EFFICIENT RANDOM VECTOR VERIFICATION METHOD

FOR AN EMBEDDED 32BIT RISC CORE

Chang-Ho Lee, Hoon-Mo Yang, Sung-Ho Kwak, Moon-Key Lee,
Sanghyun Park*, Sangyeun Cho*, Sangwoo Kim*, Yongchun Kim*,
Seh-Woong Jeong*, Bong-Young Chung*, Hyung-Lae Roh*,

Dept. of Electrical and Computer Engineering, Yonsei University, Seoul, Korea
*MCU Team, System LSI Business, Samsung Electronics Co., Yong-In, Korea

Abstract

Processors require both intensive and extensive functional
verification in their design phase to satisfy their general
purposability. The proposed random vector verification
method for CalmRISC™-32 core meets this goal by
contributing complementary assistance for conventional
verification methods. It adopts a cycle-accurate instruction
level simulator as a reference model, runs simulation in both
the reference and the target HDL and reports errors if any
difference is found between them. These processes are
automatically performed in the unified environment. The
instruction level simulator, the core part in the verification
environment is able to simulate almost every aspect of RISC
processors from functional behavior of each opcode to
timing details in the pipeline flow in fast speed. Its design
style from microprogramming scheme also makes its
structure modular and flexible.

I. INTRODUCTION
This paper proposes random vector verification methodology
to contribute complementary assistance for conventional
verification methods. Though random vectors are likely to
cause more inefficiency by themselves in that their
verification purposes are rather ambiguous, they are easy to
generate and maintain. Furthermore, they often cover
unexpected corner cases in experience since they are
intrinsically free from designers’ bias. Accordingly,
verification efficiency is greatly enhanced when the random
vector method cooperates with the checklist one. We also

developed an instruction level simulator as a reference model.

The instruction level simulator is a clock-based cycle-
accurate simulator written in C language. It imitates not only
all the functional behavior of instructions but also timing
details in the pipeline flow with reasonably high speed.

The proposed verification environment compares the trace
from a target HDL model and the one from the reference
model and analyzes the comparison results automatically.
This approach accordingly provides more convenient
environment for designers.

To discuss the main topic, this paper will mention on
architecture of CalmRISC™-32 briefly as backgrounds in
section II. It will present overall structures of the proposed
random vector verification environment in section III and
deal with the instruction level simulator in section IV. In
conclusion, it will analyze statistics in our past verification
experience and recommend its appropriate application field.

II. OVERVIEW ON ARCHITECTURE OF

CALMRISC™-32 PROCESSOR
CalmRISC™-32 is a 32bit scalar RISC for low-power
embedded applications. It comprises [U, FPU, Cache and in-
circuit debug unit. However, the proposed verification
environment constricts its scope only on IU. In the view of
the random vector verification environment, the most
significant features of CalmRISC™-32 are as below.
Instruction set: To increase code density, it has an
instruction set rather different from that of typical RISC
processors. Its data size is 32bits while its code size is
mostly a half of its data size. Its code sizes are variable for
the multi-byte immediate load instructions. The ones for
half-word is 4 bytes long and the ones for word 6 bytes long.
It also adopts CISC style multi-cycle instructions. The
typical cases are POPQn/PUSHQnN, the multiple pop/push
instructions, and BIT[R/S/T/C], the bit-oriented memory
read-modify-write instructions.

Pipeline structure: Its pipeline structure consists of five
stages; instruction fetch (briefly IFE), decode (DEC),
execution (EXE), memory (MEM) and writeback (WRB).
Instruction fetches in IFE and data loads/stores in MEM are
performed independently through different ports because it
adopts Harvard architecture in cache. However there is one
exception; it also defines LDC (Load Data from Code
memory) instructions, which load data through the port for
instruction fetch in MEM.

Control flow: It supports delayed branch instructions.
Every delayed branch has a single delay slot because branch
address calculation is done in DEC. It also supports precise
exceptions. The proposed environment excludes interrupts
and coprocessor exceptions. If any exceptional cause is
detected, its target address will be available in the next clock
cycle.

Register dependency: It supports both register bypass and
memory lock. It has two special cases for memory lock
besides general memory load operation; LDC instructions
always cause memory lock to prevent code port confliction,
and BIT[R/S/T/C] instructions do so if the next instruction is
dependent on T bit since they modify T bit in the MEM
stage while other instructions do so in EXE.

III. THE OVERVIEW ON RANDOM
VECTOR VERIFICATION ENVIRONMENT

The figure 1 shows main process of random vector
verification environment. The process passes through total 5

steps. The names in the square parentheses in the figure

indicate extensions of output files generated in the steps. The

main purpose of each step is as below.

