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Abstract—It has been foreseen that some of the roles assumed
by conventional rotating hard disk drives (HDDs) will migrate to
solid-state drives (SSDs) and emerging persistent RAM storages.
New persistent RAM storages have critical advantages over HDDs
and even SSDs in terms of performance and power. Persistent
RAM technologies are flexible enough to be used for both storage
and main memory—in future platforms, this flexibility will allow
tighter integration of a system’s memory and storage hierarchy.
On the other hand, designers are faced with new technical
issues to address to fully exploit the benefits of persistent RAM
technologies and hide their downsides.

In this paper, we introduce PRISM (PeRsIstent RAM Stor-
age Monitor)—our novel infrastructure that enables exploring
various design trade-offs of persistent RAM storage. PRISM
allows designers to examine a persistent RAM storage’s low-
level behavior and evaluate its various architectural organizations
while running realistic workloads, as well as storage activities of
a contemporary off-the-shelf OS. PRISM builds on kernel source
code level instrumentation and the standard Linux device driver
mechanism to generate persistent RAM storage traces. Moreover,
PRISM includes a storage architecture simulator to faithfully
model major persistent RAM storage hardware components. To
illustrate how and with what PRISM can help the user, we
present a case study that involves running an OLTP (on-line
transaction processing) workload. PRISM successfully provides
the detailed performance analysis results, while incurring accept-
able overheads. Based on our experience, we believe that PRISM
is a versatile tool for exploring persistent RAM storage design
choices ranging from OS-level resource management policy down
to chip-level storage organization.

I. I NTRODUCTION

HDDs have been the choice secondary storage for modern
computers since they appeared in mid-50s. Unfortunately,
they present one of the long-standing system performance
bottlenecks due to slow access latency and power burning
mechanical operations. More seriously, as the DRAM tech-
nology continues to improve its speed and density every year,
the performance gap between main memory and secondary
storage becomes larger and larger. Fully addressing this prob-
lem remains a daunting challenge; researchers have proposed
various techniques at multiple design layers including: smart
I/O buffering with fast RAM, host buffer caching and OS-level
disk scheduling. These optimizations successfully handleonly
portions of the problem as a first-aid patch to the fundamental
limitations of the rotating HDD.

Recently, the storage research community is paying much
attention to solid-state memory technologies such as flash
memory, PCM (phase-change memory), STT-MRAM (spin-
transfer-torque magneto-resistive RAM) and FeRAM (ferro-

electric RAM) as a fast storage medium [1]–[6]. Especially,
solid-state drives (SSDs), typically built with NAND flash
memory, have been slowly yet increasingly penetrating the
market as HDD replacement or complement, and are currently
mass-produced [7]–[9]. However, undesirable artifacts offlash
memory result in design complexities of SSDs and limit
performance. For example, flash memory has a coarse-grain
access unit, requires costly erase operation before writing,
does not support in-place update, and is subject to write
endurance limitations. In contrast, emerging persistent RAMs
like PCM and STT-MRAM do not come with many of these
restrictions (see Section II for more on this). Researchersare
hence actively exploring the potential of using persistentRAM
in storage systems and how such storage systems will change
the overall system architecture [1], [10], [11].

Modern storage systems are complex, comprised of multiple
layers of software and hardware components that interplay.
They include the file system, OS block I/O stack, device driver
(software components), bus, chips, and devices like HDD and
SSD (hardware components). These diverse components are
tightly bound up with each other and affect the overall storage
system performance. Therefore, it is important to maintaina
holistic view throughout the storage system design processand
avoid focusing on only a single aspect of the storage system.
With adequate measurement and system performance analysis
tools, one can design storage software to fully mask/exploit the
underlying recording medium’s physical characteristics such
as slow seek time and ease of bulk transfer (in the case
of HDDs). Likewise, the hardware components can also be
customized to utilize the software components’ characteristics
such as the I/O scheduling policy and the file system.

