
A Characterization Study on Memory Value Reuse
Lei Jin and Sangyeun Cho

Department of Computer Science
University of Pittsburghfjinlei,chog@cs.pitt.edu

Abstract— This paper presents a comprehensive characteriza-
tion study on the exploitable memory value reuse present in
programs. We compare three reuse schemes:store value reuse,
loaded value reuse, and macro data reuse [12], [13]. Macro data
reuse, enabled by macro data loads, capitalizes on under-utilized
cache port bandwidth and makes use of the spatial locality found
in port-wide macro data. Using a generalizedmemory value reuse
table (MVRT) model, we present the results of (1) per program
reuse analysis, (2) per data size analysis, (3) per region analysis,
(4) per MVRT size analysis, and (4) estimating the impact of ISA
and machine widths. The macro data load mechanism is shown to
open up significantly more loaded value reuse instances compared
with previous loaded value reuse proposals: over 75% (SPEC2k
integer), 23% (SPEC2k floating-point), and 139% (MiBench)
more load-to-load forwarding opportunities using a 64-entry
MVRT. We also perform a quantitative study using a realistic
processor model and show that over 35% of L1 cache accesses in
the SPEC2k integer and MiBench programs can be eliminated,
resulting in a related energy reduction of 27% and 31% on
average, respectively.

I. I NTRODUCTION

Microprocessor performance is critically dependent on the
timely delivery of data from memory. To fill the widening
speed gap between a microprocessor and slow main memory,
increasingly deep cache memory hierarchy has been used in
virtually all high-performance microprocessors [10]. A well-
designed memory hierarchy based on caches provides a view
of fast and large main memory to a processor.

Just as caches filter memory accesses so that main memory
sees much less traffic, memory references can be filtered inside
a processor, reducing L1 cache traffic. Cache read traffic canbe
tackled with various store-to-load and load-to-load forwarding
techniques [18], [16] and write traffic can be suppressed by
squashing redundant stores [15], [18].

In this work, we present a comprehensive characterization
study on the memory value reuse exploitable by three memory
value reuse schemes:store value reuse, loaded value reuse,
and macro data reuse. Macro data reuse is based onmacro
data load, which brings in full port-wide data whenever cache
is accessed and keeps the macro data within processor. This
makes it possible that future loads that reference the nearby
addresses could reuse themacro databy exploiting the spatial
locality [12], [13]. For example, a byte load would trigger a
64-bit macro data transfer in a 64-bit processor1. The processor
then provides the necessary data portion to the load instruction,

1This does not necessarily incur a change in cache design. A typical high-
performance cache provides a full port wide value on loads (e.g., [3]) and the
processor selects the necessary portion using its internaldata alignment logic.

Fig. 1. Two examples where the macro data load mechanism provides
additional memory value reuse opportunities. (a) Two byte loads target nearby
data but are not related (left). With macro data loads, however, the first load
brings in a macro data inclusive of the second data (right). (b) A word load
targets a data inclusive of the data needed by the second load, but this case is
not considered previously (left). With macro data loads, this case is subsumed
into the previous case (right).

while saving the macro data in a separate data storage. The
saved macro data can be retrieved by a later load targeting the
whole data or a smaller portion of it. Two motivating examples
showing the additional opportunities provided by macro data
loads are illustrated in Fig. 1. Most previous works focusedon
reusing the exact data described by its address and size [18],
[16].

To quantify the maximum available memory value reuse, we
perform a comprehensive limit study using a genericmemory
value reuse table(MVRT) model. Our study with an aggres-
sive 256-entry MVRT shows that macro data loads can expose
45% (SPEC2k integer), 10% (SPEC2k floating point), and
57% (MiBench) more load-to-load forwarding opportunities,
compared to a conventional loaded value reuse technique.
With a more realizable 64-entry MVRT, macro data loads
provide over 75% and 139% more load-to-load opportunities
for SPEC2k integer and MiBench programs, respectively, and
over 23% more for SPEC2k floating-point programs. We also
perform a quantitative study using a realistic processor model
and corroborate our characterization study results.