1. Generate an assembly source file for random test
vectors. [ASM]

2. Assemble the source file and generate output files in the
sake of verification. HEX (or DAT) file is a list file
containing code (or data) for the target HDL stimulus
while ILS file is a binary executable for the instruction
level simulator.

3. Perform simulation on the target HDL and generate a
VTR (Vertical TRace) file.

4. Perform simulation on the instruction level simulator
and generate a HTR (Horizontal TRace) file.

5. Compare signals between them and report any
difference.

A VTR file comprises entries containing values of primary

external signals and registers sampled at every positive edge

of clock in the HDL model while the structure of a HTR file
entry is slightly more complex. It defines a set of 5 slots for
one iteration of pipeline flow and each slot contains its
related events and beginning time also used as an index to

enran
Generate random source file

ASM
as2010 y
Assemble random source ﬁlel
[—
(LHEX } s

sim2010.pl ils201
Build HOL simulation environment Instruction level simulation
Verilog

HDL model simulation |

Target HDL model Reference model

cmphnv

view.pl
Report differences

Fig. 1 Procedure of random vector verification

External signals &
Value-changed registers

Reference clock cycle

v

2z 0 1 2 3 4 5 6 7 8
c
5}
©
8
¢ | 0| IFE | DEC | EXE | MEM | WRB T
8 3
1 IFE | DEC | EXE | MEM { WRB Horizontally =
..... »| P
2 IFE | DEC | EXE { MEM | WRB 2
ES
3 IFE | DEC § EXE | MEM | WRB 2
=
%)
4 IFE { DEC | EXE | MEM | WRB =
‘y Vertically
v \
/ VTR file entries (HDL model)
time 3

signals : PA, INULL

Fig. 2 Comparison between the 2 models

VTR entries. The figure 2 illustrates how to compare
simulation results between them. The 3™ opcode occupies
IFE at 3™ clock in the HTR file. The comparison utility then
refers to the 3™ entry in the VTR file and compare values of
the victim signals between them. If any difference is found
between them, it is evident that some errors should lurk in
one of them. The verification process is iterated with
debugging until there remains no difference between the 2
files for a single random test vector workload.

There are three considerations for random vector simulation.
First, any unexpected branch and load/store should be
prevented from reading or writing undefined memory space
or otherwise the random vector simulation may fall into
irrecoverable erroneous condition. To circumvent this, the
memory model refers to its additional internal counters
rather than addresses issued from the core during bus cycles.
Each counter increment after its related data transfer happens.
Second, the memory space is divided into 3 sections in the
environment — CODE for opcodes, DATA for general
memory data and KODE for data to be transferred by LDC
instructions.

Though the instruction level simulator exactly reflects all the
timing information of the target HDL, it internally runs
linearly; that is, no other opcode can occupy any pipeline
stage until the current one passes through the WRB stage.
However, pipeline stages are actually overlapped with
different opcodes and due to such discrepancy in execution
order, it would be a very complex job to maintain
consistency in the counters for CODE section between the
target and the reference if memory load by an LDC
instruction in MEM shared the same memory space with
instruction fetch in IFE. The proposed environment solves
this problem by simply allocating KODE apart from CODE.
The internal counters individually correspond to their own
memory sections. Simulation is finished off after the CODE
counting number reaches its upper bound and in contrast,
DATA or KODE counting number is turned back around
when it does so.

Third, any random vector workload should contain a system-
initializing routine at its header before sequence of random
test vectors. Such scheme prevents external signals and
registers from falling into unknown state due to uninitialized
condition during normal operation of simulation

IV. THE CYCLE-ACCURATE
INSTRUCTION LEVEL SIMULATOR

Overview

ILS, the proposed cycle-accurate instruction level simulator
for CalmRISC™-32 was programmed by microprogramming
scheme. Hardwired scheme is generally accepted as more
desirable design method than microprogramming scheme for
RISC processors. However, concerning an instruction level
simulator, hardware overhead matters no longer and instead,
modularity becomes the most critical factor because regular
data structures generally produce more concise and manifest
statements in programming languages. Especially, the CISC
styled instructions of CalmRISC™-32 can be more
efficiently modeled by microprogramming scheme though

they are actually implemented by hardwired scheme. The
figure 3 shows a block diagram of ILS. The shaded area in
this figure includes main procedure of modeling the pipeline
flow. The DEC module parses a current opcode into an

index of its first microopcode by lookup to decode hash table.

