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Abstract—This paper proposes a new software-oriented ap-
proach for managing the distributed shared L2 caches of a
chip multiprocessor (CMP) for latency-oriented multithreaded
applications. The conventional shared cache scheme loses
performance due to the blind distribution of data predomi-
nantly accessed by a single thread. SOS, our software-oriented
distributed shared cache management approach, infers a pro-
gram’s data affinity hints through a novel machine learning
based analysis of its L2 cache access behavior. The OS utilizes
the hints to guide proper data placement in the L2 cache
with page coloring. The derived hints are independent of
the program input and can be used for multiple runs. By
off-loading the cache management task onto software, SOS
deviates substantially from previously proposed hardware-
based strategies and opens up a new opportunity for the CMP
cache optimization. Our experimental results demonstratethat
SOS is very effective in reducing the number of remote cache
accesses. By using the hints for guiding page coloring alone,
SOS achieves an average speedup of 10% and up to 23% over
the shared cache scheme. When hints are used to direct data
replication, SOS secures an additional performance gain of
9%, performing 19% better than the shared cache scheme on
average.
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I. I NTRODUCTION

Chip multiprocessor (CMP) architectures integrate multiple
relatively simple processors on a single chip to exploit thread
level parallelism, unlike previous single-core architectures
that depend on complex hardware to extract instruction-
level parallelism [3], [23], [29]. CMP architectures have
advantages over single-core architectures in terms of design
complexity, performance scalability and power efficiency.
However, integrating multiple processors on a single chip
dramatically increases the pressure on the memory subsys-
tem [13], and designing an effective on-chip memory hierar-
chy remains a challenge. Researchers have paid considerable
attention to the last-level cache design, which tends to have
large capacity and is broken into smaller slices (or banks)
distributed across the chip. Increasing wire delays cause
the Non-Uniform Cache Architecture (NUCA) to become
an inevitable choice [17]. With the variable cache access
latency introduced by NUCA and very slowly improving

memory access time, efficient management of the on-chip
cache hierarchy is critical to the CMP performance.

Conventional distributed cache organizations are the
shared cache [14], [18], [22], [26] and the private cache [1],
[11], [30]. The shared cache provides a logically shared
cache view out of physically distributed cache slices by in-
terleaving consecutive cache blocks among them. While the
shared use of all cache slices maximizes the cache capacity
utilization, the blind data distribution of the shared cache
makes its performance sensitive to the program location on
the chip and the program’s cache access pattern. Without
a significant reduction of wire delays, the shared cache is
obviously not scalable to large-scale CMPs. The private
cache avoids excessive remote accesses by always keeping
copies of the accessed data blocks in the processor’s local
cache slice. Each processor becomes an autonomous unit,
making the CMP easier to scale. However, uncontrolled data
replication and strict capacity partitioning lead to significant
under-utilization of the total cache capacity; the increased
miss rate can easily offset the benefit of low-latency local
accesses.

Many recent proposals try to combine the advantages
of these two basic schemes [2], [5]–[7], [34]. While the
previous proposals improve on the baseline shared and
private cache organizations, they have common drawbacks:
performance benefits come with the introduction of complex
and potentially expensive hardware structures. Furthermore,
hardware-based schemes are typically optimized for a spe-
cific cache access patterns and may not perform well for the
programs lacking such patterns. Finally, centralized hard-
ware structures in some proposals may create performance
bottleneck for large-scale CMP architectures.

In this work, we propose SOS, a novel software-oriented
approach for managing the NUCA L2 cache of a CMP to
improve the performance of latency-oriented multithreaded
applications. By off-loading the cache management task
onto software, SOS can exploit a program’s cache access
behaviors that are hard to capture and exploit with hardware
mechanisms. SOS employs an one-time profiling of a pro-
gram (at compile time) to characterize effective data access
patterns using the K-means clustering algorithm. The gen-
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Figure 1. Data sharing behavior ofcholesky at page granularity.
The two curves capture the number of memory references to a
page shared by a different number of threads. For the dark curve
(“total sharer #”), the number of sharers is determined overthe
entire program run. For the light curve (“concurrent sharer#”), the
number of sharers is determined at any instant when an accessis
made.

erated data affinity hints, independent of the program input,
are opportunistically used to guide the OS page coloring for
improved data locality. To the best of our knowledge, our
work is the first to study a software-oriented NUCA cache
management strategy for latency-oriented multithreaded ap-
plications. Moreover, SOS is orthogonal to other hardware
schemes and can be used in combination with synergy. Our
experimental results demonstrate that by using hints to guide
page coloring alone SOS performs 10% better than the
shared cache on average and up to 23% for the benchmark
programs studied. When data replication is enabled and
guided by SOS, it brings an additional performance gain
of 9%, performing 19% better than the shared cache on
average.

