
StimulusCache:
Boosting Performance of Chip Multiprocessors with Excess Cache

Hyunjin Lee, Sangyeun Cho, and Bruce R. Childers
Dept. of Computer Science, Univ. of Pittsburgh

{abraham,cho,childers}@cs.pitt.edu

Abstract

Technology advances continuously shrink on-chip devices.
Consequently, the number of cores in a single chip multi-
processor (CMP) is expected to grow in coming years. Un-
fortunately, with smaller device size and greater integration,
chip yield degrades significantly. Guaranteeing that all chip
components function correctly leads to an unrealistically
low yield. Chip vendors have adopted a design strategy to
market partially functioning processor chips to combat this
problem. The two major components in a multicore chip
are compute cores and on-chip memory such as L2 cache.
From the viewpoint of the chip yield, the compute cores have
a much lower yield than the on-chip memory due to their
logic complexity and well-established memory yield enhanc-
ing techniques. Therefore, future CMPs are expected to have
more available on-chip memories than working cores. This
paper introduces a novel on-chip memory utilization scheme
called StimulusCache, which decouples the L2 caches of
faulty compute cores and employs them to assist applications
on other working cores. Our extensive experimental evalua-
tion demonstrates that StimulusCache significantly improves
the performance of both single-threaded and multithreaded
workloads.

1. Introduction
Continuous device scaling causes more frequent hard faults
to occur in processor chips at manufacturing time [3, 24].
Two major sources of faults are physical defects and process
variations. First, physical defects can cause a short or open,
which makes a circuit unusable. While technology advances
improve the defect density of semiconductor materials and
the manufacturing environment, with ever smaller feature
sizes, the critical defect size continues to shrink. Accord-
ingly, physical defects remain a serious threat to achieving
profitable chip yield. Second, process variations can cause
mismatches in device coupling, unevenly degraded circuit
speeds, and higher power consumption, increasing the prob-
ability of circuit malfunction at nominal conditions.

To improve chip yield, processor vendors have re-
cently adopted “core disabling” for chip multiprocessors
(CMPs) [1, 19, 25, 26]. Using programmable fuses and reg-

This work was supported in part by NSF grants CCF-0811295, CCF-
0811352, CCF-0702236, and CCF-0952273.

isters, this approach disables faulty cores and enables only
functional ones. As long as there are enough sound cores,
this technique produces many partially operating CMPs,
which would otherwise be discarded without core disabling.
For instance, IBM’s Cell processor reportedly has a yield of
only 10% to 20% with eight synergistic processor elements
(SPEs). However, by disabling one (faulty) SPE, the yield
jumps to nearly 40% [26]. AMD sells tri-core chips [1],
which is a byproduct of a quad-core chip with a faulty core.
The NVIDIA GeForce 8800 has three product derivatives
with 128, 112, and 96 cores [19]. The GeForce chips with
small core counts are believed to be partially disabled chips
of the same 128-core design; all the designs have the same
transistor count. Lastly, the Sun UltraSPARC T1 has three
different core counts: four, six, and eight cores [25].

Inside a chip, logic and memory have very different yield
characteristics. For the same physical defect size and pro-
cess variation effect, memory may be more vulnerable than
logic due to small transistor size. However, various fault
handling schemes have been successfully deployed to sig-
nificantly improve the yield of memory, including parity,
ECC, and row/column redundancy [13]. Furthermore, a few
cache blocks may be “disabled” or “remapped” to oppor-
tunistically cover faults and improve yield without affecting
chip functionality [4, 12, 15, 16]. In fact, ITRS reports that
the primary issue for memory yield is to protect the support
logic, not the memory cells [13].

Traditional core disabling techniques take a core and its
associated memory (e.g., private L2 cache) offline without
consideration for whether the core or its memory failed.
Thus, a failed core causes its associated memory to be un-
available, although the memory may be functional. For
example, AMD’s Phenom X3 processor disables one core
along with its 512KB L2 cache [1]. Due to the large asym-
metry in the yield of logic and memory, however, such
a coarse-grained disabling scheme will likely waste much
memory capacity in the future. We hypothesize that the per-
formance of a CMP will be significantly improved if the
sound cache memories associated with faulty cores are uti-
lized by other sound cores. To explore such a design ap-
proach, this paper proposes StimulusCache, a novel archi-
tecture that utilizes unemployed “excess” L2 caches. These
excess caches come from disabled cores where the cache is
functional.

We answer two main technical questions for the proposed

StimulusCache approach. First, what is the system require-
ment (including system software and microarchitecture) to
enable StimulusCache? Second, what are the desirable ex-
cess cache management strategies under various workloads?
The ideas and results we present in this paper are also ap-
plicable to chips without excess caches. For example, under
a low system load, advanced CMPs dynamically put some
cores into a deep sleep mode to save energy [11]. In such
a scenario, the cache capacity of the sleeping cores could
be borrowed by other active cores. We make the following
contributions in this paper:

• A new yield model for processor components. We
develop a “decoupled” yield model to accurately calcu-
late the yield of various processor components having
both logic and memory cell arrays. Based on compo-
nent yield modeling, we perform an availability study
for compute cores and low-level cache memory with
current and future technology parameters to show that
there will likely be more functional caches available
than cores in future CMPs (Section 2). StimulusCache
aims to effectively utilize these excess caches.

• Architectural support for StimulusCache. We de-
velop the necessary architectural support to enable
StimulusCache multicore architectures (Section 3). We
find that the added datapath and control overhead to the
cache controllers is small for 8 and 32 core designs.

• Strategies to utilize excess caches. We explore and
study novel policies to utilize the available excess
caches (Section 4). We find that organizing excess
caches as a non-inclusive shared victim L3 cache is
very effective. We also find it beneficial to monitor
the cache usage of individual threads and limit certain
threads from using the excess caches if they cannot ef-
fectively use the extra capacity.

• An evaluation of StimulusCache. We perform a com-
prehensive evaluation of our proposed architecture and
excess cache policies to assess the benefit of Stimulus-
Cache, which is compared with the latest private cache
partitioning technique, DSR [21] (Section 5). We ex-
amine a wide range of workloads using an 8-core and a
32-core CMP configurations. StimulusCache is shown
to consistently boost the performance of all programs
(by up to 45%) with no performance penalty.

2. Decoupled Yield Model for Cores and Caches
2.1. Baseline yield model and parameters
Chip yield is generally dictated by defect density D0, area
A, and clustering factor α. We use a negative binomial yield
model from the ITRS report [13], where the yield of the chip
die (YDie) is:

YDie = YM × YS ×

(

1

1 + AD0/α

)α

(1)

In the above, YM is the material intrinsic yield, which we fix
to 1 and do not consider in this work. YS is the systematic
yield, which is generally assumed to be 90% for logic and
95% for memory [13]. α is a cluster parameter and assumed
to be 2 as in the ITRS report. Although technologies with
smaller feature sizes are more vulnerable to defects, ITRS
targets the same D0 for upcoming technologies when ma-
tured, due to process technology advances.

To compute a realistic yield with equation (1) in the re-
mainder of this paper, we derive D0 from the published
yield of the IBM Cell processor chip, which is 20% [26].1
For accurate calculation, we differentiate the logic portion
whose geometric structure is irregular from the memory
cell array that has a regular structure in each functional
block. While the memory cell array may be more vulner-
able to defects and process variability, it is well-protected
with robust fault masking techniques, such as redundancy
and ECC [13, 16, 20].

We use CACTI version 5.3 [30] to obtain the area of
the memory cell array in a memory-oriented function block.
From CACTI and die photo analysis, we determined that the
memory cell array of the PPE and the SPEs account for about
8% and 14% of the total chip area, repectively.2 Based on
the above analysis, we determine the total memory cell array
area is 22% of the chip area (175mm2 in 65nm technology).
We can derive D0 with equation (1) using the total non-
memory chip area. We calculated D0 to be 0.0181/mm2.

