SOS: A Software-Oriented Distributed Shared Cache Managemnt Approach
for Chip Multiprocessors

Lei Jin and Sangyeun Cho
Department of Computer Science
University of Pittsburgh
Pittsburgh, USA
Email: {jinlei,cho}@cs.pitt.edu

Abstract—This paper proposes a new software-oriented ap- memory access time, efficient management of the on-chip
proach for managing the distributed shared L2 caches of a cache hierarchy is critical to the CMP performance.
chip multiprocessor (CMP) for latency-oriented multithreaded Conventional distributed cache organizations are the

applications. The conventional shared cache scheme loses .
performance due to the blind distribution of data predomi- shared cache [14], [18], [22], [26] and the private cache [1]

nantly accessed by a single thread. SOS, oupnfiware-oriented [11], [30]. The shared cache provides a logically shared
distributed shared cache management approach, infers a pro- cache view out of physically distributed cache slices by in-
gram's data affinity hints through a novel machine learning terleaving consecutive cache blocks among them. While the
based analysis of its L2 cache access behavior. The OS UB& gp4ra(yse of all cache slices maximizes the cache capacity
the hints to guide proper data placement in the L2 cache I . o
with page coloring. The derived hints are independent of utlllzathn, the blind data dls.t.nbutlon of the shared qach
the program input and can be used for multiple runs. By ~ Makes its performance sensitive to the program location on
off-loading the cache management task onto software, SOS the chip and the program’s cache access pattern. Without
deviates substantially from previously proposed hardware g significant reduction of wire delays, the shared cache is
based strategies and opens up a new opportunity for the CMP pyi0sly not scalable to large-scale CMPs. The private
cache optimization. Our experimental results demonstratehat . . -
SOS is very effective in reducing the number of remote cache Cache avoids excessive remote accesses by always keeping
accesses. By using the hints for gu|d|ng page Co|0ring a|0ne COpIeS Of the accessed data bIOCkS n the processor’s |0ca|
SOS achieves an average speedup of 10% and up to 23% over cache slice. Each processor becomes an autonomous unit,
theI'ShEti'Lend %a(gge SSeCChuizse-a\r/]VZ%ndizmz Iaree r?gfrgafcgiregitndi;a making the CMP easier to scale. However, uncontrolled data
replication, ot i ; TR -
9(%, performing 19% better than the shargd cache schgme on repllcathn an_d strict capacity partitioning I_eafj to S_fgmnt
average. under-utll|zat|on of_ the total cache ca_lpamty, the inceshs
miss rate can easily offset the benefit of low-latency local
Keywords-CMP; NUCA; OS; Page Coloring; Performance; accesses.
Many recent proposals try to combine the advantages
|. INTRODUCTION of these two basic schemes [2], [5]-[7], [34]. While the
previous proposals improve on the baseline shared and
Chip multiprocessor (CMP) architectures integrate mldtip private cache organizations, they have common drawbacks:
relatively simple processors on a single chip to explogdlar performance benefits come with the introduction of complex
level parallelism, unlike previous single-core architees and potentially expensive hardware structures. Furthegmo
that depend on complex hardware to extract instructionhardware-based schemes are typically optimized for a spe-
level parallelism [3], [23], [29]. CMP architectures have cific cache access patterns and may not perform well for the
advantages over single-core architectures in terms ofjdesi programs lacking such patterns. Finally, centralized hard
complexity, performance scalability and power efficiency.ware structures in some proposals may create performance
However, integrating multiple processors on a single chipbottleneck for large-scale CMP architectures.
dramatically increases the pressure on the memory subsys-In this work, we propose SQ% novel software-oriented
tem [13], and designing an effective on-chip memory hierar-approach for managing the NUCA L2 cache of a CMP to
chy remains a challenge. Researchers have paid consideralihprove the performance of latency-oriented multithrehde
attention to the last-level cache design, which tends t@ havapplications. By off-loading the cache management task
large capacity and is broken into smaller slices (or bankspnto software, SOS can exploit a program’s cache access
distributed across the chip. Increasing wire delays causbehaviors that are hard to capture and exploit with hardware
the Non-Uniform Cache Architecture (NUCA) to become mechanisms. SOS employs an one-time profiling of a pro-
an inevitable choice [17]. With the variable cache accesgram (at compile time) to characterize effective data aces
latency introduced by NUCA and very slowly improving patterns using the K-means clustering algorithm. The gen-