This work has been motivated by our observation that
much of the shared data in a program are accessed either
predominantly by a single thread or by almost all the proces-
sors; moreover, such behavior for a given data object does
not change significantly with the program input. Figure 1, as
an example, presents the data sharing behavior ofcholesky
from the SPLASH-2 benchmark suite [27]. Nearly 17% of
the total references are shown to go to pages predominantly
accessed by a single thread. At the top right of the plot, we
also identify around 40% of the total references accessing
pages that are shared by all threads. We find this “zigzag”
pattern common in the SPLASH-2 programs. Indeed, this
is intuitive as parallel programs often involve partitioned
data processing (private data) and global synchronization
and data exchange (highly shared data). It is desirable to
place private data in the requester’s local cache bank early
to avoid remote accesses. On the other hand, it is beneficial
to replicate highly shared data or fetch them from neighbors
nearby. This observation uncovers an excellent opportunity
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Figure 2. A tiled CMP architecture with a 2D mesh network.

for an offline analysis to derive data affinity hints and guide
run-time data placement and data replication.

In what follows, we first summarize related work in
Section II. We present SOS at length in Section III, with
a particular focus on how to recognize and exploit the com-
mon memory access patterns in multithreaded applications,
followed by detailed evaluation results in Section IV. Finally,
Section V concludes. Without a special note, we assume a
tile-based CMP architecture organized in a 4�4 2D mesh
network throughout this paper, as shown in Figure 2.

II. RELATED WORK

Zhang and Asanović [34] proposed the “victim replication”
scheme based on a shared L2 cache organization, where
each L2 cache slice can replicate remote cache lines replaced
from its local L1 cache. Essentially, L2 cache slices provide
a large victim cache space for the cache blocks whose home
are remote. However, excessive replication can increase
conflict misses considerably. Beckmann et al. [2] proposed
a controlled victim replication design called “ASR,” which
tries to reduce cache pollution caused by excessive replica-
tion. In order to measure the best replication level, their
design employs a set of tables within each processor to
keep track of the performance gain and loss according to
increasing or decreasing replication. These tables consume
considerable chip area. The ASR scheme also relies on a
ring network and a broadcast-based coherence protocol. This
limits it from scaling up to a large CMP. Chishti et al. [6]
proposed a cache design called “CMP-NuRAPID” having a
hybrid of private per-processor tag arrays and shared data
arrays. Based on the hardware organization, they studied a
series of optimizations, such as controlled replication, in-
situ communication, and capacity stealing. Compared to the
shared cache, however, CMP-NuRAPID requires much more
complex cache management hardware. Chang and Sohi [5]
proposed a “cooperative caching” framework based on a pri-
vate cache design with a centralized directory. They studied
optimizations such as cache-to-cache transfer of clean data,
replication-aware data replacement, and global replacement
of inactive data. However, the complex central directory



limits its scalability. Finally, Cho and Jin [7] proposed anon-
chip cache management framework where memory data can
be dynamically placed into any cache slice. By increasing
the data mapping granularity from memory block to memory
page, they showed that the OS memory management module
can be conveniently extended to handle the task of on-
chip L2 cache management. Their work, however, does not
specifically study how to achieve high program performance
when such a flexible data mapping mechanism is provided.

The problem of tackling non-uniformity in L2 cache
latencies bears similarity to the problem of attacking dis-
parate memory latencies in distributed shared memory mul-
tiprocessors such as the Non-Uniform Memory Architecture
(NUMA) or Cache-Only Memory Architecture (COMA)
machines [12]. Because the ratio between local memory
accesses and remote memory accesses will largely determine
the application performance in such a machine, it is of
utmost importance to improve the data locality at the level
of distributed main memory by carefully placing, migrating,
and replicating pages [8]–[10], [19], [21], [31]–[33]. Our
work is most similar to the hardware profile-guided page
placement scheme proposed by Marathe and Mueller [21].
In their work, a truncated version of the program code is
profiled before program execution. The sampled memory
access trace is then used to decide the affinity for each
touched page. This method has several limitations that we
overcome in this work. First, it requires program profiling
before each execution. The quality of the truncated code
is crucial to the accuracy of the affinity information. Auto-
matically generating the representative code for the whole
program is shown to be difficult. Furthermore, they assume
that dynamic memory allocation returns the same address
in both the profiling execution and the normal program
execution. This assumption is not always true and could hurt
the program performance significantly when the assumption
does not hold. SOS only profiles and analyzes the trace
once at compile time. The generated hints are independent
of the program input and can be used for multiple runs.
Moreover, the run-time system can decide (for any reason)
to skip optimization and simply fall back to the baseline
shared cache scheme.