The rest of this paper is organized as follows. In Section II,
we give a comprehensive limit study on how many reuse
opportunities are detected by different schemes. Section III
then discusses some implementation issues and presents a
quantitative evaluation of the memory reuse schemes. Related
works are summarized and contrasted with our work in Sec-
tion IV. Lastly, conclusions will be drawn in Section V.



Fig. 2. A processor model with MVRT. Data paths related with loaded value
reuse are highlighted. (a) Load data path from cache. (b) Load data path from
MVRT. (c) MVRT update data path from a prior load. (d) MVRT update data
path from a store.

II. VALUE REUSE IN MEMORY ACCESSES

A. Evaluation model

To analyze the degree of data reuse among memory instruc-
tions, we constructed a 64-bit machine model withmemory
value reuse table(MVRT), a conceptual modified Load/Store
Queue that tracks the address, the value, and the type of mem-
ory instructions. Allocation of a new entry and replacementof
an old entry is done in a FIFO fashion. MVRT is parameterized
and can have a varied number of entries. Fig. 2 depicts the
processor model.

The memory value reuse algorithm works as follows. When-
ever a new memory instruction is executed, it is recorded
in MVRT. If it is a store, all the MVRT entries with a
previous memory instruction that overlaps in the address space
with the store address are invalidated. If the new instruction
is a load, MVRT is searched to find a valid entry with a
matching address, in which case, the load becomes redundant
since the valid data can be provided from a previous memory
instruction (either store or load). Once MVRT provides a value
for reuse, it can be saved back into the newest MVRT entry
corresponding to the current load, in the hope that the value
can be further reused. We call this operationdata promotion.
If there is no matching entry found in MVRT, then cache is
accessed to fetch port wide data block to a newly allocated
MVRT entry. MVRT supports memory value reuse analysis
both with and without the macro data load mechanism.

We note that the MVRT size roughly accounts for the size
and complexity of a hardware mechanism to implement a
memory value reuse technique. The impact of the MVRT size
on memory value reuse will be discussed in Section II-B.4.

For all experiments, we use a set of SPEC2k integer
programs (dubbed “CINT” hereafter), SPEC2k floating-point
programs (“CFP”) [23], and MiBench programs (“MiB”) [9].
After skipping the initialization phase [21], we profile and
collect analysis data from two billion instructions or until the
end of execution if it comes first. Programs were compiled
with gcc 2.7.2 targeting PISA [4] at the-O3 optimization
level.

B. Results

1) Maximum memory value reuse:In this subsection, we
look at the maximum reuse offered by different memory value
reuse techniques using a 256-entry MVRT2. More specifically,
we study how many loads find their reuse value from (1)
previous stores only, (2) previous stores and loads without
macro data loads, and (3) previous stores and loads with macro
data loads. Fig. 3 shows the result.

The result shows that on average 70% or more loads find
their values within MVRT. Roughly, 20–25% of loads get a
reuse value from stores and 30–40% of loads from previous
loads without macro data loads. Macro data loads consistently
boost the number of loads that reuse a previously loaded
data value. 13.6% (CINT) and 20.1% (MiB) more loads reuse
memory values. In CFP programs the conventional load-to-
load forwarding performs well and allows nearly 44% of
loads to find their data in the 256-entry MVRT. Macro data
loads provide a small benefit of only 4.3% additional loads.
Considering only load-to-load value reuse, macro data loads
provide 42.3% (CINT), 9.8% (CFP), and 57.2% (MiB) more
reuse opportunities, compared to a conventional load-to-load
forwarding technique.

There are several programs showing interesting value reuse
behaviors. Inwupwise, almost all loads reuse previous mem-
ory values. This is due to data promotion between MVRT
entries. For the studied program phase inwupwise, stores
generate values used by later loads and the values are further
passed to even later loads continuously. This behavior lasts
for the entire span of the examined program phase. In fact,
with only 16 entries in MVRT, over 75% of all loads find
their values in MVRT, suggesting that the reuse distance in
wupwise is very short.gsm.e showed a similar behavior.

Many loads inmgrid find their values from previous loads,
but not from previous stores. This suggests that newly gener-
ated store values are seldom used by the following loads at
least within the next 256 memory instructions.

