A Characterization Study on Memory Value Reuse

Lei Jin and Sangyeun Cho
Department of Computer Science
University of Pittsburgh
{iinlei,choj@s.pitt.edu

_ Abstract— This paper presents a comprehensive charactenz_a— Id byte @0x100 Id byte @0x100 // macro @0x100
tion study on the exploitable memory value reuse present in

programs. We compare three reuse schemestore value reuse, no overlapping, macro data loaded,
loaded value reuse, and macro data reuse [12], [13]. Macro data no reuse loaded value reused
reuse, enabled by macro data loads, capitalizes on underilized Id byte @0x102 Id byte @0x102

cache port bandwidth and makes use of the spatial locality fand

in port-wide macro data. Using a generalizedmemory value reuse (a)

table (MVRT) model, we present the results of (1) per program

reuse analysis, (2) per data size analysis, (3) per region alysis, d word @0x100 Id word @0x100 // macro @0x100
(4) per MVRT size analysis, and (4) estimating the impact of A different type, macro data loaded,

and machine widths. The macro data load mechanism is shown to I no reuse ’ I loaded value reused
open up significantly more loaded value reuse instances coraped Id byte @0x102 Id byte @0x102

with previous loaded value reuse proposals: over 75% (SPE®&2

integer), 23% (SPEC2k floating-point), and 139% (MiBench) (b)

more load-to-load forwarding opportunities using a 64-enty

MVRT. We also perform a quantitative study using a realistic Fig. 1. Two examples where the macro data load mechanismidesv
processor model and show that over 35% of L1 cache accesses iradditional memory value reuse opportunities. (a) Two bygels target nearby
the SPEC2k integer and MiBench programs can be eliminated, data but are not related (left). With macro data loads, hewehe first load

resulting in a related energy reduction of 27% and 31% on brings in a macro data inclusive of the second data (righy) A(word load
average, respectively. targets a data inclusive of the data needed by the secondHogthis case is

not considered previously (left). With macro data loads @ase is subsumed

|. INTRODUCTION into the previous case (right).

Microprocessor performance is critically dependent on thihile saving the macro data in a separate data storage. The
timely delivery of data from memory. To fill the wideningsaved macro data can be retrieved by a later load targeting th
speed gap between a microprocessor and slow main memd#yole data or a smaller portion of it. Two motivating exansple
increasingly deep cache memory hierarchy has been usesl®wing the additional opportunities provided by macraadat
virtually all high-performance microprocessors [10]. Allwe loads are illustrated in Fig. 1. Most previous works focused
designed memory hierarchy based on caches provides a viéwsing the exact data described by its address and size [18]
of fast and large main memory to a processor. [16].

Just as caches filter memory accesses so that main memorjo quantify the maximum available memory value reuse, we
sees much less traffic, memory references can be filteratkingberform a comprehensive limit study using a genenemory
a processor, reducing L1 cache traffic. Cache read traffibeanvalue reuse tabléMVRT) model. Our study with an aggres-
tackled with various store-to-load and load-to-load fomilag  sive 256-entry MVRT shows that macro data loads can expose
techniques [18], [16] and write traffic can be suppressed B$% (SPEC2k integer), 10% (SPEC2k floating point), and
squashing redundant stores [15], [18]. 57% (MiBench) more load-to-load forwarding opportunities

In this work, we present a comprehensive characterizatioompared to a conventional loaded value reuse technigue.
study on the memory value reuse exploitable by three memasjith a more realizable 64-entry MVRT, macro data loads
value reuse schemestore value reuseloaded value reuse provide over 75% and 139% more load-to-load opportunities
and macro data reuseMacro data reuse is based amcro for SPEC2k integer and MiBench programs, respectively, and
data load which brings in full port-wide data whenever cach@ver 23% more for SPEC2k floating-point programs. We also
is accessed and keeps the macro data within processor. Hasform a quantitative study using a realistic processodeho
makes it possible that future loads that reference the geadnd corroborate our characterization study results.
addresses could reuse timacro databy exploiting the spatial  The rest of this paper is organized as follows. In Section II,
locality [12], [13]. For example, a byte load would trigger aye give a comprehensive limit study on how many reuse
64-bit macro data transfer in a 64-bit process®he processor gpportunities are detected by different schemes. Section |
then provides the necessary data portion to the load in&njc then discusses some implementation issues and presents a

— . . . guantitative evaluation of the memory reuse schemes. &klat

This does not necessarily incur a change in cache designpiéatyhigh- . . .
performance cache provides a full port wide value on loads, (3]) and the works are summarized and contrasted with our work in Sec-
processor selects the necessary portion using its intdetalalignment logic. tion IV. Lastly, conclusions will be drawn in Section V.