III. SOS SCHEME

Figure 3 depicts the two major stages of the proposed SOS
scheme: the one-time profiling and data analysis phase and
the hint exploitation phase. In the first phase, SOS profiles a
given program’s L2 cache accesses with a test input. Based
on the collected traces, access histograms are constructedfor
each page (buckets in each histogram count accesses from
different processors). Then K-means clustering algorithmis
applied on those per-page access histograms to derive page
clusters. Given the page cluster information, SOS finally
determines the patterns for dynamic and static data areas and
attach those hints to the binary. At run-time stage, the OS
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Figure 3. The one-time profiling and data access pattern analysis
flow (upper box) and the hint exploitation flow (lower box) of SOS.

peels off the hints from the binary and uses the information
whenever a new memory page mapping event occurs.

In this section, we first examine the common data ac-
cess patterns found in multithreaded applications. We will
then discuss in detail the data access pattern recognition
algorithm of SOS and how the resultant data affinity hints
are exploited to guide the OS cache management decisions.
Finally, we will discuss the architectural support for SOS.

A. Access pattern classification

The memory footprint touched by a program can be gen-
eralized intostatic data regionand dynamic data region.
Global variables and data structures are those used to track
program-wide information, to synchronize and to exchange
data among threads. They are often assigned statically.
The locations and sizes of these data are known prior
to the program execution. This determinism makes offline
affinity analysis for static data straightforward. Data inside
a dynamic data region plays an important role in large-scale
parallel programs. Often it is necessary to allocate memory
regions dynamically since the varying input sets prohibit
programs from claiming the memory space statically.Malloc
is a typical library function to dynamically allocate memory
regions in the C language. We usemalloc in this paper as
the indication of dynamic allocation in general. Dynamic
data are usually the target of computation and tend to
be accessed more frequently than static data. Accordingly,
precise distribution of dynamic data can have a large impact
on the overall program performance. For this reason, we
focus our discussion of data access patterns on the dynamic
data region. The programs we examined are selected from
SPLASH-2 and PARSEC benchmark suites.

In this work, we classify a program’s data access patterns
into: Even Partition, Scattered, Dominant Owner, Small-
Entity, andShared, and examine each in the following.
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Figure 4. An example of a dynamically allocated memory area
shared by four threads evenly.

Even Partition: In many scientific programs, a large one-
dimensional data array is allocated at the beginning of the
execution. The data array can be easily partitioned among
threads due to its regular structure. The array index is
commonly a function of thread ID and some loop indices.
For example, the following code illustrates how the array is
allocated by the main thread and how each thread accesses
its partition with its thread ID (ProcNo).

Main thread:
Array = malloc(sizeof(int) * NumProc * N);

Thread [ProcNo]:
for(i = 0; i < N; i++)

Array[ProcNo * N + i] = i;

This access pattern leads to an even partitioning of the whole
data array among threads, which presents a good opportunity
to distribute data in the L2 cache as shown in Figure 4(a).
Sometimes data array accesses can be interleaved in a finer
granularity, such as:

Thread [ProcNo]:
for(i = 0; i < N; i++)

Array[i * NumProc + ProcNo] = i;

The corresponding data distribution pattern is shown in
Figure 4(b) which is essentially the same as the previous
one. The compiler can always rearrange the data layout and
transform it back to the pattern in Figure 4(a). Benchmarks
fft, lu and blackscholes have this kind of data access
pattern.
Scattered:At times, the workload assigned to each thread is
not balanced or the programmer chooses a separate memory
area to allocate for each thread. Hence, unlike the “even”
pattern, the whole data set is scattered into multiple memory
regions. A common way to declare these regions is to
allocate memory area in the thread body. For example:

Thread [ProcNo]:
Array = malloc(sizeof(int) * N);

for(i = 0; i < N; i++)
Array[i] = i;

Since the allocated memory area is exclusively accessed by
the owner, the data distribution is straightforward. The allo-
cation can also be done in the main thread, especially when
workload distribution is unbalanced or a multi-dimensional
array is used. The following code depicts the scenario:

Main thread:
ArrayPtr = malloc(sizeof(int) * NumProc);
for(i = 0; i < NumProc; i++)

ArrayPtr[i] = malloc(sizeof(int) * Size[i]);

Thread [ProcNo]:
for(i = 0; i < Size[i]; i++)

ArrayPtr[ProcNo][i] = i;