In tiff2rgba memory reuse was exposed only when macro
data loads came into play. It shows a long scanning access
pattern over short data items. Since these items are loaded
once, a conventional load-to-load forwarding scheme does
not find any reuse opportunities, nor does a store-to-load
forwarding technique. With macro data loads, however, each
loaded macro data can potentially provide a portion of the
macro data block to short loads accesses multiple times.

2) Per data size reuse analysis:Before looking at how
loads of different sizes exploit memory value reuse, it is worth-
while to consider the dynamic mix of load sizes, presented in
Fig. 4.

It is shown that programs show vastly different mixes. In
CINT programs, the dominating size is word (32 bits). In FP
programs, word and double word accesses are pronounced,
covering nearly 98% of all loads. In MiB programs, however,

2We chose a large MVRT size to study a “maximum” degree of reusethat
different schemes can offer without first confining our discussions to a specific
configuration.



Fig. 3. Percentage of loads reusing memory values. Two segments from bottom stand for loads finding their values from prior stores (“S2L” – store-to-load)
and additionally from prior loads without macro data loads (“L2L” – load-to-load). Each top segment shows the extra opportunities offered by macro data
loads (“ML”). The MVRT size is 256.

there are significantly more byte and half-word loads than the
CINT and CFP programs. In general, the mix of different size
loads is largely dependent on the algorithm, how data struc-
tures are designed accordingly, the programming practices, the
compiler, and the instruction set architecture (ISA).

Given this, Fig. 5 presents the decomposition of memory
value sources per data size, showing that small data types,
such as byte and half, benefit more from macro data loads
than other types across all the examined benchmarks. This
is due to the exploitable spatial locality provided by earlier
macro data loads.

Word loads find their values from a previous store more
frequently than byte and half word loads. This is because
stack references fall into this category in the studied ISA,see
Section II-B.3. Although double word loads can benefit from
our scheme by reusing the values loaded by previous smaller
loads, we seldom find such occasions in the studied programs.
Interestingly, double word loads in the INT and MiB programs
find their values very often from an earlier store.

3) Per region reuse analysis:In this subsection we review
the memory reuse behavior of loads targeting data in different
regions, see Fig. 6. First of all, loads targeting the stack region
frequently find their values from previous stores - as often as
70% or more in CINT. Stack pushes and pops often form
a producer-consumer relationship that is well detected and
exploited by a store-to-load forwarding scheme [6].

CINT and MiB programs have more loads going to the heap
region than other regions and CFP programs have more loads
going to the data region than other regions; This is responded
in the all-load average bar. Except in the stack region, loaded
value reuse is more pronounced than store value reuse.

4) Sensitivity to MVRT size:We changed the MVRT size
from 16 to 256 and repeated our experiments. Results are
presented in Fig. 7 and several observations are made.

First, a larger MVRT captures more value reuse opportuni-

ties: the number of covered loads increases almost linearly
as we keep doubling the MVRT size, although the slope
gradually dwindles after 64 entries in CINT and CFP. This
trend is projected to be sustained even further if we increase
the MVRT size beyond 256 entries [5], as MVRT with a
FIFO replacement policy begins to simulate a regular data
cache with an LRU policy [10]. This suggests that there is a
large amount of exploitable memory value reuse opportunities
(already 70% with 256 entries but possibly more beyond this
point), although we will have to employ a large expensive
hardware to bookkeep many memory values to exploit all the
opportunities, if not impossible.

Second, macro data loads expose significantly more oppor-
tunities for load-to-load forwarding in all the studied MVRT
configurations, especially when MVRT is small. With a 32-
entry MVRT, for example, there are 105% (CINT), 46%
(CFP), and 188% (MiB) more loaded value reuse with macro
data loads. This suggests that the reuse distance becomes
significantly smaller in the presence of macro data loads. Extra
data we bring and keep in MVRT using freely available cache
port bandwidth are well subscribed to.

