmark and each configuration, was nearly identi-

cal between the two simulators. The average RMS errors

were less than or equal to 2.0% across all the configurations

examined.

In summary, the results presented in Figure 9 and Table 2

suggest that the trace-driven simulation method based on the

pairwise dependent cache miss model is amenable for use

in a trace-driven multicore simulation environment [7, 15].

To simulate multiple processor cores that run independent

threads simultaneously (i.e., multiprogrammed workload),

one can prepare traces from a detailed uniprocessor simu-

lator (like sim-outorder) and run them together. Our

techniques can be applied to multithreaded shared memory

applications if individual threads can be traced [7]. One can

reliably study the overall system behavior thanks to the ca-

pability of our techniques to preserve each processor core’s

memory access behavior like an execution-driven simulation

engine. At the same time, one can examine how individ-

ual program performance is affected by contentions in the

shared resources.

7. Related Work

Trace-driven simulation has been an indispensable technique

for analyzing computer performance [22, 26]. Our work is

a positive response to the question “Can trace-driven sim-

ulators accurately predict superscalar performance?” posed

by Black et al. [4]. In their work in 1996, they determined

that sampling techniques present a problem to the accuracy

of trace-driven simulation for superscalar processors, and

questioned the accuracy of trace-driven simulation for super-

scalar processors even when the full traces were used as the

processor complexity continues to increase and the bench-

marks evolve to run for longer times.

In previous and current practice, much trace-driven simu-

lation work has focused on either tracing memory references

without timing [22] or using a full trace of executed instruc-

tions for relatively fast simulation with complete fidelity [3].

Reducing traces has been considered important for practi-

cal reasons of storage space and simulation speed. For in-

stance, Iyengar et al. [8] defined an “R metric” to guide re-

ducing trace sizes while still maintaining the branch related

properties of the original traces. Our work presented in this



Benchmark Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Benchmark Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5

mcf 1.6% −0.3% −0.3% 0.2% −0.1% art 3.4% −0.9% −1.0% 0.6% 0.5%

gzip 0.0% 0.0% 0.0% 0.0% 2.5% galgel −0.5% −0.6% −0.5% 0.4% −0.4%

vpr −0.8% 0.4% 0.4% −0.3% 1.7% equake 0.2% −0.7% 0.3% −0.2% 0.0%

twolf 2.0% −0.5% 1.0% −0.7% −1.7% swim 0.0% 0.0% 0.1% −0.1% 0.1%

gcc −0.7% 2.1% 0.5% −0.3% 5.3% ammp −2.2% 1.1% 0.0% 0.0% 1.8%

crafty 0.0% 0.1% 0.0% 0.0% 2.6% applu −0.1% 0.0% 0.4% −0.2% 0.3%

parser 3.7% −0.8% 2.8% −2.0% −1.7% lucas 0.0% 0.0% 0.9% −0.5% 0.0%

bzip2 0.9% −1.0% 0.2% −0.2% −0.4% mgrid −0.5% −3.3% −0.1% −0.7% 0.1%

perl 0.0% 0.0% 0.0% 0.0% −4.5% apsi 0.0% −9.3% 0.5% −0.4% 0.1%

vortex 0.0% 0.1% 0.4% −0.4% 0.7% fma3d 0.0% 0.0% −0.5% 0.3% 0.0%

gap 0.0% 0.0% 9.8% −9.7% 0.0% facerec 0.0% 0.0% 0.0% 0.0% 0.2%

eon 0.0% 0.0% 0.0% 0.0% 1.5% wupwise 0.1% 0.0% 0.1% −0.1% 0.3%

mesa 0.0% 0.0% −0.1% 0.1% 0.7%

Avg. Error 1.2% 2.0% 2.0% 2.0% 1.7% sixtrack −0.5% 0.1% 0.0% 0.0% 0.1%

Table 2. Relative performance difference between the pairwise dependent cache miss model and sim-outorder. The examined five

configurations are identical to the baseline machine configuration (Table 1) except a single parameter. In Configuration 1, the L2 cache is

2MB instead of 1MB (“larger L2 cache”). In Configuration 2, the L2 cache is 512KB instead of 1MB (“smaller L2 cache”). In Configuration

3, the memory latency is 200 cycles instead of 300 cycles (“faster memory”). In Configuration 4, the memory latency is 400 cycles instead

of 300 cycles (“slower memory”). In Configuration 5, the L2 hit latency is 20 cycles instead of 12 cycles (“slower L2 cache”).

paper has a different goal than previous research: achiev-

ing high accuracy and simulation speeds with filtered traces

when modeling a superscalar processor system. Our tech-

niques are particularly powerful for building a fast multi-

core processor simulator where the focus of study is on the

system-wide organizational artifacts. There are recent trace-

driven multicore simulators that use filtered traces like our

work. Zauber [15] used Turandot [17] for collecting single-

thread traces and TPTS [7] used Simics [16]. We expect

that our techniques can be easily integrated into trace-driven

multicore processor simulators like Zauber and TPTS.