Note howProcNoplays a role in addressing array elements.
Data placement of this pattern is simple as those in-order
allocated areas are exclusively accessed by each thread using
ProcNo. This is the most common access pattern in the
multithreaded programs we examined. The representative
benchmarks that more or less exhibit this pattern arebarnes,
cholesky, fmm, ocean, andradix.
Dominant Owner: There are occasions when shared data
areas are mostly accessed by only one thread. These memory
areas are commonly allocated for auxiliary structures in the
main thread. They help record temporary information while
initialization progresses. We regard these areas as private
because it is logical to place these data in a tile, where they
are accessed the most. Benchmarkradiosity is an example,
which has a global data structure accessed a lot by the main
thread.
Small-Entity: When the program data are organized by a
linked list, tree or graph, it usually involves intermittent
allocation and freeing of nodes. A small trunk of memory
area can be repeatedly allocated and reclaimed by multiple
malloc and free instances. This poses extreme difficulty
for tracking memory usage and managing data at coarse
granularity. Benchmarkscholesky, raytrace andswaption
show this behavior. Another representative case is a data
stack. On function calls and returns, the data stack expands
and shrinks accordingly. However, unlike the previous case,
the ownership of stack data is explicit. This is because data
items in the stack are used as function parameters and local
variables, which are almost always private to threads.
Shared: The last category contains all data areas that could
not be classified into one of the previous types. These areas
are highly shared by multiple threads. No particular affinity
pattern can be found in these areas, or the pattern changes
under different inputs. However, they can be further sepa-
rated into read-only sharing or read-write sharing. Because
the input change seldom affects the read/write behavior of
the data, it is safe to mark regions of read-only sharing as
replication candidates.

This work does not attempt to recognize all possible data
access patterns that may prove useful. By focusing on the
most frequently observed access patterns we presented in
this section, we aim to motivate SOS. We note that our study
revealed other more complex memory access patterns in the
programs we studied. We leave the strategies to efficiently
discover and exploit such patterns to our future work.

B. Access pattern recognition

Our goal of this step is to derive data affinity hints for the
pages in dynamic regions, that can be used across different
input sets and architecture configurations, such as different
cache sizes. In addition, choosing a flexible way to represent



these hints is important for this method to become effective.
It is relatively straightforward to provide hints for the static
data regions that are determined at compile time. However,
the location and size of a dynamic data region are unknown
until the malloc returns. Our strategy is to associate one
dynamic hint with eachmalloc instance, which can be
identified uniquely by the file name, the line number in
source code, and the number of times it has been called.
Every dynamic hint only expresses which pattern the area
allocated by thismalloc would exhibit, instead of giving
specific mapping details. Only at run time, when the address
and size of a dynamic area are determined, the actual page to
cache mappings are generated. These hints can be embedded
in the program binary and loaded into the system before
being utilized by the OS. When a page fault occurs, hints
are consulted to derive the page location among the L2 cache
slices.

The overall flow of the proposed SOS approach is illus-
trated in Figure 3. In order to analyze the access patterns
of dynamically allocated memory regions, we profile the
program with a small, reasonably representative input set
once. During profiling, we collect the L2 cache read trace
from each tile and the range of eachmalloc instance.
Then we process each reference from the trace by checking
it against all malloc ranges. The reference is a dynamic
access if it falls into one of themalloc ranges. Each page
within the malloc range is associated with a counter vector.
When the page receives a reference from a tile, the counter
corresponding to that tile is incremented. After the trace has
been processed, the vector of each dynamic page represents
the access histogram for all tiles. Each vector is normalized
by the maximum counter value within it.K-means clustering
is then performed on these vectors for eachmalloc range.
An example of the initial centroids for a 4-tile CMP is:

C0 (1, 0, 0, 0)
C1 (0, 1, 0, 0)
C2 (0, 0, 1, 0)
C3 (0, 0, 0, 1)
C4 (1, 1, 1, 1)

The K-means clustering algorithm works as follows:

do (
1. Assign each vector to the nearest

cluster centroid based on Euclidean distance.
2. Calculate distance between the vector and the

centroid as the error.
3. Accumulate the error for this iteration.
4. Update the new cluster centroids by averaging

vectors within each cluster.
5. Calculate the error difference between

the current and the last while iteration.
} while(error difference > threshold)

After the clustering procedure finishes, each cluster contains
many vectors corresponding to pages in the dynamic mem-
ory area. All pages in cluster 0 (C0) are accessed mostly by
tile 0. All Pages in cluster 1 (C1) are accessed mostly by
tile 1. This applies to all clusters, except the last one (C4),
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Figure 5. (a) An example of the even partition pattern. (b) Page
clusters after K-means clustering of the access histograms.

where pages are accessed almost equally by all tiles.
Next, we want to recognize the patterns discussed in the

previous subsection based on the clustering result. The even
partition pattern is checked by counting the number of “right
pages” in each cluster. For instance, suppose a dynamic
range has 16 pages and the profiling is done on a 4-tile
CMP. Figure 5(a) shows the desired even partition pattern,
where each partition receives 4 pages. The clustering result
is given in Figure 5(b). As illustrated, the partitions may
not be perfectly even in reality. To recognize the pattern,
we classify a cluster as afitting clusterif half of the pages
from the desired partition range reside in the cluster. The
malloc is said to have the “Even Partition Pattern” if more
than 75% of all clusters are fitting clusters.