B. Results

Memory Value
Reuse Table

1) Maximum memory value reusén this subsection, we
look at the maximum reuse offered by different memory value
reuse techniques using a 256-entry M\fRWore specifically,
Cache we study how many loads find their reuse value from (1)
previous stores only, (2) previous stores and loads without
©) macro data loads, and (3) previous stores and loads withanacr
ProceSSI(;)de data loads. Fig. 3 shows the result. |

Core The result shows that on average 70% or more loads find

their values within MVRT. Roughly, 20-25% of loads get a
reuse value from stores and 30—40% of loads from previous
Fig. 2. A processor model with MVRT. Data paths related withded value |loads without macro data loads. Macro data loads consigtent

reuse are highlighted. (a) Load data path from cache. (bl lda#a path from ;
MVRT. (¢) MVRT update data path from a prior load. (d) MVRT el data boost the number of loads that reuse a previously loaded
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path from a store. data value. 13.6% (CINT) and 20.1% (MiB) more loads reuse
memory values. In CFP programs the conventional load-to-

Il. VALUE REUSE INMEMORY ACCESSES load forwarding performs well and allows nearly 44% of

loads to find their data in the 256-entry MVRT. Macro data

A. Evaluation model loads provide a small benefit of only 4.3% additional loads.

Considering only load-to-load value reuse, macro datadoad

To analyze the degree of data reuse among memory instrpoevide 42.3% (CINT), 9.8% (CFP), and 57.2% (MiB) more
tions, we constructed a 64-bit machine model witlemory reuse opportunities, compared to a conventional loadad-|
value reuse tabléMVRT), a conceptual modified Load/Storeforwarding technique.
Queue that tracks the address, the value, and the type of meniFhere are several programs showing interesting value reuse
ory instructions. Allocation of a new entry and replacemeant behaviors. Invupwise, almost all loads reuse previous mem-
an old entry is done in a FIFO fashion. MVRT is parameterizaaty values. This is due to data promotion between MVRT
and can have a varied number of entries. Fig. 2 depicts thetries. For the studied program phasewuopwise, stores
processor model. generate values used by later loads and the values arerfurthe

The memory value reuse algorithm works as follows. WheRassed to even later loads continuously. This behavios last
ever a new memory instruction is executed, it is recordder the entire span of the examined program phase. In fact,
in MVRT. If it is a store, all the MVRT entries with a With only 16 entries in MVRT, over 75% of all loads find
previous memory instruction that overlaps in the addreasesp their values in MVRT, suggesting that the reuse distance in
with the store address are invalidated. If the new instomcti Wupwise is very shortgsm.e showed a similar behavior.
is a load, MVRT is searched to find a valid entry with a Many loads inmgrid find their values from previous loads,
matching address, in which case, the load becomes redund#titnot from previous stores. This suggests that newly gener
since the valid data can be provided from a previous memaied store values are seldom used by the following loads at
instruction (either store or load). Once MVRT provides aseal least within the next 256 memory instructions.
for reuse, it can be saved back into the newest MVRT entryIn tiff2rgba memory reuse was exposed only when macro
corresponding to the current load, in the hope that the valdsta loads came into play. It shows a long scanning access
can be further reused. We call this operatitata promotion pattern over short data items. Since these items are loaded
If there is no matching entry found in MVRT, then cache i§nce, a conventional load-to-load forwarding scheme does
accessed to fetch port wide data block to a newly allocate@t find any reuse opportunities, nor does a store-to-load
MVRT entry. MVRT supports memory value reuse analysi®rwarding technique. With macro data loads, however, each
both with and without the macro data load mechanism. loaded macro data can potentially provide a portion of the