2.2. Decoupled yield model
Given multiple functional blocks in a chip and their individ-
ual yields (Yblock), the chip yield can be computed as [7]:

YDie =

N
∏

i=1

Yblocki
(2)

It is clear that the yield of a vulnerable functional block
can be a significant potential threat to the overall yield.
Therefore, it becomes imperative to evaluate each functional
block’s yield separately to prioritize and guide design tuning
activities, e.g., implementing isolation points and employing
functional block salvaging techniques. To accurately evalu-
ate the yield of individual functional blocks, as suggested in
the previous subsection, we propose to define their yield in
terms of the logic yield and the memory cell array yield as
follows:

Yblocki
= Ylogici

× Ymemoryi
(3)

1In Sperling [26] the yield for the Cell processor was vaguely given as 10%–
20%. While a lower yield makes an even stronger case for StimulusCache,
we conservatively use the highest yield estimate (20%).

2CACTI reports that in a 512KB L2 cache (Cell processor’s PowerPC el-
ement has a 512KB L2 cache) the memory cell array accounts for about
78% of the total cache area. We measure the L2 cache area of PPE from
the die photo and use 78% of that to the memory cell array area. The cell
area of the local memory in SPEs is directly measured using the die photo.

Functional blocks Total area Logic area Cell array area Yield
(mm2) (mm2) (mm2)

FEC 2.775 2.425 0.350 95.74%
IEC 0.798 0.798 — 98.57%
FPC 1.776 1.776 — 96.86%
MEC 1.897 1.634 0.263 97.10%
BIU 2.094 2.094 — 96.31%

Processing 9.340 8.727 0.613 84.85%
L2 Cache 5.318 1.117 4.201 98.01%

Table 1. Estimated functional block yields of ATOM processor.
(FEC: Front End Cluster, IEC: Integer Execution Cluster, FPC: Floating
Point Cluster, MED: Memory Execution Cluster, BIU: Bus Interface Unit)

��
� �

� ��
� � �
� ��
� � �
� ��
� � �
� ��

�� �� �� �� �� �� �� �� ��
�����������	�
������	�	���

��������
� 	
 ��� � � � ��
 � � �
�
 	 ��� ���� �� 	
 �� ��
 � � ��

� ��	�
�

��
� ��
� ��
� ��
� ��
� ��
� ��
	 ��

 ��

� � � � � � 	 �

���
��
���
��	

�����������	�
������	�	���

��������
� 	
 ��� � � � ��
 � � �
�
 	 ��� ���� �� 	
 �� ��
 � � ��

� �	�
�

Figure 1. Yield of L2 cache, processing logic, and core (L2 cache
+ processing logic) for 8-core (left) and 32-core (right) CMPs.

Using D0 derived in Section 2.1, we estimate the expected
yield for the key functional blocks of the ATOM proces-
sor [10] using our decoupled yield analysis approach.3 Ta-
ble 1 depicts the area and yield for each functional block.
The processing block has the five logic-dominant functional
blocks (FEC, IEC, FPC, MEC, and BIU). The L2 cache is
a memory-dominant functional block. Although FEC and
MEC are logic-dominant functional blocks, they have 32KB
and 24KB 8-T (i.e., eight transistors compose one cell) L1
cache. To accurately estimate the functional block yield of
FEC and MEC, the 8-T cell array’s 30% area overhead over
a conventional 6-T cell array is faithfully modeled.

Figure 1 depicts the yield for 8-core and 32-core CMPs
using an ATOM-like core [10] as a building block.4 It sep-
arately shows core and L2 cache yield along with the tradi-
tional “combined” yield, computed with the decoupled yield
model. For the 8-core case in Figure 1(a), less than 13% of
the chips have eight sound cores and caches. It is clearly
shown that this low yield is caused by the poor yield of
the compute cores. In contrast, the cache memory has a
much higher yield; in 70% of the produced dies, all eight
cache memories are functional. As the core count increases,
3For various process generations, the initial defect density and the trend of
defect density improvement (“yield learning”) are very similar [31]. Thus,
we can use the derived defect density for 45nm technology without loss of
generality.

4We assume that the yields of chip I/O blocks and other supporting blocks
(e.g., PLL) are 100% for simpler and intuitive analysis. Typically, such
blocks employ large geometries, which dramatically decreases the effec-
tive defect density. Moreover, we assume that the L2 cache’s cell array
is salvaged by redundancy and cache block disabling [20]. We employ
Monte Carlo simulation [16] to calculate the cell array yield when such
salvaging techniques are used. With 5% row redundancy and disabling of
up to 8 lines, the cell array yield is 99.82%.

�
���
���
���
���
���
���
���
	��

� � � � � � � �

��
���

����
		

	��
���

�

���������	�
������������

��� � � ��� � �

�

��

��

��

	�

���

	 � � � �

��
�

������������	��
	��������	��

������	� � �� � �	� ��� �� �

Figure 2. (a) Yield with varying core count thresholds (Nth) for
the 8-core CMP. (b) The number of chips (out of 1,000 chips) with
different numbers of excess caches when four cores enabled (left)
and six cores enabled (right).

the discrepancy between the number of sound cores and L2
caches widens. Figure 1(b) shows the 32-core case, where
83% of the chips have at least 30 sound L2 caches while only
5% of dies have 30 sound cores or more.

With core disabling, chip yield can be greatly improved.
Figure 2(a) depicts the yield improvement due to core dis-
abling for the 8-core case. We define the criteria for a “good
die” based on the core count threshold, Nth—i.e., does the
chip have at least Nth healthy cores? When Nth = 4, the
yield is 91% whereas the raw yield (Nth = 8) is just 13%.
Figure 2(b)(left) shows the available excess caches in 1,000
good dies when Nth = 4 and 4 cores are enabled (i.e., we
have two product configurations: 8 cores or 4 cores with
excess caches). It is shown that more than 68% of the 4-
core chips have four excess caches. Figure 2(b)(right) plots
the available excess caches when Nth = 6 and 6 cores are
enabled. 57% of all 6-core chips have two excess caches.
These results demonstrate that there will be plenty of excess
caches from the loss of faulty cores in future CMPs. Once
tapped, these unemployed, virtually free cache resources can
be used to improve the performance of CMP systems.

3. Overview of StimulusCache
Given the high likelihood of available excess caches, one
would naturally want to utilize them to improve system per-
formance. A naı̈ve strategy could simply allocate excess
caches to cores that run cache capacity-hungry applications.
Adding more capacity to specific cores creates virtual L2
caches which have more capacity than other caches. How-
ever, with diverse workloads on multiple virtual machines
(VMs), deriving a good excess cache allocation can become
complex. For example, the user might pursue the best per-
formance, while, in another case, the user may want to guar-
antee QoS and fairness of specific applications. To achieve
these potential goals, we propose a hardware/software co-
operative design approach. In this section, we illustrate the
proposed StimulusCache framework by discussing its hard-
ware support, software support, and an extended example.
3.1. Hardware design support
Shared and private caches are two common L2 cache de-
signs. There are also many hybrid (or adaptive) schemes [5,

� � � � � � � �
����������������	��
�

 � ��� � � �� ��� � �

� � �
���� � �
� � � � � � � 	 �

 � 	 � 	 � � �
 � � � � � �
 �

�
� � �

� � �

�

�

����� � � � 	
 � � �
� � �
 �

� � �
 �

� � �
 �

� �

� �

� � 	 � � �
	 � � � � � � � � ����

��� � � � � � � � � �

� � �

� � �

�

� � �

�

� �

� �

� �

� �

� � � � � � � � � ����� 	�� �� ��� � ��� ��� � �
������ � � 	
 � � � � �
� � �� 	 � � �� �� �� � �

� � � � � � � � �	 � � �� �
� � �� 	 � � �� �� �� � �

� � �

�������

Figure 3. (a) Fault isolation point comparison: core disabling and StimulusCache. (b) New data structure in StimulusCache’s cache
controller. ECAV shows which excess caches have been allocated to this functional core. SCV lists the cores that use this excess cache.
NECP shows the next level excess cache to search on a miss. (c) Parallel search using ECAV. (d) Serial search using NECP.