Third, as a result of our second observation, the area-
effectiveness of MVRT, from the viewpoint of memory value
reuse, is substantially improved. In the case of CINT and MiB,
the total achievable degree of reuse with a 32-entry MVRT
with macro data loads is comparable to that with a 256-entry
MVRT without macro data loads. This suggests that the macro
data load mechanism can provide critical implementation ad-
vantages over previous techniques, especially when hardware
budget is limited and thus any optimization strategy shouldbe
carefully justified.

5) Impact of ISA: In this subsection we consider several
interesting aspects of memory data reuse associated with ISA.
The PISA used in this work is a 64-bit ISA supporting 32-
bit address space. Stack references are done in word size.



Fig. 4. Mix of loads targeting different-size data.

Fig. 5. Percentage of loads reusing memory values per type: byte (“B”),
half word (“H” – 16 bits), word (“W” – 32 bits), and double word(“DW” –
64 bits). The rightmost bars (“A”) are for all loads. The MVRTsize is 256.

Fig. 6. Percentage of loads reusing memory values per region: data (“D”),
heap (“H”), and stack (“S”). “A” is for all loads. The MVRT size is 256.

Double word type loads are generated when programs have
long long or double type variables. On the other hand,
binaries compiled for the Alpha architecture, for instance, will
generate more 64-bit memory accesses to handle pointers, due
to its 64-bit address space. Alpha binaries have considerably
more double word loads than PISA. Our first-order experience
with the Alpha ISA shows however that macro data loads
still uncover 23% and 38% more opportunities for load-to-
load forwarding in a set of SPEC2k integer and floating-point
programs, respectively, when MVRT has 128 entries [12].

It is worthwhile to consider the following two questions: (1)
“how much gain can we get from macro data loads on a 32-
bit machine?” and (2) “how much gain can we get when we
run 32-bit applications on a 64-bit machine?” To answer these
questions, we projected load type mixes (byte, half, and word)
of 32-bit binaries using the result in Fig. 4. We further assumed
that one double word access becomes two word accesses. Then
we apply the results in Fig. 5 based on a simple assumption
that the degree of reuse per type does not change and fetching
a double word using two word accesses leads to the second
access covered by a previous macro data load on a 64-bit
machine.

Fig. 8 provides our projections to address the above two
questions. It is shown that on a 32-bit machine, macro data
loads uncover very limited additional load-to-load forwarding
opportunities for the CFP programs as they have few byte and
half loads. On the other hand, the CINT and MiB programs
still benefit considerably as they have many loads accessing
small size data.

When we run 32-bit binaries on a 64-bit machine, macro
data loads offer significantly more opportunities for load-to-
load forwarding. Even CFP programs crop over 38% more
load-to-load opportunities. The CINT and MiB programs
have a small number of double word loads (0.3%) and thus
their behavior is virtually same as what we observe in the



Fig. 7. Memory value reuse with varying MVRT sizes. 16 entries (128 bytes)
to 256 entries (2k bytes) are considered.

PISA results. The findings in this subsection are particularly
encouraging for us since many 32-bit legacy applications are
running on 64-bit platforms today [11], [26].

6) Impact of false sharing:Macro data loads can give
rise to previously nonexistent dependencies between loadsand
stores. Consider the following memory access sequence:

ld.w r1, @0x10001000
st.w @0x10001004, r2
ld.w r3, @0x10001000

In a conventional load store processing mechanism, the store
does not interfere with the other two loads, allowing the second

Fig. 8. Projected maximum reuse when running 32-bit binaries on a 32-bit
machine (“32”) or a 64-bit machine (“64”).

load to use the value loaded by the first load.When the macro
data load mechanism comes into play, however, the data loaded
by the first load becomes a double word and will be killed
by the store since they share data (unless there is a partial
data invalidation mechanism, which we do not consider in this
paper). We examined our benchmarks and found that there
are three programs –bzip2, gsm.e, and gsm.d – that lose
some load-to-load forwarding opportunities due to this false
sharing when MVRT has 256 entries. Interestingly, the lost
opportunities were mostly for word data and these programs
still benefited from macro data loads thanks to other loads
targeting smaller data. Moreover, the impact of false data
sharing disappears quickly as we reduce the size of MVRT
to 128 and fewer.