We note that the MVRT size roughly accounts for the siZ8@cro data bIocI_< to short loads accesses muIFipIe times.
and complexity of a hardware mechanism to implement a2) Per data size reuse analysiBefore looking at how
memory value reuse technique. The impact of the MVRT si3@ads of different sizes exploit memory value reuse, it istivo
on memory value reuse will be discussed in Section 11-B.4While to consider the dynamic mix of load sizes, presented in

For all experiments, we use a set of SPEC2k integgig' 4 , .
programs (dubbed “CINT” hereafter), SPEC2k floating-point It is shown that progra_ms_shov_v va}stly dlfferent_mlxes. In
programs (“CFP") [23], and MiBench programs (“MiB") [9]. CINT programs, the dominating size is word (32 bits). In FP

After skipping the initialization phase [21], we profile and’'°9"@ms, wolrd agd C:Olflblle \(/jvord accesses are pLonounced,
collect analysis data from two billion instructions or untie cOVering nearly 98% of all loads. In MiB programs, however,

end of execution if it comes first. Programs were compiled, . .
We chose a large MVRT size to study a “maximum” degree of re¢hat

with gcc 2.7.2 targeting PISA [4] at the®3 optimization different schemes can offer without first confining our d&sians to a specific
level. configuration.
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Fig. 3. Percentage of loads reusing memory values. Two sagm®m bottom stand for loads finding their values from petores (“S2L" — store-to-load)
and additionally from prior loads without macro data loati2[" — load-to-load). Each top segment shows the extra opymities offered by macro data
loads (“ML"). The MVRT size is 256.

there are significantly more byte and half-word loads than thies: the number of covered loads increases almost linearly
CINT and CFP programs. In general, the mix of different sizas we keep doubling the MVRT size, although the slope
loads is largely dependent on the algorithm, how data strugradually dwindles after 64 entries in CINT and CFP. This
tures are designed accordingly, the programming practibes trend is projected to be sustained even further if we ineeas
compiler, and the instruction set architecture (ISA). the MVRT size beyond 256 entries [5], as MVRT with a

Given this, Fig. 5 presents the decomposition of memoBRIFO replacement policy begins to simulate a regular data
value sources per data size, showing that small data typeache with an LRU policy [10]. This suggests that there is a
such as byte and half, benefit more from macro data loadsge amount of exploitable memory value reuse opporesiti
than other types across all the examined benchmarks. T{ageady 70% with 256 entries but possibly more beyond this
is due to the exploitable spatial locality provided by esarli point), although we will have to employ a large expensive
macro data loads. hardware to bookkeep many memory values to exploit all the

Word loads find their values from a previous store mormpportunities, if not impossible.
frequently than byte and half word loads. This is becauseSecond, macro data loads expose significantly more oppor-
stack references fall into this category in the studied 1S#¢ tunities for load-to-load forwarding in all the studied MVR
Section 1I-B.3. Although double word loads can benefit fromonfigurations, especially when MVRT is small. With a 32-
our scheme by reusing the values loaded by previous smabetry MVRT, for example, there are 105% (CINT), 46%
loads, we seldom find such occasions in the studied prograf@®=P), and 188% (MiB) more loaded value reuse with macro
Interestingly, double word loads in the INT and MiB programdata loads. This suggests that the reuse distance becomes
find their values very often from an earlier store. significantly smaller in the presence of macro data loadgaEx

3) Per region reuse analysidn this subsection we review data we bring and keep in MVRT using freely available cache
the memory reuse behavior of loads targeting data in differgport bandwidth are well subscribed to.
regions, see Fig. 6. First of all, loads targeting the stagjion Third, as a result of our second observation, the area-
frequently find their values from previous stores - as often affectiveness of MVRT, from the viewpoint of memory value
70% or more in CINT. Stack pushes and pops often formuse, is substantially improved. In the case of CINT and MiB
a producer-consumer relationship that is well detected atie total achievable degree of reuse with a 32-entry MVRT
exploited by a store-to-load forwarding scheme [6]. with macro data loads is comparable to that with a 256-entry

CINT and MiB programs have more loads going to the hedgVRT without macro data loads. This suggests that the macro
region than other regions and CFP programs have more loads$a load mechanism can provide critical implementation ad
going to the data region than other regions; This is respndeantages over previous techniques, especially when haedwa
in the all-load average bar. Except in the stack region,ddadbudget is limited and thus any optimization strategy shdad
value reuse is more pronounced than store value reuse. carefully justified.