Ideally, a storage researcher would run real workloads
on a persistent RAM storage model and measure how the
workloads exercise the underlying persistent RAM devices
to fully understand their interactions. Yet, to the best of our
knowledge, there exists no publicly available tool to (1) allow
a storage researcher to run large realistic workloads on a
persistent RAM storage model, (2) expose low-level persistent
RAM storage behavior (without assuming the traditional block
I/O interface), and (3) evaluate a variety of design choicesin a
single integrated framework. The contribution of our work is
to design and implement PRISM, a novel infrastructure to ex-
plore various design trade-offs of a persistent RAM storagein
terms of performance, reliability, and energy. PRISM enables
the user to look deeply into persistent RAM storage behavior
under real workloads including contemporary off-the-shelf OS



TABLE I
COMPARISON OF PERSISTENTRAM TECHNOLOGIES[4]. ∗F IS THE FEATURE SIZE OF A GIVEN PROCESS TECHNOLOGY.

Latency Program Allowable Endurance Density∗

read write erase Energy Access unit

NAND flash 25us 200us 1.5ms 10 nJ page/block 104∼106 4∼5F2

PCM 20ns 100ns N/A 100 pJ byte 108∼109 5F2

STT-MRAM 10ns 10ns N/A 0.02 pJ byte 1015 4F2

FeRAM 75ns 50ns N/A 2 pJ byte 1013 6F2

activities. We have implemented PRISM in the Linux 2.6.24
kernel.

In the remainder of this paper, we will first describe the
trend of persistent RAM technologies to further motivate our
work in Section II. In Section III, we will describe PRISM
in detail and its current implementation status. We will then
present a case study with experimental results collected with
PRISM to highlight its capabilities in Section IV. Lastly, after
discussing related work briefly in Section V, Section VI will
summarize our current and future work.

II. BACKGROUND

A. Emerging Persistent RAMs

SSDs, primarily built with NAND flash memory today, offer
faster access latency, lower energy consumption and stronger
shock resistance than HDDs. Various uses of SSDs have
been proposed to bridge the performance gap between main
memory and secondary storage [12]–[14]. Unfortunately, flash
memory has properties that complicate the design of the low-
level storage management software (often called flash transla-
tion layer or FTL). A flash memory cell cannot be overwritten
before it is first erased (“erase-before-write” constraint). More-
over, each memory cell has limited write endurance. After
reaching this write endurance limit, further writes to the cell
become unreliable. Read, write and erase units are much larger
than byte. Most critically, the scalability of the flash memory
technology is questionable [1].

New emerging persistent RAMs, such as PCM, STT-MRAM
and FeRAM, do not come with some of flash memory’s
shortcomings; they are in-place updatable, byte-addressable
and typically have higher write endurance. Table I capturesthe
main characteristics of the NAND flash memory, PCM, STT-
MRAM and FeRAM technologies. While a persistent RAM’s
access interface is similar to that of a conventional RAM, its
cell-level operation resorts to fundamentally different physical
phenomena such as phase change (PCM), magnetization (STT-
MRAM) and polarization (FeRAM).

Because persistent RAMs are byte-addressable, researchers
have evaluated their potential as CPU addressable memory. For
example, [15], [16] utilize FeRAM as fast intermediate storage
to improve the file system performance. However, their work
evaluated a file system under a unrealistically miniaturized
environment with only 8 to 16 MB of FeRAM. Meanwhile,
computer architects are actively evaluating persistent RAMs

as a direct replacement of DRAM in main memory [17]–[19];
however, they do not study persistent RAM’s storage aspect.

We expect that technological advances will continue en-
hancing the operational characteristics of persistent RAMs
as well as dropping their cost per GB. Therefore, a large
persistent RAM storage (as alternative or complement to HDD
and SSD), directly accessed via the CPU’s memory interface,
has the potential to become a reality. With this outlook, we
feel that there is an imminent need to explore key design
aspects of a persistent RAM storage—from OS-level virtual
memory manager (VMM) to file system design to chip-level
organization. The fact that there is no publicly available tool
for us to address all these aspects strongly motivated us to
develop PRISM.

B. Conventional Storage System

Traditionally, the secondary storage has maintained a block
device interface regardless of the underlying recording mech-
anism (e.g., HDD and SSD). As a result, storage systems
typically share key datapaths through multiple software layers
to reach the storage medium. Fig. 1 depicts the major strata
that spans an entire storage system in the case of the Linux
OS. A read or write request generated by CPU will travel from
top to bottom along the shown stack to handle the request,
and then traverse back to the requester with either the desired
data or acknowledgment on the completion of the requested
operation.