0, —
100% o Y o Y

=4 Total Sharer#

80% |-

Concurrent Sharer#

— L Processing||Private
- hi_hi_ Element |[L1 I/D$

e O\ (] Shared L2$
i |
[)))

60% |-

40% |

20% |-

Cumulative Percentage of Total Accesses

1

0% i1

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Sharers Figure 2. A tiled CMP architecture with a 2D mesh network.

for an offline analysis to derive data affinity hints and guide
Figure 1. Data sharing behavior atholesky at page granularity. ~run-time data placement and data replication.
The two curves capture the number of memory references to a In what follows, we first summarize related work in
page shared by a different number of threads. For the dasecur gection 11. We present SOS at length in Section IIl, with

(“total sharer #"), the number of sharers is determined dier . : .)
entire program run. For the light curve (“concurrent sha#®y the a particular focus on how to recognize and exploit the com

number of sharers is determined at any instant when an aicess MON memory access patterns in multithreaded applications,
made. followed by detailed evaluation results in Section 1V. Hiya

ection V concludes. Without a special note, we assume a
e-based CMP architecture organized in a442D mesh
hetwork throughout this paper, as shown in Figure 2.

erated data affinity hints, independent of the program i,nputﬁI
are opportunistically used to guide the OS page coloring fo
improved data locality. To the best of our knowledge, our
work is the first to study a software-oriented NUCA cache
management strategy for latency-oriented multithreaged a
plications. Moreover, SOS is orthogonal to other hardwarezhang and Asanovic [34] proposed the “victim replication”
schemes and can be used in combination with synergy. OWcheme based on a shared L2 cache organization, where
experimental results demonstrate that by using hints tdegui each L2 cache slice can replicate remote cache lines replace
page coloring alone SOS performs 10% better than thérom its local L1 cache. Essentially, L2 cache slices previd
shared cache on average and up to 23% for the benchmagarge victim cache space for the cache blocks whose home
programs studied. When data replication is enabled angdre remote. However, excessive replication can increase
guided by SOS, it brings an additional performance gairconflict misses considerably. Beckmann et al. [2] proposed
of 9%, performing 19% better than the shared cache om controlled victim replication design called “ASR,” which
average. tries to reduce cache pollution caused by excessive replica
This work has been motivated by our observation thation. In order to measure the best replication level, their
much of the shared data in a program are accessed eithdesign employs a set of tables within each processor to
predominantly by a single thread or by almost all the proceskeep track of the performance gain and loss according to
sors; moreover, such behavior for a given data object doescreasing or decreasing replication. These tables coasum
not change significantly with the program input. Figure 1, asconsiderable chip area. The ASR scheme also relies on a
an example, presents the data sharing behavicholesky ring network and a broadcast-based coherence protocd. Thi
from the SPLASH-2 benchmark suite [27]. Nearly 17% of limits it from scaling up to a large CMP. Chishti et al. [6]
the total references are shown to go to pages predominantfyroposed a cache design called “CMP-NuRAPID” having a
accessed by a single thread. At the top right of the plot, wéaybrid of private per-processor tag arrays and shared data
also identify around 40% of the total references accessingrrays. Based on the hardware organization, they studied a
pages that are shared by all threads. We find this “zigzagseries of optimizations, such as controlled replication, i
pattern common in the SPLASH-2 programs. Indeed, thisitu communication, and capacity stealing. Compared to the
is intuitive as parallel programs often involve partitidne shared cache, however, CMP-NuRAPID requires much more
data processing (private data) and global synchronizationomplex cache management hardware. Chang and Sohi [5]
and data exchange (highly shared data). It is desirable tproposed a “cooperative caching” framework based on a pri-
place private data in the requester’s local cache bank earlyate cache design with a centralized directory. They studie
to avoid remote accesses. On the other hand, it is beneficiaptimizations such as cache-to-cache transfer of cleaa dat
to replicate highly shared data or fetch them from neighborseplication-aware data replacement, and global replaneme
nearby. This observation uncovers an excellent oppostunitof inactive data. However, the complex central directory

Il. RELATED WORK

limits its scalability. Finally, Cho and Jin [7] proposed am- One-time Profiing & Analysis
chip cache management framework where memory data c
be dynamically placed into any cache slice. By increasin
the data mapping granularity from memory block to memor
page, they showed that the OS memory management mod
can be conveniently extended to handle the task of ol
chip L2 cache management. Their work, however, does n
specifically study how to achieve high program performanc Reiggj{tﬁ‘on cluster info II
when such a flexible data mapping mechanism is provide
The problem of tackling non-uniformity in L2 cache
latencies bears similarity to the problem of attacking dis Using Hints at Run Time for Different Inputs
parate memory latencies in distributed shared memory mt
tiprocessors such as the Non-Uniform Memory Architectur
(NUMA) or Cache-Only Memory Architecture (COMA) —
machines [12]. Because the ratio between local memo
accesses and remote memory accesses will largely determine

the application performance in such a machine, it is of_.