4) Sensitivity to MVRT sizeWe changed the MVRT size 5) Impact of ISA:In this subsection we consider several
from 16 to 256 and repeated our experiments. Results améeresting aspects of memory data reuse associated with IS
presented in Fig. 7 and several observations are made. The PISA used in this work is a 64-bit ISA supporting 32-

First, a larger MVRT captures more value reuse opporturiit address space. Stack references are done in word size.
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Fig. 4. Mix of loads targeting different-size data.
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Fig. 5. Percentage of loads reusing memory values per tyyte: (B"),
half word (“H” — 16 bits), word (“W” — 32 bits), and double wordDW" —
64 bits). The rightmost bars (“A”) are for all loads. The MVRize is 256.
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Fig. 6. Percentage of loads reusing memory values per redata (“D”),
heap (“H"), and stack (“S”). “A” is for all loads. The MVRT sizis 256.

Double word type loads are generated when programs have
| ong | ong or doubl e type variables. On the other hand,
binaries compiled for the Alpha architecture, for instgnei
generate more 64-bit memory accesses to handle pointers, du
to its 64-bit address space. Alpha binaries have consitjerab
more double word loads than PISA. Our first-order experience
with the Alpha ISA shows however that macro data loads
still uncover 23% and 38% more opportunities for load-to-
load forwarding in a set of SPEC2k integer and floating-point
programs, respectively, when MVRT has 128 entries [12].

It is worthwhile to consider the following two questions) (1
“how much gain can we get from macro data loads on a 32-
bit machine?” and (2) “how much gain can we get when we
run 32-bit applications on a 64-bit machine?” To answerdhes
guestions, we projected load type mixes (byte, half, andijvor
of 32-bit binaries using the result in Fig. 4. We further assd
that one double word access becomes two word accesses. Then
we apply the results in Fig. 5 based on a simple assumption
that the degree of reuse per type does not change and fetching
a double word using two word accesses leads to the second
access covered by a previous macro data load on a 64-bit
machine.

Fig. 8 provides our projections to address the above two
guestions. It is shown that on a 32-bit machine, macro data
loads uncover very limited additional load-to-load fordiag
opportunities for the CFP programs as they have few byte and
half loads. On the other hand, the CINT and MiB programs
still benefit considerably as they have many loads accessing
small size data.

When we run 32-bit binaries on a 64-bit machine, macro
data loads offer significantly more opportunities for Icad-
load forwarding. Even CFP programs crop over 38% more
load-to-load opportunities. The CINT and MiB programs
have a small number of double word loads (0.3%) and thus
their behavior is virtually same as what we observe in the
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Fig. 7. Memory value reuse with varying MVRT sizes. 16 emsti{£28 bytes)

to 256 entries (2k bytes) are considered.

PISA results. The findings in this subsection are partityila
encouraging for us since many 32-bit legacy applicatioes
running on 64-bit platforms today [11], [26].

6) Impact of false sharing:Macro data loads can give
rise to previously nonexistent dependencies between lmads
stores. Consider the following memory access sequence:

Id.wrl, @x10001000
st.w @x10001004, r2
ld.wr3, @x10001000
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Fig. 8. Projected maximum reuse when running 32-bit bisace a 32-bit
machine (“32") or a 64-bit machine (“64").

load to use the value loaded by the first load.When the macro
data load mechanism comes into play, however, the datadoade
by the first load becomes a double word and will be killed
by the store since they share data (unless there is a patrtial
data invalidation mechanism, which we do not consider ia thi
paper). We examined our benchmarks and found that there
are three programs bzip2, gsm.e, and gsm.d — that lose
some load-to-load forwarding opportunities due to thisdal
sharing when MVRT has 256 entries. Interestingly, the lost
opportunities were mostly for word data and these programs
still benefited from macro data loads thanks to other loads
targeting smaller data. Moreover, the impact of false data
sharing disappears quickly as we reduce the size of MVRT
to 128 and fewer.