Recognizing the “Scattered Pattern” is similar, except that
now we need to perform the clustering algorithm for all
malloc instances. As shown in Figure 6, themalloc is called
four times as it is defined in afor loop. The aggregated
space of these fourmalloc ranges has 16 pages. The area
allocated by the firstmalloc is mostly accessed by tile 0.
The area allocated by the secondmalloc is used mainly
by tile 1 and so on. If half of the pages in themalloc
range are assigned to the same cluster, the cluster number is
checked against the number of times thismalloc is called. If
more than half of the instances of the samemallochave the
matching cluster number, thismalloc is defined to have the
“Ordered Scattered Pattern.” Otherwise, themalloc instances
might be called by the parallel threads. In such a case, the
malloc is defined as “Private Scattered Pattern.” One special
case for the example in Figure 6 is thatmalloc is only called
once and the majority of the pages in the range are assigned
to the same cluster. This is a clear sign that themalloc has
the “Dominant Owner Pattern.” Lastly, if most of the pages
are clustered into the last group (C4), the malloc is not
associated with a recognizable pattern. It has the “Shared
Pattern.”

Finally, the above algorithm can be applied to the static
pages in a program. In fact, the access pattern for each
static page is deterministic and a simple page number to
tile mapping can be used as a hint. For instance, when the
number of tiles is fixed, we can count the number of accesses
from different tiles to determine which tile accessed a given
page the most. If the access count from a particular tile is
more than 50% of the total accesses, the page is assigned
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Figure 6. An example of the clustering results of four instances of
the samemalloc.

to that tile. Otherwise the page is marked as “Shared.”

C. Hint exploitation

The recognized access patterns are encoded and embedded
into the program binary so that they can be exploited
during later program executions. Since hints for dynamically
allocated data and static data are different, they are presented
separately. Static hints give the target tile for each static page
explicitly, thus can be used directly at run time. Dynamic
hints only tell the type of eachmalloc instance in the source
code. They need to be translated into actual mappings when
the correspondingmalloc returns the dynamic area range.
Even Partition Pattern: After the malloc returns the range
of the dynamic area, the space is divided into equal-sized
pieces and then assigned to tiles in sequential order.
Ordered Scattered Pattern: A counter with initial value
of 0 is associated with each hint of this type. Every call
to the correspondingmalloc triggers the assignment of the
dynamic area to the tile indexed by the counter value. Then
the counter is incremented.
Private Scattered Pattern:If the hint indicates that amalloc
has this pattern, the returned area is assigned directly to the
tile, who calls thismalloc instance.
Dominant Owner Pattern: For this pattern, the target cache
slice number comes with the hints. The allocated dynamic
area is assigned to the target tile.
Shared Pattern: By default, no effort is made to optimize
for dynamic data regions in this pattern. All data are
distributed at cache line granularity instead of page size to
balance the L2 cache pressure. However, this can be a good
hint for data replication to improve temporal data affinity.
As we correctly place private data, the amount of data
replication and the resultant conflict misses can be reduced
significantly.

D. Architectural support

SOS requires minimal hardware modification. The pattern
analysis and hint generation are done in software before run
time (i.e., compile time). A compiler can easily intercept
dynamic memory allocation information by inserting a wrap-
per function around eachmalloc. Hints are encoded into
the program binary and loaded before program execution.
Strictly being “hints,” our data affinity information causes no
harm if the OS and the hardware do not support any cache-
level data affinity optimization. SOS simply falls back to
the plain shared cache scheme. We note that partitioning the

Virtual Address

VPN Offset

=

PPN Offset BIN TID

OffsetPPN

VPN PPN TID BIN

Address to L2

Phys. Addr. to Memory

TLB entry

Figure 7. Each TLB entry is augmented with tile ID (TID) and
cache bin (BIN) fields. These two fields together with the higher
bits from the page offset are used to index the L2 cache. The L2
cache tag field is extended to accommodate the full-length PPN.
Page locations in the L2 cache and in the memory are decoupled.
Similar mechanisms have been previously used [16], [25].

data at page granularity has limited negative impact on the
performance as pages usually have uniform access behavior.

However, a slight change to the page table and the TLB
entries is required, as shown in Figure 7. In order to control
page placement in the L2 cache flexibly, the extra tile ID
(TID) and the cache bin index (BIN) fields are attached
to the page table and the TLB entries. Values for these
two fields are determined at the time of page faults by the
OS using hints. If a page does not have a matching hint
or the hint indicates it is a highly shared page, the lower
bits of the cache block address are used to generateTID
andBIN. Adopting the lower bits from cache block address
essentially distributes the whole page across tiles at cache
line granularity. On the other hand, if theTID andBIN values
are given in the hint (orBIN can be generated randomly
at run time to remove hot-spots), they are used to fill the
corresponding fields in the page table and the TLB entry.
Virtual address to physical address translation for memory
access is the same as before. However, the physical address
sent to the L2 cache needs special handling. Values in the
TID andBIN fields together with bits from page offset form
the cache index address as shown in Figure 7. The whole
PPN is used as cache tag. This is necessary to guarantee that
a given physical address uniquely maps to a cache block.