. .) Figure 3. The one-time profiling and data access pattern analysis
utmost importance to improve the data locality at the levekiow (upper box) and the hint exploitation flow (lower box) dS.
of distributed main memory by carefully placing, migrating

and replicating pages [8]-[10], [19], [21], [31]-[33]. Our peels off the hints from the binary and uses the information
work is most similar to the hardware profile-guided pagewhenever a new memory page mapping event occurs.
placement scheme proposed by Marathe and Mueller [21]. In this section, we first examine the common data ac-
In their work, a truncated version of the program code iscess patterns found in multithreaded applications. We will
profiled before program execution. The sampled memorghen discuss in detail the data access pattern recognition
access trace is then used to decide the affinity for eachlgorithm of SOS and how the resultant data affinity hints
touched page. This method has several limitations that ware exploited to guide the OS cache management decisions.
overcome in this work. First, it requires program profiling Finally, we will discuss the architectural support for SOS.
before each execution. The quality of the truncated code o
is crucial to the accuracy of the affinity information. Auto- A. Access pattern classification
matically generating the representative code for the wholdhe memory footprint touched by a program can be gen-
program is shown to be difficult. Furthermore, they assumeeralized intostatic data regionand dynamic data region
that dynamic memory allocation returns the same addresSlobal variables and data structures are those used to track
in both the profiling execution and the normal programprogram-wide information, to synchronize and to exchange
execution. This assumption is not always true and could hurdata among threads. They are often assigned statically.
the program performance significantly when the assumptioifhe locations and sizes of these data are known prior
does not hold. SOS only profiles and analyzes the tracto the program execution. This determinism makes offline
once at compile time. The generated hints are independeaffinity analysis for static data straightforward. Dataidies
of the program input and can be used for multiple runsa dynamic data region plays an important role in large-scale
Moreover, the run-time system can decide (for any reasonarallel programs. Often it is necessary to allocate memory
to skip optimization and simply fall back to the baselineregions dynamically since the varying input sets prohibit
shared cache scheme. programs from claiming the memory space staticAltglloc
is a typical library function to dynamically allocate memor

. SOS SCHEME regions in the C language. We uswlloc in this paper as
Figure 3 depicts the two major stages of the proposed SO®e indication of dynamic allocation in general. Dynamic
scheme: the one-time profiling and data analysis phase ardhta are usually the target of computation and tend to
the hint exploitation phase. In the first phase, SOS profiles he accessed more frequently than static data. Accordingly,
given program’s L2 cache accesses with a test input. Basgatrecise distribution of dynamic data can have a large impact
on the collected traces, access histograms are constifocted on the overall program performance. For this reason, we
each page (buckets in each histogram count accesses frdocus our discussion of data access patterns on the dynamic
different processors). Then K-means clustering algorithm data region. The programs we examined are selected from
applied on those per-page access histograms to derive pa§®LASH-2 and PARSEC benchmark suites.
clusters. Given the page cluster information, SOS finally In this work, we classify a program’s data access patterns
determines the patterns for dynamic and static data arehs amto: Even Partition Scattered Dominant Owner Small-
attach those hints to the binary. At run-time stage, the OEntity, and Shared and examine each in the following.

1

Small input

malloc 1 ﬁl

L2 access trace

Construct
Page Access

Profiling Histogram

I

malloc() info

I Initial centroids:

A,
Hints

Page
Coloring

malloc info

Binary

‘ Thread 0 ‘ ‘ Thread 1

| I eSS i ead [Procio] -
(a) for(i =0; i < Size[i]; i++)
ArrayPtr[ProcNo][i] =i;
[o [TS o [+ TENST[o [+ IENCS][o [NS _ _
(©) Note howProcNoplays a role in addressing array elements.
Figure 4. An example of a dynamically allocated memory area pgtg placement of this pattern is simple as those in-order
shared by four threads evenly. allocated areas are exclusively accessed by each threagl usi