Another interesting data sharing pattern is that largeestor
data can be targeted by smaller loadsgém.d, for example,
there are byte loads bringing data written by previous word
stores.Programming practices leading to such occasiensoar
prevalent, however, and we do not find many such instances in
the studied programs. It is noted that recent processogsosup
the store-to-load forwarding of thimisaligneddata [24], [2].

I1l. QUANTITATIVE EVALUATION

A. Microarchitectural change

In this subsection, we briefly discuss two major aspects of
a microarchitecture that supports memory value redsga

;Storageto keep memory values aradidress matchintp detect
Jeuse opportunities. For more details, readers are reffeore

our previous work [13]. We use thead store queudLSQ)
commonly found in modern superscalar processors [25], [8],
[14], [24], [2] to implement memory reuse schemes, targgetin
both store and loaded values [16], [12]. To further support
macro data loads, we provide a datapath from cache ports to
LSQ so that data as seen at a cache port is stored intact in a
LSQ entry.

The data storage in LSQ, typically used only for storing
store values, is used to hold a loaded macro data. The address

In a conventional load store processing mechanism, the sttag portion is often implemented with an associative memory
does not interfere with the other two loads, allowing theoselc logic such ascontent addressable memo(ZAM), and is
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Branch pred. Combined, 2k-entry BTS similar to recent high pgrforma_nce processors [8], [14}1,].[2
I-cache 32KB, 2-way, 64B line, 2-cycle latency The data reuse latency in LSQ is set to one cycle. Section II-A
D-cache 32kB, 2-way, 64B line, 2-cycle latency, 2 ports describes the setup for our benchmarks.

L2 cache 2MB, 4-way, 128B line, 10-cycle latency
Mem. latency 120 cycles .
RUUILSQO 128 and 64 entries D. Evaluation results
Fig. 9. Summary of the simulated machine model. 1) L1 cache traffic: Fig. 10 shows the result, which con-

extended to detect a previous load as well as a previofi@qs the obser_vat!ons made in Section II. W't,h only sFore-
store for forwarding opportunities. To detect a load-tado to-load forwarding ie., BASE-T), the cache traffic reduction

forwarding instance, however, LSQ should performaatial- S limited: 10% (CFP) or less (CINT and MiB). Only two

match searchingsince the source macro data can be largBFo9rams among all the studied programs, narpelser and

than and inclusive of the dependent load, potentially legdi WUPWiS€, show a traffic reduction of 20% or more. With
to non-identical addresses in several LSB positions. both store-to-load and load-to-load forwarding enhancigd w

When a macro data item in LSQ is accessed, it should cro_datg loads.€é., OPT-T), however, there is a significant
through thedata alignment logicso that only the necessary'cduction in cache accesses, 35% (CINT), 33% (CFP), and

portion of it is extracted and aligned before being launated 38% (MIB). If we consider load traffic only, the re(_juctions
result buses. A conventional processor implements thig |O%;)rrespond to 49% ,(CINT)’ 44% (CFP), and 55% (MiB). Four
at the cache port boundary so that thereafter the actuat va ograms, namelbzllpZ, mgrl_d, Jpeg-€, andgsm.d, had over

as viewed by the running program will be circulated. In OLﬁO% of cache traffic reduction. With store-to-load and load-
LSQ design, this logic is placed after the LSQ read ports Bq—load for\_/varding/yithoutmacro data loads (not shown), the
duplicated for LSQ to handle data from LSQ as well as cach(é"j.“_:he trafflc_ reduction was 27% (CINT), 30% (CFP), and 23%
Effectively, the macro data from LSQ and cache are treated ]{'B). cons_lder_ably "?WGr t_han_ that of OP_T'T; We d‘? not
the same manner. This arrangement does not affect the time her detail this conﬁguraFlon in the follow_lng d|sc.u$!35.

of data arrival from cache, but may do so for data from LSQ. Although the results are in accordance with our limit study
Since the necessary selection bits (derived from the tag) biteSults presented in Fig. 3 and Fig. 7, the actual traffic
are available ahead of the data, fortunately, fast datarkmt reduction is less thgn the maximum potential due to three
logic can be constructed. Recent processors support sim{BEtors: (1) speculative memory references frequentlyipge

data selection function to deal with misaligned data in Ls@ailable LSQ entries and cause pipeline flushing, therely n
efficiently [24], [2]. allowing memory value reuse between distant referencés; (2