In terms of modeling the behavior of superscalar pro-

cessors, filtered trace-driven simulation is rivaled by ana-

lytical and statistical modeling techniques. Karkhanis and

Smith [11] have presented an accurate framework for ana-

lyzing the performance of a workload on a superscalar pro-

cessor with a static configuration. Once a workload profile

is obtained, their model allows a quick evaluation of the im-

pact of a change of a few processor parameters. However,

it requires re-profiling of the workload to change the L2

cache configuration. Noonburg and Shen [18] have proposed

a framework for statistical modeling of superscalar proces-

sors. While such a model-based approach is extremely use-

ful when considering a few design parameters quickly, it

does not diminish the role of fast and accurate simulation

methods. Importantly, these analytical and statistical mod-

els do not capture the interactions of co-scheduled programs

on a multicore processor and hence are unable to predict the

impact of such interactions. Recently, Chen and Aamodt [6]

improved on the model of [11] by more accurately esti-

mating the CPI component due to long latency data cache

misses. Like our work and [11], they consider a sequence

of instructions in the “instruction window” to determine the

parallelism among the instructions. However, their main fo-

cus was on analytically modeling a superscalar processor’s

performance using a full trace. Our focus in this work is to

develop a simulation method that is accurate (with timing

and dependence information collected during trace genera-

tion) and storage efficient (by using filtered traces).

Cache properties have also been used to reduce memory

traces while retaining total accuracy. Using the property

of cache inclusion [5], a trace can be filtered of references

guaranteed to hit in actual simulation. Wang and Baer [23]

use a direct-mapped “filter cache” to filter memory refer-

ences. Further work by Kaplan et al. [10] has yielded trace

reduction techniques Safely Allowed Drop (SAD) and Opti-

mal LRU Reduction (OLR), which accurately simulate the

LRU policy. These further filter out hits, and OLR is prov-

ably optimal for the LRU policy. However, these properties

have not been studied in the context of timing accuracy in

the context of superscalar processors.

While not directly comparable to our approach, there

are other interesting work done to reduce simulation times.

MinneSPEC tries to reflect the behavior of SPEC2k while

using a smaller, but representative workload [13]. The

SMARTS framework [24, 25] determines simulation points

that are representative of the behavior of an application. This

same technique can be applied to a filtered trace-driven ap-

proach during the trace capture phase. Rather than a ran-

dom sample of simulation points, Sherwood et al. [20] have

proposed to analyze the program beforehand to determine

which points are most representative.



8. Conclusions

This paper introduced and studied three strategies to assess

the impact of a long latency memory access on superscalar

processor performance in trace-driven simulations. Com-

pared with a full trace based simulation method that is ac-

curate yet incurs large trace storage and simulation time

overheads, our simulation strategies use storage efficient fil-

tered traces that carry enough information to compute la-

tencies between trace items at trace simulation time. Pre-

vious simulation methods that use memory traces, both fil-

tered and unfiltered, have not attempted to model superscalar

processor performance accurately. We found that the pair-

wise dependent cache miss model robustly gives the small-

est errors (4.8% RMS) among the three strategies we ex-

amined for a 4-issue processor model. Compared with de-

tailed execution-driven simulation, our technique achieves a

simulation speedup of 30.7× on average when running the

SPEC2k benchmark suite.

As current and future processor research is centered on

the idea of multicore architectures, the importance of study-

ing system-wide resources such as shared L2 cache, on-chip

interconnection network and memory controller, will con-

tinue to grow. Our study forms a basis for tools that enable

fast and accurate multicore simulations at an early design

stage using a set of pre-determined superscalar processor

core configurations as “plug-in” components rather than a

target of study.

This paper focused on how the out-of-order instruction

execution capability of a superscalar processor, as a function

of the ROB size, affects the trace-driven simulation method-

ology. In our future research, we will study how to achieve

simulation accuracy in the presence of branch prediction and

prefetching.
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