The structure of microopcode lookup table is as shown in the
figure 4. Every microopcode entry has concat pointing to
the next microopcode. ILS then executes each microopcode
belonging to the current opcode until its concat holds
EOM (End Of Microprogram), and then initiates to fetch the
next opcode. Every single-cycle opcode is exactly
correspondent to a single microopcode while every multi-
cycle opcode consists of multiple microopcodes.

A microopcode has three pointers — FP, AP and MP. These
pointers point to entries of the flow control lookup table
(briefly FLW), the ALU lookup table (briefly ALU) and the
memory load/store table (briefly MEM) respectively. These
lookup tables also instruct ILS on branch operations in DEC,
ALU operations including address calculation in EXE and
memory load/store operation in MEM respectively.

As previously mentioned, ILS does not follow actual order
of operations observed in the HDL model. Instead, the

Run with reset or continue simulation

User interface

Continue simulation
Decode
Hash tree

Instruction

Calculate timing
Calculate NPC

entity

Read

Microopcode
CODE table DAT

Read/write

KODE HTR file

Fig. 3 Block diagram of the instruction level simulator

OP-code entity table Flow control lookup table (DEC)

o 1> €oM
EOM

EOM

Microprogram
consisting of
4 microopcodes
EOM

FP
: Miscellaneous
N—1 AP

CONCAT MP

ALU operation lookup table (EXE)

L*

Load/store lookup table (MEM)

Next microopcode

Fig. 4 The structure of microopcode lookup table

calccyc module calculates pipeline timing once after every
microopcode has been completed.

The breakpoint module is necessary to allow users’
intervention during simulation. If user-manipulation such as
breakpoint setting or internal hardware exceptions such as
data abort occurs, the simulation pauses according to the ILS
configuration and then users can browse current internal

states such as registers, memory, etc., or resume the
simulation.

Instruction decoder model

Instruction decode procedure is subdivided into 2 steps; In
the first, the DEC module determines an opcode type and
then in the second, it interpret operands. The opcode type is
actually an index of the first microopcode in its
correspondent microprogram. In mapping an opcode to its
first microopcode, tradeoff between memory and trial
number should be considered. Thus, we propose new
efficient decoding scheme using hash tree to optimize these
contradictory factors. The upper bound of its trial number is
only 4 while its number of entries amount to 332, which is
considerably economic.

The structure of decode hash tree is shown in the figure 5. At
first, an opcode is divided into 4 nibbles and the 1% nibble is
used as an index of the entry in the root node; the 1% nibble
of a CalmRISC™-32 instruction is actually assigned as a
prefix for classifying instruction group. A hash tree entry has
id, p and shft. For each trial, the DEC module calculating
an index to the next entry by left shifting the id™ nibble of an
opcode by shft if p is not NULL while p points to the next
node. The left-shift operation helps reduce total size of hash
tree entries because operand fields of every CalmRISC™-32
instruction are left aligned in nibble boundary and they have
no effect on determining opcode types. For example, if the
bit pattern is 01XX, the sufficient number of entries is 4,
instead of 16 because only the higher 2 bits are meaningful.
If p is NULL, id holds an index to the first microopcode and
additionally shft with nonzero value indicates the current
opcode is unimplemented.

After then, the DEC module refers to entries of the lookup
tables - FLW, ALU and MEM pointed to by the microcode
and translates their operand fields to appropriate register
indexes while for an immediate operand, constant extracted
from an opcode is saved into IMR, the virtual register for

immediate value and the operand field is marked as IMR.

1t step 3d step 2" step 4t step
[1000 T oxxx [1001 [1xxX_| Instruction

—~
1000 1001] OXXX | —1_1xxx_]
oth oth) oth |] oth |
| {st | | {st — NuLL
gth on Index for 1st microopcode
Microopcode
th th
5 5 table

Fig. 5 The structure of decode hash tree

Flow control model

ILS manipulates flow control with a pipeline flow window.
This window is a sub-array of a circular queue where each
slot corresponds to pipeline stage modules. After every
microopcode is completed, the marknpc module
determines several NPC’s. Every NPC is stored into the next
to the window slot where its cause was brought about and the
slot is marked with one of the states — NORMAL caused by
normal PC increment, FLUSH by non-delayed branches or
exceptions and DSLOT by delayed branches. After then, the

window is advanced by one slot in the queue and the IFE
module gets a fetch address from its newly correspondent
slot. Every pipeline stage module except IFE evaluates its
corresponding slot state before it begins its operations
including exception check. If the state is FLUSH, ILS cancels
all the scheduled operations for a current microopcode from
that stage on. Such situation continues until the IFE module
corresponds to that slot in FLUSH since the IFE module
restores its slot state to NORMAL whenever it gets a fetch
address from it. The figure 6 illustrates this procedure by an

example of non-delayed branch operation.
Set STAT to FLUSH and put target address

Aol fe]s]4]
v__"éetPC
[iFe [oec]exevemjwrel—] marknec |

PC increment

PC :100
STAT : NORMAL |

Non delayed-branch

i fel s[4 [s Fommeamn.