In summary, we can turn a conventional LSQ design intoSpeculative Ioad_s execute and generate cache traﬁi_c; gnd (3
small, level-0 cache within the processor core with retdgiy Memory reordering can result in later loads accessing cache
small overheads. It is fully-associative, has a port-wite | Prior to early loads, losing the reuse opportunities.
size, and supports a FIFO allocation and replacement policy2) Energy consumption:We used the CACTI 100nm
Implementing this highly effective LO cache requires only B10del [22] to consider the energy consumption related with

small change in a typical LSQ and memory pipeline desigrPoth LSQ and cache. As the proposed reuse scheme increases
LSQ activities €.9, loads update the data array in LSQ), it

B. Studied memory pipeline configurations is important to consider not only cache but also LSQ when

We study four different configurations: BASE-P, BASE£valuating the related energy consumption of different wrgm

T, OPT-T, and OPT-P. The BASE configurations resembfguse schemes. The modified LSQ we modeled is effectively
conventional processors and perform store-to-load fatingr @ fully associative cache. We expect the CACTI could give an
The OPT configurations allow both store-to-load and loa@PpProximate evaluation of LSQ’s power consumption. Fig. 11
to-load forwarding with macro data loads. The “T” configshows the result.

urations optimize forcache trafficand do not access cache As can be expected, the “T” configurations achieve less
until it is known that LSQ does not have a reuse value f@nergy consumption compared with the corresponding “P”
forwarding. This is implemented by inserting a pipelinegsta configurations. OPT-P consumes more energy than BASE-P
to look up LSQ for possible matching before cache acce@de to anincrease in LSQ energy. Comparing OPT-T to BASE-
can commence. The “P” configurations focus pmcessor P, up to 31% of energy reduction (MiB) is observed. Roughly
performanceinitiating cache access and LSQ reuse look up #7% of energy reduction is achived for CINT and CFP. Energy
the same clock cycle. Most commercial processors implemégguction due to BASE-T is limited (less than 10%) because

a form of BASE-P [8], [14], [24], [2]. its cache traffic reduction is limited.
) 3) Performance impactWhen the latency of memory value
C. Experimental setup reuse is shorter than the cache access latency, increase in t

We perform experiments using a detailed execution-drivemumber of loads finding their values from LSQ can lead to
simulator derived from sim-outorder in the SimpleScalan toimproved performance. Our simulation configuration cagdur
set [4]. We model a modest 4-issue processor whose importdns case by setting the reuse latency to be one cycle and the
parameters are summarized in Fig. 9. The LSQ size is set to 64¢che access latency to be two cycles.
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The BASE-T and OPT-T configurations show lower per-
formance than the BASE-P and OPT-P configurations, re .,
spectively. Since the OPT configurations achieve far more¢ o, |
memory value reuse, their performance (OPT-T and OPT g, |
P) is better than that of the BASE-T and BASE-P config- g, |
urations. OPT-P achieves a small performance improvemel ., |
over BASE-P; There were three programs with a noticeablt ¢, |
performance improvement of 3% or moigzip (4.4%), gap 50% |
(4.4%), andbzip2 (3.0%). It is further shown that the traffic- o, |
optimized OPT-T configuration is performance-competitive gy, |
with the performance-optimized BASE-P configuration since ., |
(1) many loads find their values from LSQ; and (2) the .y, |
increased latency seen by the remaining loads is well tigldra
by the out-of-order processor model.

Overall, the positive performance impadte( OPT-P vs.
BASE-.P) .Was not as pronounced as_ the ”‘f"ﬁ'c and e”erﬂg. 11. Energy consumption of LSQ and cache, relative to BARSEach
reduction {.e., OPT-T vs. BASE-P). An interesting aspect hergar is stacked and divided into two parts, cache access ye(emper bars)
is that extensive memory value reuse enabled by macro dard energy spent in LSQ (lower bars).
loads makes the processor performance less sensitive to the
cache latency. Increasing the cache latency to 3 cyclefedsu
in 4.2% (CINT), 0.9% (CFP), and 1.1% (MiB) performance
degradation for BASE-P, but only 2.2%, 0.6%, and 0.4% for s
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