HDD / SSD

User Applications
Virtual File System (VFS)

Individual FS (EXT3, NTFS, HFS, TMPFS, etc.)
Buffer/Page Cache

Block I/O Layer
HDD device driver

Fig. 1. Conventional storage system stack.

For further exemplification, let us consider how a read
operation is handled. Once a user application issues theread()
system call, the request is first passed to the VFS (Virtual File
System) layer, a generic abstraction layer on which diverse



file systems can co-exist. Then the request is transferred to
the specific file system where the desired data resides. In an
ensuing process, the kernel looks up its page cache that holds
in-memory file objects; if the requested data object is not found
there, the read request keeps journeying down the stack. In the
block I/O layer, an internal I/O request entry is assigned for
this read, and then queued up until the request proceeds to the
head of the queue and the device driver is ready to handle the
request. The device driver will communicate with the hardware
disk controller to perform necessary low-level data transfers.
The disk controller will eventually notify the device driver
of the completion of transfers with the requested data. During
data transfer, data will be stored as in-memory file objects and
the user application resumes its execution with the desireddata
after the kernel finishes copying the data from the kernel space
to the user space.

Given the large number of layers a request and data have to
go through, obviously, streamlining the storage I/O datapaths
can bring sizable performance benefits. Recently, some SSDs
deviate from this “conventional” stack architecture to bypass a
few layers. For example, FusionIO’s ioExtreme [9] makes use
of a specialized file system, a simplified OS block I/O layer,
and the PCIe (PCI Express) interface. Such design changes
are likely to happen for persistent RAM storage systems as
well due to their drastically different physical characteristics
from rotating HDDs.

C. Designing Persistent RAM Storage

Major architectural and system design changes are anticipated
with the introduction of persistent RAM as the main storage
medium:

1) File system: Since the storage medium is uniformly
random addressable and does not mandate block-granule
operation as a HDD or SSD does, a natural file system
design strategy could be anin-memory file system. This
strategy helps avoid dealing with an unnecessary and of-
ten expensive block device interface on accessing a file.
To achieve the best performance, a new file system must
consider physical characteristics of the target persistent
RAM storage medium.

2) OS software stack: Thanks to desirable properties of
a persistent RAM medium, the depth of the OS storage
related software stack can be greatly reduced, resulting
in a thinner, more efficient software stack and improved
overall storage performance. For example, a small data
update request does not need to incur block-granule
operations (e.g., creating, copying, and transferring a
block with DMA) because a persistent RAM can address
bytes and support in-place updates. Moreover, a persis-
tent RAM’s uniform fast access latency will help slash
a number of I/O queues and complicated I/O scheduling
schemes.

3) Wear leveling: Since some persistent RAMs such as
PCM are subject to limited write cycles—although the
expected limit is much larger than that of NAND flash

memory—a persistent RAM storage design is still ex-
pected to incorporate a wear leveling scheme. However,
wear leveling can be merged into the existing OS’s page
allocation/reclamation policy. As a result, such a strategy
can not only obviate the need for a heavy FTL common
in flash memory based storages, but also enable smart
wear leveling control with system-wide knowledge of
memory-storage interaction.

4) Exploiting parallelism: A HDD does not by itself
expose parallelism when retrieving recorded data.1 To
offset the cost of mechanical head-arm movement,
disk scheduling algorithms consider multiple disk ac-
cess requests simultaneously and cluster them based
on their proximity on the platter. On the other hand,
with persistent RAM, data access parallelism is revealed
by introducing multiple channels to chips/modules and
banks (aka planes) within chips. Hence, data mapping
and interleaving must be carefully coordinated in the
hardware design as well as the OS-level management
policy.

All these architectural and system design considerations can
dramatically affect the performance of a persistent RAM
storage—its access latency, reliability, energy consumption,
and storage utilization. Now, the following section will de-
scribe PRISM, a novel infrastructure that enables a persistent
RAM storage designer to explore these considerations in an
integrated manner.