Another interesting data sharing pattern is that large store
data can be targeted by smaller loads. Ingsm.d, for example,
there are byte loads bringing data written by previous word
stores.Programming practices leading to such occasions are not
prevalent, however, and we do not find many such instances in
the studied programs. It is noted that recent processors support
the store-to-load forwarding of thismisaligneddata [24], [2].

III. QUANTITATIVE EVALUATION

A. Microarchitectural change

In this subsection, we briefly discuss two major aspects of
a microarchitecture that supports memory value reuse:data
storageto keep memory values andaddress matchingto detect
reuse opportunities. For more details, readers are referred to
our previous work [13]. We use theload store queue(LSQ)
commonly found in modern superscalar processors [25], [8],
[14], [24], [2] to implement memory reuse schemes, targeting
both store and loaded values [16], [12]. To further support
macro data loads, we provide a datapath from cache ports to
LSQ so that data as seen at a cache port is stored intact in a
LSQ entry.

The data storage in LSQ, typically used only for storing
store values, is used to hold a loaded macro data. The address
tag portion is often implemented with an associative memory
logic such ascontent addressable memory(CAM), and is



Issue width 4
Branch pred. Combined, 2k-entry BTB

I-cache 32kB, 2-way, 64B line, 2-cycle latency
D-cache 32kB, 2-way, 64B line, 2-cycle latency, 2 ports
L2 cache 2MB, 4-way, 128B line, 10-cycle latency

Mem. latency 120 cycles
RUU/LSQ 128 and 64 entries

Fig. 9. Summary of the simulated machine model.

extended to detect a previous load as well as a previous
store for forwarding opportunities. To detect a load-to-load
forwarding instance, however, LSQ should perform apartial-
match searchingsince the source macro data can be larger
than and inclusive of the dependent load, potentially leading
to non-identical addresses in several LSB positions.

When a macro data item in LSQ is accessed, it should go
through thedata alignment logicso that only the necessary
portion of it is extracted and aligned before being launchedon
result buses. A conventional processor implements this logic
at the cache port boundary so that thereafter the actual value
as viewed by the running program will be circulated. In our
LSQ design, this logic is placed after the LSQ read ports or
duplicated for LSQ to handle data from LSQ as well as cache.
Effectively, the macro data from LSQ and cache are treated in
the same manner. This arrangement does not affect the timing
of data arrival from cache, but may do so for data from LSQ.
Since the necessary selection bits (derived from the tag bits)
are available ahead of the data, fortunately, fast data alignment
logic can be constructed. Recent processors support similar
data selection function to deal with misaligned data in LSQ
efficiently [24], [2].

In summary, we can turn a conventional LSQ design into a
small, level-0 cache within the processor core with relatively
small overheads. It is fully-associative, has a port-wide line
size, and supports a FIFO allocation and replacement policy.
Implementing this highly effective L0 cache requires only a
small change in a typical LSQ and memory pipeline design.

B. Studied memory pipeline configurations

We study four different configurations: BASE-P, BASE-
T, OPT-T, and OPT-P. The BASE configurations resemble
conventional processors and perform store-to-load forwarding.
The OPT configurations allow both store-to-load and load-
to-load forwarding with macro data loads. The “T” config-
urations optimize forcache trafficand do not access cache
until it is known that LSQ does not have a reuse value for
forwarding. This is implemented by inserting a pipeline stage
to look up LSQ for possible matching before cache access
can commence. The “P” configurations focus onprocessor
performance, initiating cache access and LSQ reuse look up in
the same clock cycle. Most commercial processors implement
a form of BASE-P [8], [14], [24], [2].

C. Experimental setup

We perform experiments using a detailed execution-driven
simulator derived from sim-outorder in the SimpleScalar tool
set [4]. We model a modest 4-issue processor whose important
parameters are summarized in Fig. 9. The LSQ size is set to 64,

similar to recent high performance processors [8], [14], [24].
The data reuse latency in LSQ is set to one cycle. Section II-A
describes the setup for our benchmarks.