21, 22]. A private L2 cache design has several benefits over
a shared L2 cache design: fast access latency, simple de-
sign, resource/performance isolation, and less network traf-
fic overhead. Such a private design typically has poor uti-
lization. However, the extra cache capacity from available
excess caches can mitigate this problem. Thus, our initial
StimulusCache design is based on the private L2 cache ar-
chitecture like IBM Power6 [9] and AMD Phenom [1].

Figure 3(a) shows the fault isolation point of a conven-
tional core disabling technique and StimulusCache in an
8-core CMP that has a private L2 cache per core. Wher-
ever faults occur in the processing logic, conventional core
disabling takes offline the whole core including its private
L2 cache. Thus, the fault isolation point is the core’s net-
work interface. StimulusCache aggressively pushes the iso-
lation point beyond the L2 cache controller. Consequently,
StimulusCache can salvage the L2 cache as long as the L2
cache and cache controller are fault-free.

In StimulusCache, each core should be able to access ex-
cess caches without any limitation. We introduce a set of
hardware data structures in the cache controllers, as shown
in Figure 3(b), to provide flexible accessibility to excess
cache. The excess cache allocation vector (ECAV) shows
which caches should be examined to find requested data
on a local L2 miss. Using ECAV, multiple excess caches
can be accessed in parallel as shown in Figure 3(c). The
Shared Core Vector (SCV) is to assist cache coherence and
will be discussed in detail below. Lastly, Next Excess Cache
Pointers (NECP) enable fine-grained excess cache manage-
ment. Each pointer points to the next memory entity to
be accessed, being another excess cache or main memory.
NECP form access chains of excess caches for individual
cores as shown in Figure 3(d). With ECAV and NECP,
StimulusCache supports both parallel and sequential search
of the excess caches. Parallel access is faster while sequen-
tial access has less network traffic and power consumption.
The best choice could be determined by the overall system
management goal; for example, performance or power opti-
mization. Additionally, each tag has the origin core ID of the
cache block. Overall, StimulusCache’s memory overheads
are: dlog

2
Ne bits per block (core ID) and (3N +N log

2
N)

bits per core (ECAV, SCV, and NECP) for an N -core CMP.
The overheads correspond to 0.55% and 0.92% of a 512KB
L2 cache for an 8-core and a 32-core CMP, respectively.

Although excess caches can be used to improve perfor-
mance, static allocation for entire program execution may
not exploit the full potential of excess cache because pro-
grams have different phases with varying memory demand.
To support program phase adaptability, excess caches should
be dynamically allocated to cores based on performance
monitoring. StimulusCache’s advantage for dynamic al-
location is its inherent performance monitoring capability
at cache bank granularity. For example, data flow-in, ac-
cess, hit and miss counts, which are already implemented
in CMPs [2], can be measured and used to fully utilize the
potential of excess caches.

Coherence management in StimulusCache is similar to a
private L2 cache. For moderate scales (up to 8 cores), broad-
cast is used for cache coherence. For large scale (greater
than 8 cores), a directory-based scheme is used [5,17]. How-
ever, to utilize excess caches, the coherence protocol has to
be changed. An excess cache can be shared by multiple
cores, or it can be exclusively allocated to a specific core.
To manage cache coherency, the cache controller has SCV
as shown in Figure 3(b). The SCV for a faulty core lists the
functional cores that utilize the excess cache of the faulty
core. When L1 data invalidation occurs, the SCV identifies
the cores that need to receive an invalidation message. For
functional cores, SCV entries are empty because their local
L2 caches are not shared.

3.2. Software support
An excess cache is a shared resource among multiple cores;
system software (e.g., the OS or VMM) has to decide how
to allocate the available excess caches. The system soft-
ware would assign an excess cache to a core in a way that
meets the application needs by properly setting the values of
ECAV, SCV, and NECP in the cache controllers.

Depending on the resource utilization policy, the system
software decides whether an excess cache is exclusively al-
located to a core. Exclusive allocation guarantees perfor-
mance isolation of each core. However, if there is no infor-

���������	
����

���	��
����
��� ��� ��� ���

��� ��� ��	 ��

������

� � ��
����� � � � 	
 � � �
� � �
 �

� ���� 	 � ����
 � ���� �

� �� ���� � ��
����� � � � 	
 � � �
� � �
 �

� � ��
����� � � � 	
 � � �
� � �
 �

� � � �
Figure 4. Excess cache allocation example. (a) Excess caches
from four faulty cores (core 0–3). (b) NECP in core 6, 1, and 2.
An excess cache access chain for core 6 is shown. A zero valid bit
indicates that the excess cache is the last one in the chain before the
main memory. The access sequence is, therefore, core 6 (working
core)⇒core 1 (excess cache)⇒core 2 (excess cache)⇒memory.

mation about memory demands, a fixed exclusive allocation
is somewhat arbitrary. In that case, evenly allocating avail-
able excess caches to all sound cores is a reasonable choice.
If there is not enough excess cache for all available cores,
the excess caches are allocated to some cores, and the OS
can schedule memory-intensive workloads to the cores with
excess cache. Shared allocation can exploit the full potential
of excess cache usage. However, the excess caches could
be unfairly shared if some cores are running cache capacity
thrashing programs.

3.3. An extended example
Figure 4 gives an example that shows how excess caches can
be allocated. In this example, cores 0 to 3 are faulty cores,
and thus, they provide excess caches. Cores 4 to 7 are func-
tional. Core 6 has been allocated two excess caches from
core 1 and core 2. The excess cache from core 1 has higher
priority (it is at the first of an access chain). For accessing
excess cache to examine data (i.e., a data read), core 6 can
search the excess caches of core 1 and 2 simultaneously in
parallel or sequentially as shown.

When data is written to the excess cache (e.g., a data evic-
tion from the local L2 cache of core 6), the destination cache
of the data has to be determined. Figure 4(a) shows an ex-
cess cache access chain. In this example, core 6’s L2 evic-
tion data goes to the excess cache in core 1, identified with
the NECP (in core 6). If the data should be written to the
next cache in the chain, it goes to the excess cache in core
2 based on the NECP in core 1. Figure 4(b) shows how the
NECPs in the cache controllers are used to build the excess
cache access chain for Figure 4(a).

Figure 5 shows example scenarios of how cache coher-
ence is done in StimulusCache. We show the inclusive L2
cache as examples because the exclusive L2 cache requires
no special management in terms of coherency. The excess
caches for core along with the core’s private L2 cache, cre-
ate virtual L2 domain. Each core has valid inclusiveness
if the data in L1 cache has the same copy in the virtual L2
domain. Therefore, if exclusive L2 data is migrated to an ex-
cess cache, an L1 data invalidation is not needed. As shown
in Figure 5(a), only one copy of valid data is kept in either
the L2 cache or the excess cache. Figure 5(b) shows a differ-

ent scenario where two cores have the same data (i.e., each
has a replica of the data) which is shared by cache-to-cache
transfer. If one core should evict this shared data, the data
is not migrated to the excess cache. Instead, it is simply
evicted as there is a valid copy in P2’s L2 cache, satisfy-
ing the L2-L1 inclusiveness requirement. Figure 5(c) shows
another scenario. In this case, if exclusive data in L2 is mi-
grated to the excess cache, no L1 invalidation is needed be-
cause there is only one L1 data. Finally, Figure 5(d) depicts
data migration that incurs L1 invalidation. To maintain L2-
L1 inclusiveness, if the data in the excess cache is migrated
to P2’s L2 cache, then P1’s L1 data should be invalidated.
The proposed hardware support provides sufficient informa-
tion to achieve coherency with excess caches.