III. PRISM

A. Overall Architecture

To consider all key design aspects together, we take a holistic
emulation approach in PRISM design, involving the OS, file
system, and storage hardware architecture. The primary design
goals of PRISM are: (1) realistic but fast storage system
monitoring, (2) ease of functional extension by modular de-
sign, (3) flexible user configurability, and (4) automated data
analysis. To achieve the goals, PRISM is structured into two
major components as Fig. 2 depicts: the front-end tracer that
tracks and records various storage activities (Fig. 2(a)) and the
back-end (off-line) simulator calledPSDSim(Persistent RAM
Storage Device Simulator) that post-processes a trace based
on the user-defined storage configuration (Fig. 2(b)).

Conceptually, a user would trace OS-level file I/O activities
with the PRISM probing facility that is deeply embedded
inside the kernel. The collected traces are then fed to PSDSim
configured with the user input. Lastly, the user extracts the
desired information (e.g., wearing of cells) and evaluate a
particular aspect of the storage design (e.g., wear leveling
algorithm) under consideration. Note that the two components
can be either coupled together to work on-line or decoupled
as needed; we describe them separately in the next subsection
to contrast their roles.

1At the system level, parallel data access is enabled by involving multiple
HDDs when data are interleaved among them, e.g., RAID-5.
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Fig. 2. PRISM architecture.

B. PRISM Components

Front-end tracer. In this work, we have modified Linux
2.6.24, especially thetmpfs file system [20] and the generic
file system layers to trace file I/O activities.tmpfs is a main
memory based file system and was originally invented for per-
formance enhancement of short-lived file accesses by avoiding
costly disk I/O. Because its main focus is to handle temporary
file objects efficiently, it does not assume a persistent medium
to store file data.

While its original design objective is different from ours,
tmpfs offers an attractive framework for use in PRISM for
several reasons. First of all,tmpfs is an in-memory file
system that has already been built in the mainline Linux
kernel. Second, it serves our design objectives well in that
it “emulates” byte-addressable file data update and is tightly
coupled with the kernel’s resource management policies such
as page allocation and reclamation. Moreover,tmpfs can
resize its allocated memory resource dynamically within the
capacity set by the user (unlike other popular RAM drives like
ramdisk). tmpfs can even increase its size beyond the sys-
tem’s main memory capacity, to as much as the main memory
plus the system swap space. Additionally,tmpfs enables us
to observe how well a persistent RAM storage cooperates with
the existing virtual memory policies (much tuned to work with
a HDD), even before we design a specialized file system for a
persistent RAM storage. This will help file system designers
by identifying what they have to change and support.

Various “pluggable” tracers within the PRISM front-end
can trace specific storage access behavior. Note that a PRISM
tracer tracks file I/O activities on the byte-addressable storage
model instead of the block storage device model like HDD
or SSD. For example, our “write pattern tracer” can gather
information on file data being written, such as virtual and
physical addresses accessed, write size, and actual write data.
Similarly, a “read pattern tracer” can capture informationsuch
as accessed addresses and requested data size. A “metadata

tracer” can keep track of the changes in file metadata such as
updates in theinode structure.

PRISM provides a convenient method with which a user
can specify his or her own tracer and how it connects to other
kernel modules. Much like a typical Linux device driver, each
PRISM tracer is implemented as a kernel module utilizing the
proc file system interface for interacting with the kernel and
logging. Whenever a specific activity happens in the kernel, the
call-back function of the corresponding tracer will be invoked
to perform a designated tracing task. By modularizing tracers,
only necessary tracers will be loaded into the kernel so that
PRISM can keep kernel operations lightweight during tracing.
Back-end simulator (PSDSim).Raw file I/O traces that we
collect with the PRISM front-end are fed to the back-end
architecture simulator. Hardware and device driver designers
often ask if a particular storage organization improves the
overall system performance, power, and lifespan. PSDSim
facilitates exploring persistent RAM storage design trade-
offs by allowing the user to define a persistent RAM chip
configuration, an interconnection topology, a wear leveling
algorithm, and an energy consumption model.

Fig. 2(b) shows the hardware specific back-end modules:
Persistent RAM storage controller (PSC), wear leveling em-
ulating system (WES) and persistent RAM storage energy
model (PEM). PSC simulates bank conflicts and implements
conflict resolution policies (e.g., round-robin for service fair-
ness). It works with WES to lessen biased writes to specific
persistent RAM banks with no direct intervention with the
OS VMM. PEM enables us to estimate energy consumption
of storage access activities.