D. Evaluation results

1) L1 cache traffic:Fig. 10 shows the result, which con-
firms the observations made in Section II. With only store-
to-load forwarding (i.e., BASE-T), the cache traffic reduction
is limited: 10% (CFP) or less (CINT and MiB). Only two
programs among all the studied programs, namelyparser and
wupwise, show a traffic reduction of 20% or more. With
both store-to-load and load-to-load forwarding enhanced with
macro data loads (i.e., OPT-T), however, there is a significant
reduction in cache accesses, 35% (CINT), 33% (CFP), and
38% (MiB). If we consider load traffic only, the reductions
correspond to 49% (CINT), 44% (CFP), and 55% (MiB). Four
programs, namelybzip2, mgrid, jpeg.e, andgsm.d, had over
50% of cache traffic reduction. With store-to-load and load-
to-load forwardingwithout macro data loads (not shown), the
cache traffic reduction was 27% (CINT), 30% (CFP), and 23%
(MiB), considerably lower than that of OPT-T; We do not
further detail this configuration in the following discussions.

Although the results are in accordance with our limit study
results presented in Fig. 3 and Fig. 7, the actual traffic
reduction is less than the maximum potential due to three
factors: (1) speculative memory references frequently occupy
available LSQ entries and cause pipeline flushing, thereby not
allowing memory value reuse between distant references; (2)
speculative loads execute and generate cache traffic; and (3)
memory reordering can result in later loads accessing cache
prior to early loads, losing the reuse opportunities.

2) Energy consumption:We used the CACTI 100nm
model [22] to consider the energy consumption related with
both LSQ and cache. As the proposed reuse scheme increases
LSQ activities (e.g., loads update the data array in LSQ), it
is important to consider not only cache but also LSQ when
evaluating the related energy consumption of different memory
reuse schemes. The modified LSQ we modeled is effectively
a fully associative cache. We expect the CACTI could give an
approximate evaluation of LSQ’s power consumption. Fig. 11
shows the result.

As can be expected, the “T” configurations achieve less
energy consumption compared with the corresponding “P”
configurations. OPT-P consumes more energy than BASE-P
due to an increase in LSQ energy. Comparing OPT-T to BASE-
P, up to 31% of energy reduction (MiB) is observed. Roughly
27% of energy reduction is achived for CINT and CFP. Energy
reduction due to BASE-T is limited (less than 10%) because
its cache traffic reduction is limited.

3) Performance impact:When the latency of memory value
reuse is shorter than the cache access latency, increase in the
number of loads finding their values from LSQ can lead to
improved performance. Our simulation configuration captures
this case by setting the reuse latency to be one cycle and the
cache access latency to be two cycles.



Fig. 10. Cache traffic of BASE-T (left) and OPT-T (right) relative to BASE-P (not shown). For readability, results for OPT-P were omitted as they are close
to those of BASE-P.

The BASE-T and OPT-T configurations show lower per-
formance than the BASE-P and OPT-P configurations, re-
spectively. Since the OPT configurations achieve far more
memory value reuse, their performance (OPT-T and OPT-
P) is better than that of the BASE-T and BASE-P config-
urations. OPT-P achieves a small performance improvement
over BASE-P; There were three programs with a noticeable
performance improvement of 3% or more:gzip (4.4%), gap
(4.4%), andbzip2 (3.0%). It is further shown that the traffic-
optimized OPT-T configuration is performance-competitive
with the performance-optimized BASE-P configuration since
(1) many loads find their values from LSQ; and (2) the
increased latency seen by the remaining loads is well tolerated
by the out-of-order processor model.

Overall, the positive performance impact (i.e., OPT-P vs.
BASE-P) was not as pronounced as the traffic and energy
reduction (i.e., OPT-T vs. BASE-P). An interesting aspect here
is that extensive memory value reuse enabled by macro data
loads makes the processor performance less sensitive to the
cache latency. Increasing the cache latency to 3 cycles resulted
in 4.2% (CINT), 0.9% (CFP), and 1.1% (MiB) performance
degradation for BASE-P, but only 2.2%, 0.6%, and 0.4% for
OPT-P.