4. Excess Cache Utilization Policies
Based on the hardware and software support in Section 3,
this section presents three policies to exploit excess caches.
4.1. Static private: Static partition, Private cache
This scheme exclusively allocates the available excess
caches to individual cores: only one core can use a particular
excess cache as assigned by the system software. Figure 6(a)
shows two examples of a static allocation of excess caches to
cores. If the workload on multiple cores have similar mem-
ory demands, the available excess caches can be uniformly
assigned to cores (symmetric case). A server workload or
a well-balanced multithreaded workload are good examples
of this case. However, if a workload has particularly high
memory demands, then more excess caches can be assigned
to a specific core for the workload. This configuration natu-
rally generates an asymmetric CMP as shown in Figure 6(a).

In effect, the static private scheme expands a core’s L2
cache associativity to (K + 1)N using K excess caches
that are N -way associative. Figure 6(b) shows this prop-
erty. When data is found in a local L2 cache, the local L2
cache provides the data. If the data is not found in the local
L2 cache (L2 cache miss), the assigned excess caches are
searched to find the data. Because the same index bits are
used during the search through multiple caches, each set’s
associativity is effectively increased. Figure 6(c) shows the
two cases where data propagation from/to excess caches is
needed. As a block would gradually move to the LRU posi-
tion with the introduction of a new cache block to the same
set, a block evicted from the local cache is entered into the
next excess cache in the access chain.
4.2. Static sharing: Static allocation, Shared cache
Workloads may not have memory demand that matches
cache bank granularity. For example, one workload may
need half of the available excess cache capacity while an-
other workload may need a little more capacity than one
excess cache. With the static private scheme, some cores
may waste excess cache capacity while other cores could use
more. In this case, more performance could be extracted if

���

�������
� � �	 �

��

��

�

 � � � �
� � � � � � �

� � �� � �
 � � � � � � � � �

 � � � �
�� �� � �
 � � � �

� � � � � � �

 � � � �
� � � � � � �

�� � �� � �� �

�������
� � �	 �

��

��

��

��

��

��

�������
� � �	 �

��

��

��

��

��

��

�������
� � �	 �

��

��

��

��

��

��

� � �� � �
 � � � � � � � � �

� � �� � �
 � � � � � � � � �

� � �� � �
 � � � � � � � � �

Figure 5. Coherency examples. (a) No L1 invalidation for data migration from L2 to exclusive excess cache. (b) L1 invalidation for data
eviction. Data migration does not occur because P2 has the same data. (c) No L1 invalidation for data migration from L2 to shared excess
cache. If no other core has the same data like (b), no L1 invalidation is needed because only P1 has valid L1 data. (d) L1 invalidation for
data migration. If P2 migrates the data from the shared excess cache to the local L2 cache, P1’s L1 data should be invalidated.

�������
� � �	 �

�������
� � �	 ���� � � �

�������
� � �	 �

�������
� � �	 �

��� � � � �������
� � �	 �

� � 	 �� 	���

���

�������
� � �	 �

�������
� � �	 ���� � � �

��� � � �

�������
� � �	 �

�������
� � �	 �

�������
� � �	 �

�������
� � �	 � ��������	
����� �� �� � � � ��������� ����� � � � � � � ��������� ����� �

�������
� � �	 �

 � � � � � � � � �
 � � � � � �
 � � � � �� 	 � � � � � � � �

 � � � � � � � � � � � � � � � �

�� � � � � � � � � �
� ��

 �

�� � � � � � � � � �
� �� �

� � � �
� � � � �

�� �

��� � � �

��� � � �

��� � � �

��� � � �

��� � � �

�������
� � �	 �

�������
� � �	 ���� � � �

��� � � �

Figure 6. Static private scheme. (a) Two example allocations, symmetric and asymmetric. (b) 3N -way virtual L2 cache with two N -way
excess caches. (c) Data propagation in an excess cache chain during excess cache hit and miss. On a hit, (1) hit data is promoted from the
hit excess cache to the local L2 cache; and (2) a block may be replaced from the local cache and propagated to the head of the excess cache
chain, and so on. The propagation of a block may extend to the excess cache that previously hit the most, as it has space from promoting a
hit block. On a miss, (1) data from the main memory is brought to the local L2; (2) a replaced block causes a cascading propagation from
the local L2 cache through the excess cache chain; and (3) a block from the tail of the excess cache chain may move to main memory.

the available excess caches are shared between workloads to
fully exploit the available excess cache capacity. The static
sharing scheme uses the available excess caches as a shared
resource for multiple cores as shown in Figure 7(a). The
basic operation of the static sharing scheme is similar to the
static private scheme except that the excess caches are acces-
sible to all assigned cores. If applications on the cores have
balanced memory demands, this scheme can maximize the
total throughput. The excess caches can also be allocated
“unevenly” to an application with a high demand. If other
applications secure large benefits from not sharing with spe-
cific applications (i.e., due to interference), such an uneven
allocation may prove desirable. Figure 7(b) shows an exam-
ple in which core 3 has limited access to the excess cache.
Core 0 can access two excess caches while core 3 can ac-
cess only one excess cache. Core ID in the tag memory and
the corresponding NECP in the cache controller are used to
determine the next destination of the data block.

The static sharing scheme can be particularly effective
for shared-memory multithreaded workloads because shared
data do not have to be replicated in the excess caches (unlike
the static private scheme). Furthermore, “balanced” multi-
threaded workloads typically have similar memory demands
from multiple threads. In this case, the excess caches can be
effectively shared by multiple threads in one application. If
the initialization thread of a multithreaded workload heavily
uses memory, then the static sharing scheme will work like
the static private scheme because no other threads usually
need cache capacity in the initialization phase.

4.3. Dynamic sharing: Dynamic partition, Shared cache
Static sharing has two potential limitations. It does not adapt
to workload phase behavior, nor does it prevent wasteful
usage of the excess cache capacity by an application that
thrashes. While “capacity thrashing” applications do not
benefit from excess caches, they can limit other applications’
potential benefits. To overcome these limitations, we pro-
pose a dynamic sharing scheme where cache capacity de-
mands from cores are continuously monitored and excess
caches are allocated dynamically to maximize their utility.

Figure 8 illustrates how the dynamic sharing scheme op-
erates. We employ “cache monitoring sets” (Figure 8(a))
that collect two key pieces of information, flow-in counts
and hit counts. The counters at the monitoring sets count
cache flow-ins and cache hits continuously during a “moni-
toring period” and are reset as the period expires and a new
period starts. At the end of each monitoring period, a new
excess cache allocation to use in the next period is deter-
mined based on the information collected during the current
monitoring period (Figure 8(b)). We empirically find that
1M cycle period is good enough to determine excess cache
allocation. The monitoring sets are accessed by all partici-
pating cores, while other non-monitoring sets are accessed
by only the allocated cores. We find that having one moni-
toring set for every 32 sets works reasonably well.

To flexibly control excess cache allocation to individual
cores, each core keeps an excess cache allocation counter.
Figure 8(c) shows how these counters are set based on the
ratio of flow-in and hit counts. We have four excess cache

������������	
�������
��� � � � � � 	

��� � � � �

��� � � � � �

��� � � � � �

 � 	� �	�

� �� � � �

��������	
�����

� � � � � �� �

� � � � � �
� � � � �

� � � � � �
� � � � �

����������	
�	��
������ ���	
�	��

� �	
�������

������������	
�������

� �	
�������� � � � � �
� � � � �

� � � � � �
� � � � �

��� � � � � � 	

��� � � � �

��� � � � � �

��� � � � � �

Figure 7. Static sharing scheme. (a) Homogeneous static sharing. (b) Heterogeneous static sharing.

allocation actions: decrease, no action, increase, or maxi-
mize. When a burst access occurs from a core (hits

flow-ins >
Bth), all excess caches are allocated to the core to quickly
adapt to the demanding application phase. This is the maxi-
mize action. The number of allocated excess caches to a core
is decreased when its hit count is zero (hits

flow-ins = 0). The
rationale for this case is that if the core has many data flow-
ins, but most data sweep through the excess caches without
producing hits, the core should not use the excess caches. A
core gets one more excess cache if it proves to benefit from
excess caches (Mth < hits

flow-ins < Bth); otherwise (hits
flow-ins

< Mth) the core will keep what it has. We heuristically de-
termine 12.5% for Bth, 3% for Mth in our evaluation.

