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ABSTRACT
This paper proposes Memorage, a novel system architecture
that synergistically manages persistent RAM (PRAM) main
memory and a PRAM storage device. Memorage leverages
the existing OS virtual memory manager to globally man-
age PRAM resources and to enhance the utilization of the
available PRAM resources. Preliminary experimental and
analytical evaluation suggests that Memorage can improve
the performance of memory-intensive workloads (by 4.6× on
average and up to 9.4× under the examined configuration).
It also increases PRAM utilization and significantly extends
the longetivity of the PRAM main memory (by 8×).

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Sys-
tem architectures; D.4.2 [Operating Systems]: Storage
Management—Allocation/deallocation strategies

General Terms
Design, performance, management

Keywords
Persistent RAM (PRAM) main memory, PRAM storage de-
vice (PSD), performance, write endurance

1. INTRODUCTION
Researchers are actively exploring the use of emerging per-
sistent RAM (PRAM) technologies such as phase change
memory (PCM) to provide a DRAM replacement [1–3] or
a fast storage medium [4]. However, most prior work em-
phasizes only one aspect of PRAM with regard to system
design—random accessibility (main memory) or persistency
(storage system)—and maintains the traditional main mem-
ory and storage dichotomy.

For best performance, a future platform may incorporate
a large capacity of PRAM to construct the main memory
and the system storage together, directly interfaced via the
main memory bus. We observe:

• There will be little characteristic distinction be-

tween main memory resource and storage resource.

Although the main memory and storage may employ differ-
ent PRAM technologies (e.g., single-level cell PCM for main
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memory and multi-level cell PCM for storage), there is no
significant gap in their characteristics like DRAM and HDD
in today’s systems.

• Reducing software latency becomes more criti-

cal. A 4kB data transfer between a PRAM storage device
(PSD) and main memory may be done in a sub-microsecond
range. It is of critical importance to re-architect the HDD-
optimized OS I/O stack to reflect this change.

• Storage density grows exponentially and a typical

user underutilizes the available storage capacity. The
whole capacity of a storage device is rarely filled up, leaving
some space unused during its lifetime. Agrawal et al. [5]
measured the file system fullness and quantified the annual
file system size growth rate to be only 14% on average over
a five-year period in a corporate environment. Provisioned
but unused storage capacity is, in a sense, a lost resource.

2. MEMORAGE
Memorage advocates federated management of all PRAM
resources to improve their utilization for performance and
lifetime reliability. The principles behind Memorage are:

1. Don’t swap, give more memory: Under high memory
pressure, VMM in a conventional system tries to swap out
some allocated pages to relieve the pressure. With Mem-
orage, main memory borrows memory capacity from PSD
dynamically, effectively eliminating many major page faults
which mandate to run the slow-path codes of fault handling.

2. Don’t pay for physical over-provisioning: PRAMs
with limited write endurance (like Flash and PCM) typically
require additional physical capacity that is “hidden” from
the user. With Memorage, PSD flexibly donates its free
pages to main memory to relax the write endurance problem,
achieving “logical” over-provisioning.

3. Don’t stop utilizing nearly dead memory capac-

ity: In Memorage main memory and storage have the same
building block. This implies that the non-volatility of main
memory can be utilized for maintaining the effective stor-
age capacity while keeping main memory fresh. When some
PRAM capacity reaches its write endurance limit, it is risky
to continue using the capacity. However, the data written to
the capacity before the endurance limit can still be retrieved.
Memorage can map read-only file data to such PRAM ca-
pacity, even if the capacity was originally within the main
memory boundary.

We have obtained preliminary results that highlight the
benefits of the principles. Figure 1 illustrates how the per-
formance of eight memory-intensive SPEC benchmark ap-
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Figure 1: Potential performance improvement with Memorage.
The baseline configuration is a conventional system (Intel Core i7
920 @2.66 GHz) with 2 GB memory backed by a 7,200-RPM
HDD. The evaluated Memorage configurations have 2 GB mem-
ory and borrow from PSD up to 2 GB more (hence exposing 4 GB
total) and 6 GB more (total 8 GB). The PSD capacity is 50 GB. All
benchmark programs were run simultaneously.

plications, when run together, is improved by Memorage. It
is clearly shown that Memorage’s capability to temporarily
grant more physical memory capacity (borrowed from PSD)
helps significantly improve the performance of most appli-
cations. Interestingly, leslie3d and lbm performed (slightly)
better with the smallest memory capacity; they have a rel-
atively small memory footprint and hog more CPU cycles
while other co-scheduled applications are blocked waiting
for memory allocation.

Next, we develop a simple analytical framework to reveal
the advantage of Memorage in terms of the main memory
lifetime. We incorporate memory capacity (Cm), storage
capacity (Cs), memory write bandwidth (Bm), and storage
write bandwidth (Bs) as input to our model. The two key
parameters (or knobs) are: α = Cs/Cm (capacity ratio of
storage to memory) and β = Bm/Bs (bandwidth ratio). We
obtain the lifetime with Memorage (Lnew) relative to the
main memory lifetime without Memorage (Lm):

Lnew = Lm ·

(1 + α) · β

(1 + β)
(1)

In the above Lm = E · Cm/Bm where E is the write en-
durance limit. Based on the formulation, Figure 2 illustrates
how the lifetime of PRAM main memory can be improved
with Memorage. It is shown that even if the storage band-
width is very high and matches the memory bandwidth, the
lifetime of main memory is increased by 8× and 16× when
α is 15 and 30, respectively.

Finally, the overall PRAM resource utilization (Upram) is
defined as follows:

Upram =
Utilized

Installed
(2)

where Utilized and Installed express the amount of utilized
PRAM capacity and the total capacity of PRAM installed
in the system.

According to Equation (2) and based on the machine con-
figuration of Figure 1 and a conservative assumption of 50%
disk fullness, the PRAM utilization of a conventional system
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Figure 2: Main memory lifetime improvement (Y axis)
with Memorage. Two curves with a different α value rep-
resent two different memory-storage capacity configurations
(e.g., 16 GB main memory, 240 GB PSD vs. 480 GB PSD).

is 51.9% (= (2 GB + 25 GB)/(2 GB + 50 GB)), since the
installed main memory is fully utilized under memory short-
age but only half of the PSD resource in the system is used.
Meanwhile, the PRAM utilization of a Memorage system
will be 63.5% (= (2 GB+25 GB+6 GB)/(2 GB+50 GB)),
showing an increase of 11.6% point. Notice that this de-
gree of resource utilization improvement will be higher if we
have more available PRAM resources to donate in PSD—a
likely situation at early periods of storage lifetime and with
a higher capacity PSD that exploits advanced PRAM tech-
nologies in the future.

3. FUTURE DIRECTIONS
This work proposed Memorage, a novel system architec-
ture that synergistically co-manages the main memory and
the storage resources comprised of PRAM. As a next step,
we will investigate design and implementation issues that
arise when realizing the Memorage philosophy in a real sys-
tem. We plan to explore feasible strategies to implement the
Memorage architecture in a commodity Linux kernel and
evaluate the prototype system in terms of relevant metrics
including the system-level performance, resource utilization,
lifetime, and energy consumption. In addition, we plan to
provide a set of interfaces that allow applications or sys-
tem software programmers to explicitly control the PRAM
resources in a Memorage system.
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