IV. RELATED WORK

Bodik et al. provides a limit study on dynamic load
reuse and develops a compiler-based load reuse analysis
technique [1]. Using a set of SPEC95 benchmarks, they
show that 55% of all loads exhibit reuse, among which
their compiler analysis can expose about 80%.Önder and
Gupta proposedvalue address association structure(VAAS) to
eliminate redundant loads and silent stores [18]. By associating
with each physical register the address (and some additional
information) of a memory instruction and inserting a new
pipeline stage to perform an associative address search, they
detect and eliminate nearly 60% of loads using a 128-entry

Fig. 11. Energy consumption of LSQ and cache, relative to BASE-P. Each
bar is stacked and divided into two parts, cache access energy (upper bars)
and energy spent in LSQ (lower bars).

Fig. 12. Performance difference of BASE-T, OPT-T, and OPT-Prelative to
BASE-P.



VAAS. Bodik et al. and Önder and Gupta suggest that the
available memory reuse can be well exploited by a FIFO-style
hardware mechanism.

Nicolaescuet al. [16] proposedcached load store queue
(CLSQ) to detect redundant loads and provide reuse data. In
their design, each data entry in CLSQ is allowed to cache
a loaded value as well as to keep store data. Using LSQ
to capture loaded values is especially attractive since many
modern high-performance processors already employ an LSQ
and implement necessary logic to detect dependent memory
references for store-to-load optimizations [25], [8], [14], [24],
[2]. Both VAAS and LSQ manage memory accesses with
a FIFO policy and therefore our limit study with MVRT
accurately models and predicts their performance.

More recently, Nicolaescuet al. [17] proposedwide cached
load store queue(WCLSQ) to take advantage of spatial
locality by having each LSQ entry keep multiple words or
by increasing the LSQ data width to accommodate a large
16-byte or even 32-byte memory block. To fill WCLSQ, the
cache should be accessed multiple times or the cache port
should be widened to match the WCLSQ width. This approach
can potentially exploit more spatial locality (i.e., more hits in
one LSQ entry) than our macro data approach, at the expense
of increased LSQ size and decreased area efficiency due to
short stores occupying large data entries. Compared to this
work, our proposal exploits only the freely available cache
port bandwidth and requires little change to the cache design.

V. CONCLUSIONS

This paper presented a detailed characterization study on the
degree of memory value reuse exploitable by three different
schemes:store value reuse, loaded value reuse, and macro
data reuse. The reported results include per program reuse
analysis, per data size analysis, per region analysis, per MVRT
size analysis, and the impact due to different ISA/machine
width combinations. Our work shows that the macro data load
mechanism provides significantly more loaded value reuse
opportunities compared with a conventional loaded value reuse
scheme: 75% (CINT), 23% (CFP), and 139% (MiB) more
load-to-load forwarding instances when MVRT has 64 entries.

Further, we model different memory value reuse schemes in
an execution-driven simulator and perform a detailed simula-
tion study using a realistic processor configuration. We report
a cache traffic reduction of 35% (CINT), 33% (CFP), and
38% (MiB) on average with macro data loads, compared with
a conventional processor configuration. Savings in LSQ and
cache energy with macro data loads were 27% (CINT), 27%
(CFP), and 31% (MiB).

Just as store-to-load forwarding techniques have become
conventional in high-performance processors, we expect that
an area-efficient and complexity-effective load-to-load for-
warding technique like the macro data load proposal will
be seriously considered in future processors. Our evaluation
results will be a valuable reference for a real design.

REFERENCES

[1] R. Bodik, R. Gupta, and M. L. Soffa. “Load-Reuse Analysis: Design
and Evaluation,” Proc. Int’l Conf. Programming Language Design and
Implementation, pp. 64 – 76, May 1999.

[2] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller, P. Roussel,
R. Singhal, B. Toll, and K. S. Venkatraman. “The Microarchitecture of
the Intel Pentium 4 Processor on 90nm Technology,”Intel Technology
Journal, Vol. 8, No. 1, Feb. 2004.

[3] D. Bradley, P. Mahoney, and B. Stackhouse. “The 16kB single-cycle read
access cache on a next-generation 64b Itanium microprocessor,” Proc.
Int’l Solid State Circuits Conf., pp. 110 – 111. Feb. 2002.