Finally, to aid users with fast and intuitive data analysis,
PSDSim includes a statistics analysis module (PSA). PSA
parses and formats a set of traces according to a user spec-
ification. It also automates the process of visualization with
simple scripting support.

For higher flexibility of architectural exploration, PSDSim



takes the following design requirements into account:

• Persistent RAM chip configuration: It has not been
fully understood what is the best internal organization
for a persistent RAM chip for storage systems. For
example, how many banks per chip will be good? What
are adequate read and write bandwidth sustained by each
bank? How many entries do we need in an on-chip write
queue? To answer these questions, the user must have
ability to configure the internal hardware organization of
a persistent RAM chip.

• Storage device configuration:We also want to be able
to configure a storage device—a physically or logically
separable hardware unit that hosts the storage capacity
seen by the user (e.g., persistent RAMs mounted on a
DIMM (dual in-line memory module)). The most im-
portant parameter here is the total storage capacity and
how the capacity is split into different (chip or DIMM)
packages. Furthermore, it is desirable to model a storage
system having multiple storage devices, e.g., organized
in a RAID-like arrangement to exploit device-level par-
allelism and enable failure recovery. Therefore, PSDSim
need the ability to model and evaluate the performance of
multiple storage devices connected in diverse interconnect
topologies.

• Management granularity: Although the persistent RAM
storage envisioned in this work is byte-addressable, the
storage may utilize a larger unit than a single byte to
efficiently implement certain management policies such
as wear leveling and garbage collection. To this end, PS-
DSim should support configuration of “page size,” which
is the minimum unit with which the system management
software keeps track of wearing information and reclaims
resource.

• Wear leveling strategy: Since some persistent RAMs
have limited write cycles, PSDSim must provide a frame-
work to compare different wear leveling strategies. Al-
though there have been many wear leveling strategies
developed for SSDs and some of them may be relatively
easily adapted to the the persistent RAM storage, PSDSim
should provide high flexibility for the user to explore new
wear leveling ideas specifically targeted to the persistent
RAM storage.

• Energy model: To provide fast and accurate energy
estimation, PSDSim should include a configurable en-
ergy model to compute energy consumption of a given
persistent RAM storage. The energy model should be
sufficiently detailed and should separately report energy
due to chip-level structures like address decoder, memory
cell array and sense amplifiers, as well as more system-
level structures like interconnects and controllers.

C. PRISM Developmental Stage

As of this writing our PRISM front-end tracers are fully
functional and are capable of tracing both data and metadata
accesses into a namedproc file. They can monitor storage
activities within the OS kernel at the system software level

as well as at the file system level. Although our current
implementation leaves room for further improvement in terms
of tracing overheads, our experiment shows that the overheads
are very moderate (Section IV-C). Trace modules are small in
object size. The heaviest tracer module is about 134 KB.

For the PRISM back-end simulator, we have implemented
and validated the most important functionalities of a storage
device. PSDSim can currently take and parse raw traces passed
from the front-end tracers and run architectural simulations
according to a user-defined storage configuration. In our
current implementation, the timing-accurate PSC can handle
read and write requests to the modeled persistent RAM arrays
and the WES can realize a perfect wear leveling scheme
based on a per-page write counting mechanism similar to [34].
In addition, the PEM supports a simple energy consumption
model based on the cell access energy information (e.g.,
Table I). Another model we have adapted in the PEM uses
published device characteristics, e.g., [35]. Our near-term
future work includes: Testing PSDSim with a multiple storage
device configuration by additionally implementing elaborate
interconnect models and supporting a storage system level
energy consumption model.

IV. CASE STUDY WITH PRISM

In this section, we present a case study to illustrate what a user
can do with PRISM. Before describing our experiment further,
let us make two assumptions. First, we assume a persistent
RAM storage managed directly by the Linux VMM without
a dedicated storage management software layer such as FTL
in SSD. Our storage models mimic a single address space
memory and storage system [1]. Second, we are interested
in observing write patterns (rather than read patterns) to the
persistent RAM medium for enhancing write endurance. We
choose this scenario because wear leveling issues may still
remain an important problem in the future for the persistent
RAM storage.