Even Partition: In many scientific programs, a large one- ProcNa This is the most common access pattern in the
dimensional data array is allocated at the beginning of thénultithreaded programs we examined. The representative
execution. The data array can be easily partitioned amongenchmarks that more or less exhibit this patterrbarees,
threads due to its regular structure. The array index igholesky, fmm, ocean, andradix.

commonly a function of thread ID and some loop indices.Dominant Owner: There are occasions when shared data
For example, the following code illustrates how the array is2réas are mostly accessed by only one thread. These memory

allocated by the main thread and how each thread access@&as are commonly allocated for auxiliary structures e th
its partition with its thread 1D RrocNo. main thread. They help record temporary information while

initialization progresses. We regard these areas as erivat
because it is logical to place these data in a tile, where they
are accessed the most. Benchmiatliosity is an example,

Mai n thread:
Array = malloc(sizeof(int) * NunProc * N);

sz:(eiad—[(F;-r OiCNZ] N i ++) which has a global data structure accessed a lot by the main
Array[ProcNo * N+ i] =i; thread.

. o Small-Entity: When the program data are organized by a
This access pattern leads to an even partitioning of theevholjjnked list, tree or graph, it usually involves intermitten

data array among threads, which presents a good opportuniyiscation and freeing of nodes. A small trunk of memory

to distribute data in the L2 cache as shown in Figure 4(a)grea can be repeatedly allocated and reclaimed by multiple
Sometimes data array accesses can be interleaved in a finggioc and free instances. This poses extreme difficulty

granularity, such as: for tracking memory usage and managing data at coarse
Thread [ProcNo]: granularity. Benchmarksholesky, raytrace and swaption
for(i =0; i <N i+ . show this behavior. Another representative case is a data

Array[i * NamProc + Procio] = i stack. On function calls and returns, the data stack expands

The corresponding data distribution pattern is shown inand shrinks accordingly. However, unlike the previous case
Figure 4(b) which is essentially the same as the previouthe ownership of stack data is explicit. This is because data
one. The compiler can always rearrange the data layout aritems in the stack are used as function parameters and local
transform it back to the pattern in Figure 4(a). Benchmarkwariables, which are almost always private to threads.

fft, lu and blackscholes have this kind of data access Shared: The last category contains all data areas that could
pattern. not be classified into one of the previous types. These areas
Scattered: At times, the workload assigned to each thread isare highly shared by multiple threads. No particular affinit
not balanced or the programmer chooses a separate memagttern can be found in these areas, or the pattern changes
area to allocate for each thread. Hence, unlike the “evenlinder different inputs. However, they can be further sepa-
pattern, the whole data set is scattered into multiple mgmorrated into read-only sharing or read-write sharing. Beeaus
regions. A common way to declare these regions is tdahe input change seldom affects the read/write behavior of
allocate memory area in the thread body. For example: the data, it is safe to mark regions of read-only sharing as

Thread [ProcNo] : repliqation candidates. _ .
Array = malloc(sizeof(int) * N); This work does not attempt to recognize all possible data
access patterns that may prove useful. By focusing on the

for(i =0; i <N i++) -
Array[i] =i; most frequently observed access patterns we presented in
))) this section, we aim to motivate SOS. We note that our study
Since the allocated memory area is exclusively accessed gyealed other more complex memory access patterns in the
the owner, the data distribution is straightforward. THe-al programs we studied. We leave the strategies to efficiently

cation can also be done in the main thread, especially whegiscover and exploit such patterns to our future work.
workload distribution is unbalanced or a multi-dimensiona

array is used. The following code depicts the scenario: B. Access pattern recognition

Mai n t hr ead: _ _ Our goal of this step is to derive data affinity hints for the
fA;:?int—ro-: Imi'<' %ﬁfnilr égOfl('JrE;) * NunProc); pages in dynamic regions, that can be used across different
ArrayPtr[i] = malloc(sizeof (int) * Size[i]): input sets and architecture configurations, such as diftere
cache sizes. In addition, choosing a flexible way to repitesen

these hints is important for this method to become effecti TO ‘ page 0 — page 3 ‘ CO‘ page 0,1, 2,3 ‘
It is relatively straightforward to provide hints for theait
data regions that are determined at compile time. Howe Tl‘ gl — e ‘
the location and size of a dynamic data region are unknc

until the malloc returns. Our strategy is to associate o
dynamic hint with eachmalloc instance, which can be T3_ C3_

identified uniquely by the file name, the line number @) (b)
source code, and the number of times it has been Ca"'1—"|gure 5. (a) An example of the even partition pattern. (b) Page