The presented extra fields incur a small storage overhead,
while offering the required flexibility for SOS. Assuming a
16-tile CMP with 128KB 8-way associative L2 cache slices,
TID and BIN are 4 bits and 1 bit respectively. This incurs
around 8% increase in the page table size (64-bit address).
The extra tag bits introduce less than 1% the cache area
overhead for a 64-byte cache line. TheTID andBIN values
are assigned at the page mapping time. They are persistent
until the page is replaced out of main memory. Therefore
there is no consistency issue, and no TLB flush is required.



Component Parameter

Processor Model in-order
Issue Width 2
L1 I/D Cache
Cache Line Size 64 B
Cache Size / Associativity 8 KB / direct-mapped
Load-to-Use Latency 2 cycles
L2 Cache
Cache Line Size 64 B
Cache Size / Associativity 128 KB / 8-way
Tag Latency 2 cycles
Data Latency 6 cycles
Replacement Policy Random
Network on Chip
Topology 4�4 2D mesh
Hop Latency 3 cycles
Main Memory Latency 300 cycles

Table I
BASELINE ARCHITECTURE CONFIGURATION.

IV. EVALUATION

A. Experiment setup

To evaluate SOS, we constructed a detailed CMP memory
system simulator by extending the Simics [28] timing in-
terface. It models a 16-tile CMP with a 4�4 2D mesh on-
chip network as shown in Figure 2. Each tile has a two-
issue in-order processor and private L1 instruction and data
caches. The distributed L2 cache slices are shared across the
chip. Cache coherence is enforced by a distributed directory-
based coherence protocol with MESI states [20]. Network
contention is modeled within routers. Table I describes the
baseline architecture configuration. Our architecture param-
eters have been derived from recent multicore processors
with “light” processor cores [4], [15], [18] as we explore
a relatively large-scale processor with 16 tiles. The extra
level of page address translation as described in Figure 7
is done in the simulator to avoid the OS modifications.
The simulator is responsible for maintaining the translation
table and looking up the target tile ID when a virtual page
number is given. Likewise, data affinity hints are fed into the
simulator directly. The overhead of making affinity decision
in the OS is a small one-time cost and is ignored in our
evaluation.

We experiment with 12 programs from the SPLASH-2
benchmark suite [27] and 2 programs from the PARSEC
benchmark suite [24]. They are listed in Table II with
associated inputs. There are a number of reasons for picking
up these programs. First, since the experiment involves
page placement actions, most of which are done at the
very initial stage of program execution, it is necessary
to simulate the programs from the beginning to the end.
That is, “fast forwarding” is not an option. Given the slow
speed of a detailed CMP simulator, we were not able to
simulate very large applications. Second, in this work we
manually replace dynamic memory allocation function calls
in the source code by wrapper functions to capture dynamic

Program Small Median Large

barnes (particle) 16K 32K 64K
cholesky tk15.O tk16.O tk29.O
fft (point) 256K 1M 4M
fmm (particle) 16K 32K 64K
lu (matrix) 512 1024 2048
ocean (grid) 258 514 1026
radiosity test room largeroom
radix (key) 4M 8M 32M keys
raytrace teapot car balls4
volrend scaled4 scaled2 head
water-ns (molecule) 512 1000 2744
water-sp (molecule) 512 1000 4096
blackscholes (option) 64K 128K 256K
swaption (swaption) 4K 8K 16K

Table II
BENCHMARKS WITH SMALL , MEDIAN AND LARGE INPUTS.

memory allocations instead of implementing a full-blown
compiler. This method works well for C programs. Third,
our main focus in this work is on multithreaded applications.
The SPLASH-2 and the PARSEC benchmark suites are the
most commonly and widely used programs in the research
community today. In order to evaluate the generality of the
proposed approach, we pick three different input sets for
experiments. We use the small input set to collect traces, and
then use the median and large input sets to report results.

We evaluate and compare the shared cache (L2S), the
private cache (L2P), the victim replication scheme (L2VR)
and the page coloring scheme using hints provided by SOS
(L2H). Finally, they are compared with our SOS scheme
(SOS). SOS not only provides hints about which data are
private and where they should be placed, does it also suggest
which shared pages are beneficial to have data replicated
at run time and which should not. A data replication cost
analysis can be employed to derive the information. For
instance, both high data temporal locality and read-to-write
ratio can offer good indication for triggering/suppressing
data replication. In this study, however, we simply consider
all shared data as the replication candidate.