5. Evaluation
5.1. Experimental setup
We evaluate the proposed StimulusCache policies with a de-
tailed trace-driven CMP architecture simulator [6]. The pa-
rameters of the processor we model are given in Table 2.
We select representative machine configurations to simulate:
For an 8-core CMP, we simulated processor configurations
with 4 functional cores and 1, 2, 3, or 4 excess caches. For
a 32-core CMP, we simulated processors with 16 functional
cores and 4, 8, 12, or 16 excess caches.

We choose twelve benchmarks from SPEC
CPU2006 [27], four benchmarks from SPLASH-2 [32],
and SPECjbb 2005 [27]. Our benchmark selection from
SPEC CPU2006 is based on working set size [8]; we
picked a range of working set sizes to comprehensively
evaluate the proposed policies under various scenarios. For
workload preparation, we analyzed L2 cache accesses for
the whole execution period of each benchmark with the
reference input. Based on the analysis, we extracted each
benchmark’s representative excess cache interval, which
includes the program’s main functionality but skips its
initialization phases. To evaluate a multiprogrammed work-
load, we use various combinations of the single-threaded
benchmarks. Tables 3(a) and (b) show the characteristics
of the benchmarks selected and the multiprogrammed
workloads. We simulate 10B cycles for single-threaded and
multiprogrammed workloads. Other workloads (SPLASH-2
and SPECjbb 2005) are simulated for their whole execution.
5.2. Results
Single-threaded applications
The static private scheme is used for the single-threaded
programs and all available excess cache is allocate to the

Core’s pipeline Intel’s ATOM-like two-issue in-order pipeline with 16
stages at 2GHz

Branch predictor Hybrid branch predictor (4K-entry gshare, 4K-entry per-
address w/ 4K-entry selector), 6 cycle mis-prediction
penalty

HW prefetch Four stream prefetchers per core, 16 cache block prefetch
distance, 2 prefetch degree; implementation follows [29]

On-chip network Crossbar for 8-core CMP and 2D mesh for 32-core CMP
at half the core’s clock frequency

On-chip caches 32KB L1 I-/D- caches with a 1-cycle latency; 512KB uni-
fied L2 cache with a 10-cycle latency; all caches use LRU
replacement and have 64B block size

Memory latency 300 cycles

Table 2. Baseline CMP configuration.

program. Figure 9(a) shows the performance improve-
ment of single-threaded applications with excess caches.
Five programs (hmmer, h264ref, bzip2, astar, and
soplex) show more than 20% performance improvement
while seven others had less improvement. Four heavy work-
loads (gcc, mcf, milc, and GemsFDTD) had almost no
performance benefit from using excess caches. The different
performance behavior can be interpreted from cache miss
counts and cache miss reductions, shown in Figure 9(b) and
(c), respectively. First, the four light workloads (hmmer,
h264ref, gamess, and gromacs) have significant per-
formance gains with excess caches because more cache ca-
pacity reduces a large portion of misses (42%–91%). How-
ever, their absolute miss counts are relatively small. In the
case of gamess, the performance improvement was quite
limited because it had almost no misses even without ex-
cess cache. Second, moderate integer workloads (bzip2
and astar) have a pronounced benefit with excess cache
due to their high absolute miss counts (4.4 and 11.9 per 1K
instructions) and a good miss reduction of 44% and 55%
each. Third, soplex sees a sizable performance gain with
at least three excess caches. Figure 9(c) depicts the large
miss reduction of soplex with four excess caches. It has
a miss rate knee at around 2MB cache size (one local cache
and three excess cache). Fourth, the heavy workloads (gcc,
mcf, milc, and GemsFDTD) and one moderate workload
(sphinx3) have little performance gain. The negligible
miss reductions with excess cache explain this result. Our
results clearly show that the static private scheme is in gen-
eral very effective for improving individual program perfor-
mance; we saw sizable performance gains and no perfor-
mance degradation. However, there are programs that do
not benefit from excess caches at all.
Multiprogrammed and multithreaded workloads
Static private scheme. Figure 10(a) shows the performance
improvement of multiprogrammed and multithreaded work-

����������

� �����	 ��

����

� �����	 ��

� ��� �� � ��� ��

� ��� � ���

� �� � � �

�����������	
�

� ����
� �

�����

���������� � ��

� � � � � � ��� � � ��� ���� � �����
� � � � � � �� ��� 	 � �

� � � � � � �� ! � ������
 �� � � � � � "�� � �� ��� 	 # #
"�� � � � � � �� ��� 	 � �$

Figure 8. Operation of the dynamic sharing scheme. (a) Excess caches have “monitoring sets” that track data flow-in and cache hit counts
for each core. (b) The monitoring activity and excess cache allocation are done in accordance with a “monitoring period.” When each
monitoring period expires, the excess cache allocation to apply during the following monitoring period is determined. (c) Excess cache
allocation counter calculation. It is done every excess cache allocation time. To provide large cache capacity for highly reused data quickly,
the counter is set to the maximum value when high data reuse is detected.

����� � � � 	 �
 ��	 �� ��
 � �
 � � 	 � �� � � ���

� ��
 � � � 	 � � �
 � � 	 � �� � � ��� � �� �� �� � � � � �� � �	 �
 ��� � � �

�� � � � � � � �� � �
� �

! �� � �
� � " �	 � ��
� �� # $

% � % & � �� % 	 �' � (& () � � *� % (� & � � � �	 � �) � � *
% + , & � � �� 	 � ��) � � *� % � � & - � �. �� �% & %) � � *
% �/ & �
 ' � � 0 � & 0) � � *� % � , & �

 � + ,) � � *

�� � � � � � � �� � � �
1 �

! �� � �
� � " �	 � ��
� �� # $

% , (& � 	 � � �
 � � 0 & �) � � *� % � � & � � � �� � � � & ,) � � *
% (� & � � . ! �2 & �� �+ & �) � � *� % 0 , & � . � �� 2 , � � & �) � � *
% (/ & 3 �� � 1 4 4 � 0 � �) � � *� % , , & � �!
 � �, � & 0) � � *

�� 5 6 �7 8�) �! ���� 	 �� " �" ' � � * �
 �� � *� ! �*�
 � � ! �� � $ *
�� � � 9 - - �� � (��	 # �	 � � 	 � ! � � " � � � : � � � � �	 � � � �
 ��� � � *

����������� 	

 � �� �����
� ��� � � � � � � � � � ���� � � � � � � � ���
� ���� � � � � � � � ��� � � � � � �
 � �� �
� ���� � � � ! � � �" �
 � � � � ! � �
 � �
� � � � � � � � � � ��� � � � � � � � � ��� � � � � � � ��� � � � � � �
 � �� �
� � � � � � � � � � ��� � � � � � � � � ��� � � ! � � �" �
 � � � � � ! � �
 � �
� � # # ���� � � � � $ � �� � � � � $ � % � � & ' ()
� � # # ���� � � � ! � � � � � � � � � � � ��� �
� � # # � � � � � � ��� � � � � � � � � ��� � � � � $ � �� � � � � � $ � % � � & ' ()
� � # # � � � � � � ��� � � � � � � � � ��� � � � ! � � � � � � � � � � � ��� �
� � � � � � � � � ��� � � � ! � � �" �
 � � � � � ! � �
 � � � � � � � �
 � �� �
� � # # � � � � � � ��� � � � � � �
 � �� � � � � � $ � �� � � � � � $ � % � � & ' ()
� � # # � � � � � � ��� � � � � � �
 � �� � � � ! � � � � � � � � � � � ��� �
� � # # � � ! � � �" �
 � � � � � ! � �
 � � � � � � $ � �� � � � � � $ � % � � & ' ()
� � # # � � ! � � �" �
 � � � � � ! � �
 � � � � � ! � � � � � � � � � � � ��� �
� � $ � �� � � � ! � � � � � � � � � $ � % � � & ' () � � � � � � ��� �

Table 3. Benchmark selection (left) and Multiprogrammed workloads (right).

loads with the static private scheme. LLMM3 had the largest
improvement of 17%. The performance improvement of in-
dividual applications in the multiprogrammed workloads are
depicted in Figure 10(b). When there is a large difference be-
tween the improvements of individual programs in a work-
load, the workload’s overall performance improvement is
limited by the application with the smallest individual gain.
As shown in the previous subsection, there are programs that
do not benefit at all from the use of excess caches.