Every dynamic hint only expresses which pattern the areg|ysers after K-means clustering of the access histograms
allocated by thismalloc would exhibit, instead of giving

specific mapping details. Only at run time, when the addreswhere pages are accessed almost equally by all tiles.
and size of a dynamic area are determined, the actual page toNext, we want to recognize the patterns discussed in the
cache mappings are generated. These hints can be embeddgevious subsection based on the clustering result. The eve
in the program binary and loaded into the system beforgartition pattern is checked by counting the number of ‘righ
being utilized by the OS. When a page fault occurs, hintpages” in each cluster. For instance, suppose a dynamic
are consulted to derive the page location among the L2 cach@ange has 16 pages and the profiling is done on a 4-tile
slices. CMP. Figure 5(a) shows the desired even partition pattern,
The overall flow of the proposed SOS approach is illus-where each partition receives 4 pages. The clusteringtresul
trated in Figure 3. In order to analyze the access patternis given in Figure 5(b). As illustrated, the partitions may
of dynamically allocated memory regions, we profile thenot be perfectly even in reality. To recognize the pattern,
program with a small, reasonably representative input seve classify a cluster as fiting clusterif half of the pages
once. During profiling, we collect the L2 cache read tracefrom the desired partition range reside in the cluster. The
from each tile and the range of eachalloc instance. mallocis said to have the “Even Partition Pattern” if more
Then we process each reference from the trace by checkirthan 75% of all clusters are fitting clusters.
it against allmalloc ranges. The reference is a dynamic Recognizing the “Scattered Pattern” is similar, except tha
access if it falls into one of thenalloc ranges. Each page now we need to perform the clustering algorithm for all
within the mallocrange is associated with a counter vector.mallocinstances. As shown in Figure 6, thellocis called
When the page receives a reference from a tile, the countdeur times as it is defined in $or loop. The aggregated
corresponding to that tile is incremented. After the traae h space of these foumalloc ranges has 16 pages. The area
been processed, the vector of each dynamic page represeattocated by the firstnalloc is mostly accessed by tile 0.
the access histogram for all tiles. Each vector is normdlize The area allocated by the seconthlloc is used mainly
by the maximum counter value within K-means clustering by tile 1 and so on. If half of the pages in thmalloc
is then performed on these vectors for eachlloc range. range are assigned to the same cluster, the cluster number is

Cl‘ page 4, 6, 7 ‘

Partitions
Clusters

An example of the initial centroids for a 4-tile CMP is: checked against the number of times tiallocis called. If
™ (1, 0. 0, 0) more than half of the instances of the samalloc have the
CL (0. 1. 0. 0) matching cluster number, thisallocis defined to have the
C2 (0, 0, 1, 0) “Ordered Scattered Pattern.” Otherwise, thallocinstances
234 E? (1)' (1)' B might be called by the parallel threads. In such a case, the
T _ mallocis defined as “Private Scattered Pattern.” One special
The K-means clustering algorithm works as follows: case for the example in Figure 6 is tmaallocis only called
do (_ once and the majority of the pages in the range are assigned
1. Assign each vector to the nearest to the same cluster. This is a clear sign that iidloc has
cluster centroid based on Euclidean distance. « . "
2 Calculate distance between the vector and the the Dommant_Owner Pattern.” Lastly, if most of the pages
centroid as the error. o _ are clustered into the last groug4), the malloc is not
3. Accumulate the error for this iteration. associated with a recognizable pattern. It has the “Shared
4, Update the new cluster centroids by averaging "
vectors within each cluster. Paﬂern-)))
5. Calculate the error difference between Finally, the above algorithm can be applied to the static
the current and the last while iteration. pages in a program. In fact, the access pattern for each

whi l e(error difference > threshold . . L .
} () static page is deterministic and a simple page number to

After the clustering procedure finishes, each cluster é¢osta tile mapping can be used as a hint. For instance, when the
many vectors corresponding to pages in the dynamic menmumber of tiles is fixed, we can count the number of accesses
ory area. All pages in cluster @Q) are accessed mostly by from different tiles to determine which tile accessed a give
tile 0. All Pages in cluster 1G1) are accessed mostly by page the most. If the access count from a particular tile is
tile 1. This applies to all clusters, except the last o8d)(more than 50% of the total accesses, the page is assigned

co ‘page 01,23 ‘ CO‘ ‘ CO‘ ‘ CO‘ ‘ Virtual Address

4 Cl‘ ‘Cl‘ page 4, 6, 7 ‘Cl‘ ‘Cl‘ page 12 ‘

Cluste

1st malloc() call 2" malloc() call 3rd malloc() call 4th malloc() call
TLB entry

Figure 6. An example of the clustering results of four instance
the samemalloc

to that tile. Otherwise the page is marked as “Shared.