A. Experimental Setup

For experiments, we employ an on-line transaction processing
benchmark (TPC-C) [21] that has a sufficiently large number
of file update operations to exercise and wear individual stor-
age cells meaningfully. TPC-C is a representative benchmark
to evaluate the transaction processing performance of mod-
ern database systems. The benchmark first creates database
schemas that result in nine separate tables and then populates
each table having different cardinality according to the TPC-C
standard requisites. Once all the tables are prepared, the bench-
mark starts processing queries requested by a pre-determined
number of users. This simulates a typical on-line transaction
processing situation that involves multiple customers (e.g.,
Amazon e-market). For this study, we specifically make use
of an implementation by Llanos [22], which includes an open-
sourcePostgreSQL 8.1.4 as database engine.

During measurement we run a 2-hours test with a single
warehouse and 10 terminals. Also, we set the 20-minute
ramp-up period before starting the actual measurements and
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Fig. 3. TPC-C write access patterns for file data on persistent RAM storage.

do not perform hourly “vacuum” operations, which remove
performance-sensitive residual information from the database.
Table II summarizes our experimental environment.

TABLE II
EXPERIMENTAL PLATFORM.

Components Specification
CPU Intel Core Duo T2300
Core Clock Speed 1.66GHz
L2 Cache 2MB
Main Memory 1GB SDRAM
OS Linux Kernel 2.6.24.7 
File System Tmpfs 10GB capacity
Workload TPC-C two hour measurement

B. Main Results

File data update pattern. Fig. 3 and 4 depict the file data
and metadata update patterns observed during measurement.
Fig. 3(a) shows that TPC-C issues temporally dense file
write operations for updating database tables at around 4,000
second. We also observe from Fig. 3(b) that a large portion
of file write operations are for 4 KB size even if the most
common write request size was 8 KB, as shown from Fig. 3(c).
This is due to an artifact of the Linux kernel: It first cuts
up large file data into 4 KB pages and then performs page-
size writes. The largest write request from our TPC-C trace
was 57 KB, which was completed by 14 separate 4 KB write
operations (plus a smaller write).

The result also shows that there are many smaller writes than
a page size, which would typically incur a full block update
in a block device like HDD or SSD (see the first column in
Fig. 3(c)). Note that the result so far is for file data writes rather
than metadata update. As we will discuss shortly, metadata
update is frequently on relatively small data structures. For
example, theinode structure size of the popularext3 file
system is only 128 bytes.

From Fig. 3(a) and Fig. 3(d), we find that VMM allo-
cates a number of pages from the low-memory (following
the Linux jargon) below the 893 MB line, while there are
highly clustered accesses to pages allocated from the high-
memory around the 1 GB line to handle high page demanding
situations. Since we perform this experiment on a 32-bit
machine (see Table II), the Linux kernel is able to address a
maximum of 1 GB address space. Because the small number
of high-memory pages are repeatedly reused on every page
shortage situation, such references form a “spike” in the high-
memory region while other pages have a much smaller reuse
count of less than 10. Fig. 3(d) manifests the per-page reuse
pattern of the TPC-C benchmark.

Fig. 3(e) and Fig. 3(f) plot the inter-arrival time between
successive write requests. Notably, (near) zero inter-arrival
time is dominant and timing gaps are centered around at less
than 100 seconds. We found that (near) zero inter-arrival time
occurs frequently because: (1) our platform has dual out-of-
order processor cores and (2) the most common request size
is 8 KB (greater than the 4 KB page size), thereby creating
many 4 KB requests that are issued nearly simultaneously.
Meanwhile, write requests having an inter-arrival time of less
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Fig. 5. Hardware architecture usage pattern on file data update.

than 1 second have a bimodal distribution with peaks near the
ends of the 1 second span missing successive write requests
distant of nanosecond or microsecond. Storage designers may
make use of this characteristic to determine the size and depth
of request buffers on a storage controller.

File metadata update pattern.Fig. 4(a)–(c) show the access
pattern for metadata—inode’s i_atime field. Metadata
updates are particularly interesting to us because memory cells

storing metadata are prone to wear out faster than cells for
file data. While the file data are updated with explicit file
write operation, metadata are often updated with both file write
and read operation in order to keep the file information up-
to-date. For example, file reference count should be updated
whenever a process newly opens the file to read. Otherwise,
the OS may close the file prematurely when the reference
count is (wrongly) zero. Since the storage space to store



metadata is typically smaller than that to hold file data, the
number of pages touched for metadata updates is also small,
as shown in Fig. 4(a). However, when a storage designer has to
consider the wear leveling issue of storage cells, the number of
pages touched by metadata is likely to increase because pages
holding metadata may move around all pages within storage
device. This leaves designers a question of how the migration
of metadata pages should be done to achieve longer lifetime
of memory cells.