For the multithreaded workloads, the static private
scheme brought a large performance improvement for lu
(45%) and server (42%). Other benchmarks had a 10%
to 15% performance improvement. lu has a miss rate knee
just after a total 512KB cache size. Therefore, adding one
excess cache to each core has a great performance bene-
fit. server has a high L2 cache miss rate of over 40%
and lends itself to a large improvement given more cache
capacity with excess caches. The multithreaded workloads
we examined have symmetric behaviors (threads have simi-
lar cache demands) and all of them benefit from more cache
capacity using the static private scheme.
Static sharing scheme. The multiprogrammed and mul-
tithreaded workloads can benefit from excess caches by
sharing the extra capacity from the excess cache. Fig-
ure 11(a) shows the performance improvement from em-
ploying a different number of excess caches with the static
sharing scheme. The performance improvements of individ-
ual programs are shown in Figure 11(b). This figure presents
the result when four excess caches were used.

For intuitive discussion, we categorize the multipro-
grammed workloads into four groups. First, workloads in
group 1 obtain significantly more benefits from the static

sharing scheme than the static private scheme. They have
at least two light programs and no heavy programs. There-
fore, the programs in these workloads share excess cache ca-
pacity in a “fair” manner without thrashing. Second, work-
loads in group 2 exhibit limited relative performance benefit
with the static sharing scheme compared to the static private
scheme. In fact, the performance of LLHH1 and LLHH3 be-
come worse with cache sharing. Performance degradation
can be caused by the heavy programs that use up the entire
excess cache capacity, sacrificing the performance improve-
ment opportunities of co-scheduled, light programs. Third,
workloads in group 3 show sizable performance gains from
cache sharing because astar greatly benefits from more
cache capacity. Figure 11(b) shows that astar has 135%
performance improvement regardless of other co-scheduled
programs. Fourth, workloads in group 4 have very small per-
formance improvement from excess cache sharing. Clearly,
simply sharing cache capacity without considering the pro-
gram mix does not result in a performance improvement.

Multithreaded and server workloads have nearly identi-
cal performance improvement as the static private scheme.
This result suggests that these workloads can readily exploit
the given excess cache capacity with the simple static pri-
vate and static sharing schemes because the threads have
balanced cache capacity demands.
Dynamic sharing scheme. The dynamic sharing scheme
has the potential to overcome the deficiency of the static
sharing scheme, which does not avoid the destructive com-
petition in some co-scheduled programs. Figure 12(a) shows
the overall performance gain using the dynamic sharing
scheme. As the dynamic sharing scheme is suited to sit-
uations when co-scheduled programs aggressively compete

�
�

� �
� �
� �

��
���

���
���

��	
�
�

�

��

	�

��
� ��
� ��
� ��
� ��

� ���

�
���

���
��

	

��
�

���� ���� ���� ����

��

���

� ���

� ���

��
���

��
��

	�

��

���
��
��

� ���� ���� ���� ����

��� �� � �� �
Figure 9. (a) Performance improvement of single-threaded applications. (b) Misses per 1,000 instructions. (c) Miss reduction.

��
� ��
� ��
� ��
� ��
� ��

��
���

��
��

	�

��
��
�

��
��

� ��������	�
���

��� �� �
��

� ��
� ��
� ��
	 ��

��
���

��
��

	�

��
��
�

��
��

�

 � � � �
 � � � �
 � � � �
 � � � ������� ��
���

Figure 10. (a) Performance improvement with the static private scheme. (b) Performance improvement of individual programs.

with one another, our presentation focuses on only the mul-
tiprogrammed workloads.

The benefit of dynamic sharing is significant when there
are heavy programs, especially for group 2 workloads in Fig-
ure 12(a) and Figure 11(a). Moreover, the relative bene-
fit is pronounced with a smaller number of excess caches.
For example, workloads with a variety of memory demands
(e.g., LLHH1–LLHH4 and MMHH3–MMHH4) gain large ben-
efits from the dynamic sharing scheme with only one ex-
cess cache. Figure 12(b) presents the relative benefit of the
dynamic sharing scheme to the static sharing scheme when
four excess caches are given. The result shows that group
1 workloads have little additional performance gain because
the static sharing scheme already achieves high performance
in the absence of cache trashing programs. However,LLMM2
and LLMM4 still show measurable additional performance
gain with the dynamic sharing scheme. Second, group 2
workloads have the highest additional performance improve-
ment with dynamic sharing. All four workloads have at least
one program which achieves an additional performance im-
provement of 5% or more (5.5%, 5.1%, 16.8%, and 16.2%).
On the other hand, some programs actually suffer perfor-
mance degradation because the dynamic sharing scheme
strictly limited their use of excess cache capacity. However,
the performance degradation is very limited—the largest
performance degradation observed was only 0.6% (milc of
LLHH4). Third, group 3 workloads show only a small addi-
tional performance gain as the large performance potential
of adding more cache capacity has been already achieved
with the static sharing scheme. However, there were no-
ticeable additional gains for MMHH1 and MMHH2 which have
heavy programs. Fourth, bzip2 in group 4 has a large ad-
ditional performance gain with the dynamic sharing scheme.
The other programs in this group get negligible benefit.

The results demonstrate the capability of the proposed
dynamic sharing scheme in StimulusCache; it can robustly
improve the throughput of multiprogrammed workloads
without unduly penalizing individual programs. The dy-

namic and adaptive control of excess cache resources allo-
cation among competing co-scheduled programs is shown to
be critical to get the most from the available excess caches.
Comparing StimulusCache with Dynamic Spill-Receive
To put StimulusCache in perspective, we compare it with a
recently proposed dynamic spill-receive (DSR) scheme [21]
which effectively utilizes multiple private caches among co-
scheduled programs. Cooperative caching (CC) [5] and
DSR are two representative private L2 cache schemes, which
could be used to merge excess caches. We chose to compare
StimulusCache with DSR because it has better performance
than CC for many workloads [21].

Figure 13(a) presents the performance improvement with
StimulusCache’s three policies and DSR, given four ex-
cess caches. Overall, StimulusCache’s dynamic sharing
and static sharing schemes achieve substantially better per-
formance than DSR. DSR shows the least performance
improvement for quite a few workloads (LLLL, LLMM3,
LLMM4, LLHH4, MMHH2, and HHHH). Only two workloads
(LLHH1 and MMHH3) have better performance improvement
with DSR. Figure 13(b)–(d) show individual performance
improvement in selected workloads. It is shown that pro-
grams like hmmer, bzip2 (in LLMM4) and astar perform
significantly better with StimulusCache than DSR. On the
other hand, soplex in MMHH3 performed better with DSR.
Even in this workload, the three other programs in MMHH3
perform better with StimulusCache.