\ Get PC T— No,Eanq}rgr‘pem due to FLUSH
A [iFe [oec]exe[vemwag—{ wmarknec |

Flush op-code entity

3 . Getpc&)l 2 | 3 | 4 | 5 | 6 I‘—F"\Deh'ne —vance
set STAT to i PC increment .
. NORMAL [ee Toec[exe[memwrel—{ marknec |

Pipeline flow queue

-..,,_A|8|4|5|5|7|‘mlance

Fig. 6 Flow control window

Pipeline timing calculation

Simulation time in ILS has no meaning of physical
dimension and just represents an ordinal number of clock
tick. Current time of each pipeline stage is determined in the
calccyc module after a current microopcode is completed.

Timing calculation is simple for single cycle instructions
without any dependency because it is accomplished only by
increasing current time of each pipeline stage by 1. On the
contrary, memory lock and multi cycle instructions require
more elaborate scheme. Every opcode contains variables for
memory dependency check. For every microopcode to be
executed the DEC module compares information in these
variables with history of the previous microopcode and then
if it detects memory lock, current occupying time of DEC is
extended to the finish time of MEM for the previous
microopcode.

In case of multi cycle instructions, ILS adopts concept of
virtual fetch. For example, PUSHQN opcode consists of 4
microopcodes in ILS but only the first needs instruction fetch
and the others do not though they actually occupy IFE in
simulation. Consequently, most recent simulation times for
IFE and DEC should be restored to the ones for the first
microopcode and times for the remained stages are
readjusted as in the figure 7. The readjustment differs in the
intra-pipeline stage opcodes and inter-pipeline stage
opcodes; the one continuously occupies the same stage for
more than 1 clock cycle and the other occupies the same
stage more than once. The arrowed lines in the figure
indicate relation between cause and result for the
readjustment.

CASE 1. Inter—pipeline stage

IFE |DEC| EXE|MEM|WRB]| 1st microopcode

IHE |DEC|EXE|MEM|WRB| 2"d microopcode

IFE |DEC|EXE IMEM|WRB| 3¢ microopcode

IFe |oec|exe|MemwRe] 4t microopcode

A A A

lire|oec] - | - | - |exelvemwre] Recombination
re| - | - | - |pec|exe|mevmen| Next opcode

CASE 2. Intra—pipeline stage
| IFe [oec] exe [Memwrg| 1t microopcode
I |oec| exe MevwrB| 214 microopcode

avVaTli|
| iFe [oec|exe|vem| - [wre| Recombination
Fe| - | - | - |oec|exe|Memmem] Next opcode

Fig. 7 Timing calcution for multi-cycle instructions

V. CONCLUSION

In experience of the random vector verification, the found
errors are mostly very hard to detect by conventional
verification methods. The most common case is failure of
detecting or handling exceptions and the next is wrong
change of status register value. Such cases are generally
blind spots in processor verification because such erroneous
behavior looks trivial but potentially brings undesirable
effect on processor reliability. Therefore, the proposed
random vector verification methodology is powerful solution
to promote reliability of processors if it cooperates with
conventional verification methods.

Though ILS, core part of the proposed environment is
heavily dependent on CalmRISC™-32 architecture, its
structure is considerably modular since it adopts
microprogramming scheme unlike the actual implemented
machine. Therefore, it is relatively easy to modify its design
for application to other embedded RISC processors without
great loss of generality.

REFERENCE
[1] David A. Patterson, John L. Hennessy, “Computer
Architecture: A Quantitative Approach Second Edition”,
Morgan Kaufmann Publishers, Inc, 1996.
[2] B.Y.Choi, K.Y.Lee, S.H.Lee, and M.K.Lee, “VLSI
design of a pipeline Controller for a 32-bit Application-
Specific RISC”, in KITE Journal of Electronic Engineering,
vol. 5, no. 2 Dec 1994
[3] Ron Cates, “Processor Architecture Considerations for
Embedded Controller Applications”, in IEEE MICRO, 1988
[4] Moon Gyung Kim, Byung In Moon, Sang Jun An, Dong
Ryul Ryu, and Yong Surk Lee, “Implementation of a cycle
based simulator for the design of a processor core”, the 1%
IEEE Asia Pacific Conference on ASICS, Seoul, Korea, Aug.
1999