B. Results

1) Hint accuracy: The first set of results demonstrate
the efficacy of the proposed data access pattern recognition
algorithm. Figure 8 shows the breakdown of the L2 cache
accesses of the studied benchmark. We do not show the part
for the Dominant Owner pattern as it is almost negligible.
In case ofcholesky, the algorithm recognizes that around
15% of the total accesses exhibit the Private Scatter pattern.
Nearly 80% of the total accesses come from the shared
data areas. These numbers are consistent with the profile
result presented in Figure 1 (shown in Section I). Other
benchmarks such asraytrace, volrend, water-nsquared
andwater-spatial also have a very large number of accesses
to shared data. This is aligned to the data structures of
these programs—they naturally have a lot of data sharing.
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Figure 8. Breakdown of L2 cache accesses based on the classified pattern types (median input set).

Program
Small Median

Accuracy Coverage Accuracy Coverage

barnes 82.1% 47.8% 84.6% 43.3%
cholesky 82.9% 7.3% 85.9% 9.0%
fft 96.1% 53.7% 99.0% 69.4%
fmm 88.2% 28.1% 90.2% 28.5%
lu 96.7% 77.1% 98.3% 87.4%
ocean 99.0% 48.9% 98.7% 52.5%
radiosity 97.7% 26.8% 96.6% 33.5%
radix 90.4% 69.0% 66.1% 54.3%
raytrace 68.4% 7.9% 31.7% 3.9%
volrend 80.4% 9.7% 79.6% 8.0%
water-ns 45.0% 25.2% 45.0% 25.7%
water-sp 67.2% 16.6% 67.2% 17.2%
blackscholes 83.7% 34.2% 60.6% 29.8%
swaption 60.8% 44.8% 61.7% 47.3%

Table III
PATTERN RECOGNITION ACCURACY AND COVERAGE.

In contrast, fft, lu, ocean, radix and swaptions exhibit
abundant private data accesses that are captured by our
algorithm. Overall, the recognized patterns represent more
than 50% of the total L2 accesses.

To further examine the effectiveness of the hints derived
by SOS, we collect the access histogram of each page and its
page location suggested by the hints during the simulation.
The data affinity hint is considered “accurate” and a page
is considered “accurately colored” if the predicted local
processor accesses the page the most as indicated by the
hint. We define thehint accuracyas the ratio of the number
of accurately colored pages to the total number of colored
pages. Note that we do not count the shared pages in
this calculation. The accuracy metric measures how good
our algorithm is at identifying and representing the access
patterns. We define another metric calledcoverage, which
is the ratio of the number of accesses to the “accurately
colored” pages and the total L2 cache accesses. This metric
helps us to understand how much impact our affinity hints
would have on the overall L2 cache accesses. Table III
shows the results with the small and median input sets.
The hints derived by SOS achieve a high accuracy of over
80% in most cases. The exceptions areraytrace, water-ns,
andwater-sp. These programs use complex data structures
such as trees and 3D matrices during computation. Data

structures are updated constantly, leading to manymallocs
and frees, which poses a challenge for our current offline
pattern analysis framework.

The coverage varies from program to program. Some
programs such aslu, ocean, and radix have good data
affinity and well recognized data partitions, thus achieving
a high coverage ratio. Others such ascholesky, raytrace,
andvolrend have low coverage. This means the cache access
patterns of major data regions are not recognized since they
are widely shared by threads. Interestingly, the accuracy and
coverage of median input set and those of small input set are
very close. This proves that the hints provided by SOS are
stable across different input sets. In some cases, the accuracy
and coverage are even higher for the median input set even
though the hints are derived from the small input set. This
can happen because the target data area becomes larger with
the median input set, capturing relatively more accesses. We
do not show the result for the large input set because the
result is nearly identical to that of the median input set.

2) Performance improvement:Let us turn our attention
to the program performance and behavior on the studied
machine architecture. Figure 9 shows the normalized exe-
cution times of the five cache management schemes for the
small, median and large input sizes as given in Table II.
Execution time is normalized toL2S, the baseline design.
Since we derive the hints from small input, Figure 9(a)
provides a measure of how our hints perform under ideal
situation. Comparing the results in Figure 9(a), (b) and
(c), it is obvious that the relative performance of these
schemes change little with different input sizes. One major
reason is that many of these examined benchmarks are
well optimized and have relatively small working set sizes
that do not scale with the benchmark input. This explains
why L2P performs better thanL2S most of the time. The
results also demonstrate that our offline pattern recognition
algorithm performs robustly for different input sizes asL2H
consistently provides around 10% performance improvement
overL2S. This proves that our proposed algorithm captures
existing program access patterns effectively. The patterns are
stable and help color memory pages correctly even with
changed input. In the following discussions, we will use
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Figure 9. Execution time with (a) median and (b) large input set. Results are normalized to those of the shared cache scheme (L2S).

results with the median input set unless otherwise noted.