DSR’s relatively poor performance comes partly from the
fact that it does not differentiate excess caches from other lo-
cal L2 caches. Excess caches are strictly remote caches and
are not directly associated with a particular core. Hence,
an excess cache should be a “receiver” in the context of
DSR. However, DSR’s spiller-receiver assignment decision
for each cache is skewed as there are no local cache hits
or misses for the excess caches, and surprisingly, the ex-
cess caches become a “spiller” from time to time, which
blocks their effective use as additional cache capacity. Fur-
thermore, unlike the excess cache chain of the dynamic shar-

��
� ��
� ��
� ��
� ��
� ��

��
���

��
��

	�

��

���
�
��

�� � 	
 � � � � 	
 � � � � 	
 � � � � 	
 � � �
���� ���� ���� ���� ���� � � � � � 	 �

��
� ��
� ��
� ��
� ��
� ��

��
���

��
��

	�

��

���
�
��

�� � � � � � � � � � � � �

��� �� �

� �� �
�����

Figure 11. (a) Performance improvement with the static sharing scheme. Workloads are grouped into: Group 1: “Large gain,” Group 2:
“Limited gain due to heavy applications,” Group 3: “Large gain due to astar,” and Group 4: “Small gain.” (b) Performance improvement
of individual programs with four excess caches. astar consistently shows a high gain of 135%.

�� �
� �
� �
� �

� � �
� � �
� � �

��
���

���
��	

�

��
��

��
��
	

��

�
��

��
��

�

	
 � � � 	
 � � � 	
 � � � 	
 � � �

� �

� � �

� � �

� � �

��
���

��
��

	�

��

���
�
��

�� � � � � � � � � � � � �
� �� �� �� �

��� �� �
Figure 12. (a) Performance improvement with the dynamic sharing scheme. (b) Additional performance gain with the dynamic sharing
scheme compared with the static sharing scheme with four excess caches. Grouping follows Figure 7(a).

ing scheme, a miss in one-level receiver caches in DSR is a
global miss. DSR provides a much shallower LRU depth
than StimulusCache. Therefore, even if we designate excess
caches as receivers in DSR, it does not perform as well as
the dynamic sharing scheme of StimulusCache.
Network traffic
Excess caches may introduce additional network traffic due
to staggered cache access to multiple excess caches and
downward block propagation. A single local cache miss can
cause N data propagations from the local cache to the main
memory with N excess caches. An excess cache hit gen-
erates K block propagations if the K’th excess cache had
a hit. Our experiments revealed that StimulusCache does
not increase the network traffic significantly. The average
on-chip network bandwidth usage per core was measured to
be 155.1MB/s (cholesky) to 517.3MB/s (MMHH1) with-
out excess cache. With excess cache, the bandwidth us-
age was 187.5MB/s (fmm) to 873.7MB/s (MMHH1), well
below the provided network bandwidth capacity of 8GB/s
per core. The increase was 101.7MB/s on average and up
to 423.2MB/s (LLMM3). The reduced execution times with
StimulusCache also push up the network bandwidth usage.
Excess cache latency
In this section, we study how sensitive program performance
is to excess cache access latency. Long excess cache laten-
cies may result from slower on-chip networks, network con-
tention, or non-uniform distances between the program lo-
cation and the excess cache locations. Figure 14 shows the
performance improvement of various workloads with excess
caches having varied latencies. While the performance im-
provement decreases with an increase in latency, the overall
performance improvement remains significant, even with the
longest latency of 50 cycles.

The performance impact due to long excess cache laten-
cies is limited because accesses hit more frequently in the
local L2 cache and in the first few excess caches. The ex-
tent of the impact varies from workload to workload depend-
ing on how frequently an access has to travel further down
the excess cache chain. Figure 14(b) and (c) further show
that the performance impact varies from program to program
within a single multiprogrammed workload. For example, in
LLMM4, hmmer and bzip2 were measurably affected by
the increased excess cache latency. The other two programs
in the workload were not. This result is intuitive because the
programs that get more benefit from the excess caches could
be impacted more from the increased latency.
32-core CMP
Finally, we experimented with a futuristic 32-core CMP
configuration, where 16 cores run programs and there are
4–16 excess caches. We use the static sharing scheme
for multithreaded and server workloads and the dynamic
sharing scheme for multiprogrammed workloads. We use
a multiprogrammed workload that encompasses all twelve
SPEC2006 benchmarks listed in Table 3(a). Additionally, a
second copy of the four heavy workloads are run on cores 13
to 16 to ensure that all 16 functional cores are kept busy. Fig-
ure 15(a) shows the overall performance improvement with
excess cache.

We make two observations. First, the dynamic sharing
scheme for the multiprogrammed workload works well for
this large-scale CMP. Using 16 excess caches, the dynamic
sharing scheme yields a performance improvement of 11%
whereas the static sharing scheme’s improvement is only
5%. The superiority of the dynamic sharing scheme is more
clearly revealed in Figure 15(b) and (c). Second, the multi-
threaded and server workloads also have large performance

�� � �
� �

� � �
� � �
� � �
� � �
� � � �����

�� � �
� �

� � �
� � �
	 � �

 � �

� � � �
� � � �
� � � �
� 	 � � ��� � �

��� �� � �� � �� �

� �
� �

� � �
� � �
� � �
� � �
� � �

��
���

��
��

	�

��

��
�

��
��

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � � ��� � �

Figure 13. (a) Performance improvement with three StimulusCache policies and Dynamic Spill-Receive (DSR). (b)–(d) Performance
improvement of individual programs in three example workloads: (b) LLMM4 (DSR < static private < static sharing < dynamic sharing); (c)
MMHH1 (static private = DSR << static sharing = dynamic sharing); and (d) MMHH3 (static private<static sharing<dynamic sharing<DSR).

��
� ��
� ��
� ��
� ��
� ��

��
���

��
��

	�

��
���

�
��

��

� � � � � � � � � ��������

��
� ��
� ��
� ��
� ��
� ��

�����

��

� ��

� ���

� � ��
��� � �

��� �� � �� �
Figure 14. (a) Performance improvement when excess cache latency is varied. (b)–(c) Individual program’s performance improvement
for (b) LLMM4 and (c) MMHH1.

improvements. lu and server have 54.2% and 90.5% im-
provement with only four excess caches, respectively. The
performance improvement of server is as high as 104.4%
with 16 excess caches. This result underscores the impor-
tance of on-chip memory optimization for memory-intensive
workloads with large footprints.

6. Related Work
To the best of our knowledge, our work is the first to moti-
vate and explore salvaging unemployed L2 caches in CMPs.
In this section, we summarize two groups of related work:
core salvaging and banked L2 cache management.

Core salvaging aims to revive a faulty processor core
with help from hardware redundancy or software interven-
tion. Joseph [14] proposed a VMM-based core salvaging
technique. By decoupling physical processor cores from
software-visible logical processors, fault management is
done solely in the VMM without applications involvement.
The main mechanisms for core salvaging are migration and
emulation. A thread that is not adequately supported by
a core (due to faults) can be transparently migrated to an-
other core. Alternatively, lost hardware features due to faults
(e.g., floating-point multiplier) can be emulated by software
through a trap mechanism. This work evaluates how such
strategies affect a salvaged core’s performance. Powell et
al. [20] also examine similar core salvaging techniques and
demonstrate that the large thread migration penalty is amor-
tized if a faulty resource is rarely used. Furthermore, they
suggest an “asymmetric redundancy” scheme to mitigate the
impact of losing frequently used resources. For instance, a
simple bimodal branch predictor can augment a more com-

plex main branch predictor. After a rigorous examination
of core salvaging, they showed that the technique covers at
most 21% of the core area. Detouring [18] is an all-software
solution. Similar to the previously proposed emulation tech-
nique [14], it translates instructions which use faulty func-
tional blocks into simpler instructions that do not need them.
Although Detouring’s reported coverage is 42.5% of the pro-
cessor core’s functional blocks, it uses binary translation and
is subject to significant performance degradation.

If the faulty cores can be salvaged perfectly, it would ob-
viate the need for core disabling and StimulusCache. How-
ever, given that the existing core salvaging techniques only
(theoretically) cover a small portion of the core area and they
incur area and performance overheads, we believe that core
disabling will remain a dominant yield enhancement strat-
egy. Note also that the proposed StimulusCache techniques
can be opportunistically used when processor cores are put
into deep sleep and their L2 caches become idle.