Hardware resource utilization. The spikes in Fig. 4(b) and
4(c) show that there are unbalanced page updates for metadata;
these pages must be handled carefully to keep them from
rapidly reaching the write endurance limit. To investigatethis
situation in detail, we repeated experiments after organizing
our persistent RAM storage in relatively small 1 GB capacity
consisting of four packages. Each package holds two dies,
each having 8 planes.

Fig. 5 presents the results, from which we make several
interesting observations. First, there are unbalances at different
levels. Fig. 5(a) shows that references are headed to different
packages in different amounts: Low-numbered packages re-
ceived more references. Furthermore, two dies in each package
are accessed differently in frequency. For example, die 1 of
package 3 is predominantly accessed, leaving its sibling die
0 far behind. Fig. 5(b) shows that there is additional unequal
access pattern within a single die. Especially, plane 1 in die
0 was updated rarely while all other planes show a relatively
balanced usage. Lastly, Fig. 5(c) plots the per-plane update
frequency across all packages and dies. We again find similarly
unbalanced usages. Quantifying all these unbalanced usageof
memory cells (in different planes) helps the user understand
how data must be interleaved and how wear leveling must be
done given a hardware organization.

Wear leveling effect. To manifest the potential write en-
durance problem of a persistent RAM storage more clearly,
we reorganize our hardware in this experiment and decrease
the single plane capacity to 2 MB (i.e., finer-grain interleaving
of data). Note that we keep the overall storage capacity
unchanged.

As a result, Fig. 6(a) displays the heavily skewed uses
of the available planes; lower-numbered planes are still used
much more frequently than higher-numbered ones. To elude
this undesirable situation, we apply a simple round-robin (RR)
wear leveling policy assuming a flexible data to plane mapping
capability. With RR, when a page’s update count reaches a pre-
defined threshold, a “clean” page frame with a small update
count is identified and the page is migrated to the selected
page frame. If no clean page frame is found, WES (explained
in Section III-B) globally increments the write limit by one
conservatively. Algorithm 1 lists in pseudo-code the above
sketched algorithm. This simple RR policy may not achieve
the best wear leveling performance, however, is selected to
highlight PRISM’s functionality. After applying the RR policy,
significantly more balanced plane usage is achieved, as shown
in Fig. 6(b).

Algorithm 1 Example write endurance management in WES
// initialize current threshold and counters (ucount)
current threshold← init val
for k = 1 to NUM PAGESdo

pagek :: ucount← 0
end for
// perform write endurance check
if pagei :: ucount> current thresholdthen

if there exists a page having ucount≤ current threshold
then

page j = getCleanPageID()
page j :: ucount++

else
pagei :: ucount← 1
current threshold+ = 1

end if
else

pagei :: ucount++
end if

C. PRISM Overheads

Lastly, we looked into how PRISM affects a program’s I/O
performance by running the IOzone benchmark [23] with
200 MB file write operations. We do not measure overheads
due to the back-end PSDSim because it can be easily offloaded
in real experiments.

Our measurement showed that file writes with full-tracing
PRISM have a modest slowdown of∼3.5× compared with
unmodified tmpfs. While our current implementation re-
mains room for improvement, this slowdown is acceptable for
experiments involving large workloads. When compared with
HDD, PRISM is an order of magnitude faster (∼11.5×), even
when sequential file write operations are performed (which is
favorable to HDD).

V. RELATED WORK

There have been considerable efforts to develop tools to ana-
lyze storage behaviors and perform architectural exploration.
In what follows, we will summarize most notable previously
developed tools that are closely related to our work in two
categories: kernel tracers and storage-architecture simulators.
Kernel tracers. One of the better-known tracers used today
in storage system studies isblktrace [25]. It keeps track of
I/O requests to a block device by recording the logical block
address, type, and size of each request. While this tool provides
detailed block I/O request information, it cannot trace storage
activities not going through the conventional block I/O layer
as in the case of a persistent RAM storage on the system’s
memory bus.Diskmon [26] is a similar utility for the NTFS
file system of the Windows OS.