Let us take a look at Figure 9(b) in more detail. First,
L2P performs considerably better thanL2S due to the small
program working set size. The exceptions arecholesky,
ocean, raytrace and volrend, where data sharing is rela-
tively high. For the same reason,L2VR is also very effective,
achieving around 11% execution time improvement over
L2S and similar toL2P on average.L2VR brings the L2
cache access latency close toL2P through replication.L2H
approaches the performance ofL2P and L2VR very well,
achieving 10% execution time improvement overL2S. The
improvement ofL2H comes from the optimized data affinity
for those data used mostly by one thread. No effort is made
by L2H to tackle highly shared data. When hints are used
to direct data replication,SOS improves performance by

nearly 9% overL2VR andL2P. It marks 19% performance
improvement overL2S. These results demonstrate that
L2H is complementary to other hardware-based optimization
techniques. When hints are used to control both private
data placement and shared data replication,SOS removes
unnecessary replications by allocating private data locally in
L2 cache. This helps reduce the cache pressure significantly,
resulting in fewer off-chip accesses. On the other hand,
L2VR cuts the remote access latency ofL2H by duplicating
shared data in local L2 cache.SOS entertains the advantages
of both private cache and shared cache schemes.

3) Miss rate comparison:Figure 10 provides more in-
sights about the performance difference in Figure 9(b). It
shows the ratio of total number of off-chip reads to the
total number of L2 accesses. In general,L2P incurs more
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Figure 11. Number of remote L2 data requests of the three shared cache variants:L2VR, L2H, andSOS, normalized to that ofL2S.

off-chip accesses thanL2S due to conflict misses caused
by smaller effective L2 cache size. In case ofcholesky,
ocean, raytrace and volrend, L2S performs better than
L2P because the gain of more on-chip accesses inL2S is
large enough to compensate for the loss in longer remote
access latency. However, the margin is very small for the
rest of the benchmarks.L2VR increases the cache pressure
even more thanL2P as it has to duplicate private data that
are blindly distributed inL2S. This explains whyL2VR
has worse performance thanL2P in Figure 9(b).L2H has a
comparable off-chip access rate asL2S since it is basically
the shared cache with improved data locality.SOS mitigates
the cache pressure ofL2VR by correctly placing the private
data. It effectively improves the L2 cache miss rate ofSOS
to closely match that ofL2S. However, unlikeL2P, SOS
writes back the modified cache line directly to its home node.
This eliminates the need for expensive three-way cache-to-
cache transfer of modified data when requested later by other
threads.

4) Remote access reduction:The other determinate factor
of the distributed shared cache performance is the L2 cache
access latency which is affected by the number of remote ac-
cesses. Figure 11 shows the number of remote data requests
for L2S and its variantsL2VR, L2H andSOS, normalized
to that of L2S. These four schemes have a similar number
of L1 misses. Therefore, the more remote L2 data requests
there are, the longer the average L2 access latency. Figure 11

shows thatL2VR effectively removes nearly 60% of the
remote accesses ofL2S by duplicating clean L1 victims
in the local L2 cache slice. However, the remote access
reduction comes at the sacrifice of the decreased L2 cache
hit rate as shown in Figure 10.L2H has on average 40%
less remote accesses thanL2S without any compromise in
the L2 cache hit rate, since it essentially rearranges the data
distribution ofL2S. BecauseL2H only optimizes the private
data whileL2VR replicates any clean data blocks, it has
less remote access reduction thanL2VR. Surprisingly,SOS
eliminates over 85% the remote accesses ofL2S on average.
There are two reasons for this result. First,SOS reduces the
number of remote accesses by correctly distributing data in
the local L2 cache in the first place. This also eliminates the
need for replicating those data as inL2VR. Second, a smaller
amount of victim replication leads to lower cache pressure,
which in turn preserves more replications of shared data in
the local L2 cache.

V. CONCLUSIONS

This paper proposed and studied SOS, a new software-
oriented shared cache management approach for CMP archi-
tectures. We make the following contributions in this paper:� We carried out a classification of the memory access

patterns for latency-oriented multithreaded applications.
Based on that, we proposed an efficient software-
oriented shared cache management method, which is



substantially different from existing hardware-based
schemes. Our approach is orthogonal to the hardware
schemes, and can work together with them for even
higher performance.� We proposed a novel memory access pattern recogni-
tion algorithm based on the K-means clustering method.
Our results show that the algorithm works well in
recognizing those commonly seen access patterns for
dynamic memory regions. The recognized patterns are
independent across program inputs and can be used for
multiple runs. This makes our scheme very flexible as
the offline analysis needs be done only once at compile
or profile time.� We evaluated the proposed scheme and compared it
with the shared cache, the private cache, and their
variants. We showed that by applying the hints to guide
page coloring and data replication on the shared L2
cache, it performs significantly better than both the
shared cache and the private cache.

Our future work includes (1) exploring the access patterns
for throughput-oriented workloads; and (2) exploiting more
sophisticated access patterns to fully uncover the potential
of our software-oriented cache management approach.
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