StimulusCache’s dynamic sharing policy is related to the
CMP cache partitioning. Suh et al. [28] proposed a way
partitioning technique with an efficient monitoring mecha-
nism and the notion of marginal gain. Qureshi and Patt [23]
proposed the UMON sampling mechanism and lookahead
partitioning to handle workloads with non-convex miss rate
curves. Qureshi [21] extended UMON to enable private L2
caches to spill and receive cache blocks between a pair of L2
caches. Chang and Sohi [5] proposed Cooperative Caching
(CC) and allow capacity sharing among private caches. With
a central directory that has all cores’ L1 and L2 tag contents,
they migrate an evicted block to minimize the number of
off-chip accesses. Our excess cache management approach

��
� ��
� ��
� ��
� ��

� ���
� � ��

��
���

��
��

	�

��

���
��
��

� � 	
 � � 	
 � � 	
 � � � 	
 � �

��
� ��
� ��
� ��
� ��
� ��
� ��

��
���

��
��

�	
��

��

���
��
���

�
���

�
��
��

���

���
��
���
���
�

��
���
��
���
�

��
	��

���

��
���
��
���

�
���

��
��
���

��
��

!
��
��

��

��
���

���
�
���

��
��
���

��
��

!
��
��

��

��
���

���

��
���

��
��

	�

��

��
��

��
��

� 	
 � � 	
 � � 	
 � � � 	
 � �
���������	��
����

� �� �� �

��� �� � �� �

��
� ��
� ��
� ��
� ��
� ��
� ��

��
���

��
��

�	
��

��

���
��
���

�
���

�
��
��

���

���
��
���
���
�

��
���
��
���
�

��
	��

���

��
���
��
���

�
���

��
��
���

��
��

!
��
��

��

��
���

���
�
���

��
��
���

��
��

!
��
��

��

��
���

���

��
���

��
��

	�

��

��
��

��
��

� 	
 � � 	
 � � 	
 � � � 	
 � �
���������	��
����

� �� �� �

Figure 15. Performance improvement of 32-core CMPs with excess caches. (a) Overall throughput improvement. (b)–(c) Performance
improvement of individual programs (b) with the static sharing scheme, and (c) with the dynamic sharing scheme.

is different from the previous work in that we control cache
capacity sharing at bank granularity, and accordingly, the re-
lated overhead is small. Our mechanism also flexibly con-
trols an individual core’s cache access path.

7. Conclusion
Future CMPs are expected to have many processor cores and
cache resources. Given higher integration and smaller device
sizes, maintaining chip yield above a profitable level remains
a challenge. As a result, various on-chip resource isolation
strategies will gain increasing importance. This paper pro-
poses StimulusCache where we decouple private L2 caches
from their cores and salvage unemployed L2 caches when
the corresponding cores become unavailable due to hard-
ware faults. We explore how available excess caches can
be used and develop effective excess cache utilization poli-
cies. For single-threaded programs, StimulusCache offers a
sizable benefit by reducing up to 91% of L2 misses and in-
creasing program performance by up to 131%. We find that
our unique logical chaining of excess caches exposes an op-
portunity to control the usage of the shared excess caches
among multiple co-scheduled programs.

References
[1] AMD Phenom Processors. http://www.amd.com.
[2] AMD. “BIOS and Kernel Developer’s Guide for AMD Athlon64 and

AMD Opteron Processors,” http://support.amd.com/us/
Processor_TechDocs/26094.pdf.

[3] S. Borkar. “Microarchitecture and Design Challenges for Gigascale
Integration,” keynote speech at MICRO, Dec. 2004.

[4] F. A. Bower et al. “Tolerating Hard Faults in Microprocessor Array
Structure,” Proc. DSN, Jul. 2004.

[5] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Multiproces-
sors,” Proc. ISCA, 2006.

[6] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee, and M. Mo-
eng. “TPTS: A Novel Framework for Very Fast Manycore Processor
Architecture Simulation,” Proc. ICPP, Sep. 2008.

[7] S. M. Domer et al. “Model for Yield and Manufacturing Prediction
on VLSI Designs for Advanced Technologies, Mixed Circuitry, and
Memory,” IEEE JSSC, 30(3):286–294, Mar. 1995.

[8] D. Gove. “CPU2006 Working Set Size,” ACM SUGARS Computer
Architecture News, 35(1):90–96, Mar. 2007.

[9] IBM “IBM System p570 with new POWER6 processor increases band-
width and capacity,” IBM United States Hardware Announcement, pp.
107–288, May 2007.

[10] Intel ATOM Processors. http://www.intel.com/
technology/atom/.

[11] Intel Corp. “Intel Microarchitecture, Codenamed Nehalem,”
technology brief, http://www.intel.com/technology/
architecture-silicon/next-gen/.

[12] Intel Corp. “Mainframe reliability on industry-standard
servers: Intel Itanium-based servers are changing the eco-
nomics of mission-critical computing,” white paper,
http://download.intel.com/products/processor/
itanium/RAS_WPaper_Final_1207.pdf, 2007.

[13] ITRS. ITRS 2007 Edition Yield Enhancement, 2007.
[14] R. Joseph. “Exploring Salvage Techniques for Multi-core Architec-

tures,” In Workshop High Performance Computing Reliability Issues
(HPCRI), Feb. 2005.

[15] H. Lee, S. Cho, and B. Childers. “Performance of Graceful Degrada-
tion for Cache Faults,” Proc. ISVLSI, May 2007.

[16] H. Lee, S. Cho, and B. Childers. “Exploring the Interplay of Yield,
Area, and Performance in Processor Caches,” Proc. ICCD, Oct. 2007.

[17] M. R. Marty and M. D. Hill. “Virtual Hierarchies to Support Server
Consolidation,” Proc. ISCA, Jun. 2007.

[18] A. Meixner and D. J. Sorin. “Detouring: Translating Software to
Circumvent Hard Faults in Simple Cores,” Proc. DSN, Jun. 2008.

[19] NVIDIA GeForce 8800 GPU. http://www.nvidia.com.
[20] M. D. Powell et al. “Architectural Core Salvaging in a Multi-Core

Processor for Hard-Error Tolerance,” Proc. ISCA, Jun. 2009.
[21] M. K. Qureshi. “Adaptive Spill-Receive for Robust High-

Performance Caching in CMPs,” Proc. HPCA, Feb. 2009.
[22] M. K. Qureshi et al. “Adaptive Insertion Policies for High-

Performance Caching,” Proc. ISCA, Jun. 2007.
[23] M. K. Qureshi and Y. N. Patt. “Utility-Based Partitioning of Shared

Caches,” Proc. MICRO, Dec. 2006.
[24] SEMATECH. Critical Reliability Challenges for ITRS, Technology

Transfer #03024377A-TR, Mar. 2003.
[25] S. Shankland. “Sun begins Sparc phase of server overhaul,” http:

//news.zdnet.com/2100-9584_22-145900.html.
[26] E. Sperling. “Turn Down the Heat ... Please—Interview with Tom

Reeves of IBM,” EDN, July 2006.
[27] Standard Performance Evaluation Corporation.

http://www.specbench.org.
[28] G. E. Suh et al. “A New Memory Monitoring Scheme for Memory-

Aware Scheduling and Partitioning,” Proc. HPCA, Feb. 2002.
[29] J. Tendler et al. “POWER4 system microarchitecture,” IBM Techical

White Paper, Oct. 2001.
[30] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi.

“CACTI 5.1 Technical report,” HP Laboratories, Palo Alto, 2008.
[31] C. Webb. “45nm Design for manufacturing,” Intel Technology Jour-

nal, 12(3):121–129, Nov. 2008.
[32] S. C. Woo et al. “The SPLASH-2 Programs: Characterization and

Methodological Considerations,” Proc. ISCA, July 1995.