[4] D. Burger and T. M. Austin. “The SimpleScalar Tool Set, Version 2.0,”
Computer Sciences Dept. Tech. Report, No. 1342, Univ. of Wisconsin,
June 1997.

[5] J. F. Cantin and M. D. Hill. “Cache Performance for Selected SPEC
CPU2000 Benchmarks,”Computer Architecture News, Sept. 2001.

[6] S. Cho, P.-C. Yew, and G. Lee. “Decoupling Local VariableAccesses
in a Wide-Issue Superscalar Processor,”Proc. Int’l Symp. Computer
Architecture, pp. 100 – 110, May 1999.

[7] K. Cooper and L. Xu. “An Efficient Static Analysis Algorithm to
Detect Redundant Memory Operations,”Proc. Workshop. Memory System
Performance, pp. 97 – 107, Aug. 2002.

[8] K. Diefendorff. “K7 Challenges Intel,”Microprocessor Report, Vol. 12,
No. 14, pp. 1 – 7, Oct. 1998.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.Mudge, and R.
B. Brown. “MiBench: A Free, Commercially Representative Embedded
Benchmark Suite,”Proc. Annual Workshop Workload Characterization,
Dec. 2001.

[10] J. L. Hennessy and D. A. Patterson.Computer Architecture A Quanti-
tative Approach, 2nd Ed., Morgan Kaufmann Publishers, 1996.

[11] Intel Corp. “Intel Itanium Processor Family ReferenceGuide: IA-32
Execution Layer,”Quick Reference Guide, 2004.

[12] L. Jin and S. Cho. “Macro Data Load and Loaded Value Reuse,”
Submitted for publication, Also asCS Tech. Report, TR-05-125, Univ.
of Pittsburgh, Sept. 2005.

[13] L. Jin and S. Cho. “Enhancing Loaded Value Reuse with Macro Data
Load,” Submitted for publication, Also asCS Tech. Report, TR-05-130,
Univ. of Pittsburgh, Nov. 2005.

[14] R. E. Kessler. “The Alpha 21264 Microprocessor,”IEEE Micro, 19(2):24
– 36, March/April 1999.

[15] K. M. Lepak and M. H. Lipasti. “Silent Stores for Free,”Proc. Int’l
Symp. Microarchitecture, pp. 20 – 31, Dec. 2000.

[16] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. “Reducing Data Cache
Energy Consumption via Cached Load/Store Queue,”Proc. Int’l Symp.
Low-Power Electronics and Design, pp. 252 – 257, Aug. 2003.

[17] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. “CachingValues in the
Load Store Queue,”Proc. Int’l Symp. Modeling, Analysis, and Simulation
of Computer and Telecomm. Systems, pp. 580 – 587, Oct. 2004.

[18] S. Önder and R. Gupta. “Load and Store Reuse Using Register File
Contents,”Proc. Int’l Conf. Supercomputing, pp. 289 – 302, June 2001.

[19] A. Roth. “A High-Bandwidth Load/Store Unit for Single-and Multi-
Threaded Processors,”CIS Tech. Report MS-CIS-04-09, Univ. of
Pennsylvania, June 2004.

[20] T. Sha, M. M. K. Martin, and A. Roth. “Scalable Store-Load Forwarding
via Store Queue Index Prediction,”Proc. Int’l Symp. Microarchitecture,
Nov. 2005.

[21] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. “Automatically
Characterizing Large Scale Program Behavior,”Proc. Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems,
pp. 45 – 57, Oct. 2002.

[22] P. Shivakumar and N. P. Jouppi. “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model,”HP WRL Research Report 2001/2,
Aug. 2001.

[23] http://www.specbench.org.
[24] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy.

“POWER4 System Microarchitecture,”IBM J. Research & Development,
Vol. 46, No. 1, Jan. 2002.

[25] K. C. Yeager. “The MIPS R10000 Superscalar Microprocessor,” IEEE
Micro, Vol. 16, No. 2, pp. 28 – 40, April 1996.

[26] C. Zdebel and S. Solotko. “The AMD64 Computing Platform: Your
Link to the Future of Computing,”White Paper, May 2003.