Although it was not originally designed for storage system
tracing, pagemap [27] is another tracer to note. It traces
Linux’s virtual memory activities on a per-process basis, and
allows a user-space program to post-process the statisticsof
in-kernel memory usages. However, its tracing capability is
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Fig. 6. Wear leveling effect on metadata update.

limited only to physical frame number (PFN) mapped to
each virtual page, swap information, PFN-based page mapping
count, and a small set of page status such as page locking.
pagemap mandates users to trace only predefined limited
information rather than giving users freedom to determine
what information they can trace.

Desnoyers et al. developed a more generic framework for
Linux kernel tracing calledLTTng [28]. It features lightweight
kernel tracing and graphical data analysis utilities. The tool
targets to provide a general-purpose trace interface for a wide
user base. Unfortunately, we find the tool not immediately
usable for specific storage research tasks because it requires
heavy customization. PRISM is a more intuitive tool for
storage systems research.

Storage architecture simulators.DiskSim [29] simulates a
variety of HDD models and disk arrays, and has been in
widespread use. It is essentially an event-driven simulator
that models major architectural components in a disk system
having a block I/O interface like SCSI. DiskSim can be used
as a standalone simulator when traces have been prepared, or
can be used on-line in connection with a separate full-system
simulator. We note however that DiskSim was not originally
developed to study persistent RAM storage or SSDs, which
have quite different physical characteristics from rotating
HDD.

Thanks to the growing popularity and importance of SSDs,
there are a handful of SSD simulators developed recently.
Agrawal et al. [13] describes a SSD model that can be plugged
into DiskSim. It offers essential configurability to specify and
simulate a generic SSD model. Kim et al. [30] describes a
standalone SSD simulator called FlashSim. Their focus is to
explore various FTL schemes at a behavioral level assuming
the traditional block I/O interface. Lee et al. [31] reports
another relatively simple SSD simulator called CPS-SIM.
CPS-SIM tries to determine an optimal hardware organization
in terms of the number of buses and flash chips as well
as the interconnection. However, their work does not model
important I/O queuing effect or realistic workloads. DiskSim

and the above SSD simulators are fundamentally a block I/O
storage simulator and are not easily re-targeted to model a
main memory based persistent RAM storage.

Recently, Dong et al. [32] developed a simulator to study
PCM-based main memory and cache. Their main contribution
is to provide a system-level tool beyond the device-level
research of PCM by automating the process of finding an
optimal PCM array organization, much like CACTI [33].
While they evaluated the performance of main memory and
processor cache built with PCM, they didn’t deal with the
potential of a persistent RAM based storage; the simulator
deficits the ability to trace OS kernel activities and does not
model and evaluate wear leveling schemes.

In comparison with the above tools, PRISM features the
full functionalities necessary to study a persistent RAM stor-
age. It can generate byte-addressable storage trace using real
workloads and simulate a configurable persistent RAM storage
model. With fast trace collection and simulation speed and
convenient data collection and processing utilities, it enables
the user to study specific aspects of a storage system as well
as the impact of variations in the hardware organization.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we introduced PRISM, a novel infrastructure
to explore various design trade-offs of emerging persistent
RAM storage. While researchers are requested to evaluate
persistent RAM storages, there is no publicly available tool
that can run realistic workloads while exposing low, memory-
level behavior of the modeled storage. PRISM fills this gap.

PRISM is different from existing I/O tracers and storage
hardware simulators; existing tools focus primarily on block
I/O traffic and do not provide facilities to track low-level
activities in a storage system that is tightly coupled with the
system’s main memory. Moreover, PRISM incorporates both
front-end tracing and back-end simulation as well as data
post-processing utilities in a single integrated framework to
maximize its usability.

To demonstrate the usefulness of PRISM, we presented
a case study involving an OLTP workload with a goal to



enhance the write endurance of a persistent RAM storage.
Our experimental results show that PRISM offers excellent
observability and configurability during evaluating various
persistent RAM storage organizations.

As future work, we will continue to elaborate PRISM (e.g.,
timing [24]) and extensively explore the design space of
persistent RAM storage systems.
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