C. Hint exploitation

The recognized access patterns are encoded and embeun}yf,\dﬂIre 7. Each TLB entry is augmented with tile 1D (TID) and

into the program binary so that they can be exploitedcache bin (BIN) fields. These two fields together with the Bigh
during later program executions. Since hints for dynarhjical bits from the page offset are used to index the L2 cache. The L2

allocated data and static data are different, they are prege cache tag field is extended to accommodate the full-lengtk. PP
separately. Static hints give the target tile for eachsfage Page locations in the L2 cache and in the memory are decaupled

. . . ._Similar mechanisms have been previously used [16], [25].
explicitly, thus can be used directly at run time. Dynamic

hints Only tell the type of eactnallocinstance in the source data at page granu|arity has limited negative impact on the

code. They need to be translated into actual mappings whegerformance as pages usually have uniform access behavior.
the correspondingralloc returns the dynamic area range.

Even Partition Pattern: After the mallocreturns the range .
of the dynamic area, the space is divided into equal-sized However, a slight change to the page table and the TLB

. . S . entries is required, as shown in Figure 7. In order to control
pieces and then assigned to tiles in sequential order. ; . .
] L page placement in the L2 cache flexibly, the extra tile ID
Ordered Scattered Pattern: A counter with initial value - .
. . . . : (TID) and the cache bin indexB(N) fields are attached
of 0 is associated with each hint of this type. Every call

to the correspondingalloc triggers the assignment of the to the page table and the TLB entries. Values for these
P 9 99 9 two fields are determined at the time of page faults by the

dynamic area to the tile indexed by the counter value. Thera)S using hints. If a page does not have a matching hint

the counter is incremented. or the hint indicates it is a highly shared page, the lower
Private Scattered Pattern:If the hint indicates that enalloc . gnly page,
has this pattern, the returned area is assigned directlyeto t bits of the cache block address are used to gendrile

' andBIN. Adopting the lower bits from cache block address

tile, who calls thismallocinstance. : L :
Dominant Owner Pattern: For this pattern, the target cache essentially distributes the whole page across tiles atecach
) ' .line granularity. On the other hand, if tfiéD andBIN values

slice number comes with the hints. The allocated dynamic . : :
.) . are given in the hint (0oBIN can be generated randomly
area is assigned to the target tile.

Shared Pattern: By default, no effort is made to optimize at run t|me.to remove hot-spots), they are used to fill the
. . . . corresponding fields in the page table and the TLB entry.
for dynamic data regions in this pattern. All data are . .
_ i o . Virtual address to physical address translation for memory
distributed at cache line granularity instead of page size t

balance the L2 cache pressure. However, this can be a goc‘?&ceSS is the same as before. However, the physical address

. L . .~ sent to the L2 cache needs special handling. Values in the
hint for data replication to improve temporal data affinity. TID andBIN fields together with bits from page offset form

As _vve_correctly place private d‘.”‘ta’ Fhe amount of datathe cache index address as shown in Figure 7. The whole
replication and the resultant conflict misses can be reducelgPNiS used as cache tag. This is necessary to guarantee that

significantly. a given physical address uniquely maps to a cache block.
D. Architectural support

SOS requires minimal hardware modification. The pattern The presented extra fields incur a small storage overhead,
analysis and hint generation are done in software before ruwhile offering the required flexibility for SOS. Assuming a
time (i.e., compile time). A compiler can easily intercept 16-tile CMP with 128KB 8-way associative L2 cache slices,
dynamic memory allocation information by inserting a wrap-TID and BIN are 4 bits and 1 bit respectively. This incurs
per function around eacmalloc Hints are encoded into around 8% increase in the page table size (64-bit address).
the program binary and loaded before program executionThe extra tag bits introduce less than 1% the cache area
Strictly being “hints,” our data affinity information causseo overhead for a 64-byte cache line. ThE® andBIN values
harm if the OS and the hardware do not support any cachere assigned at the page mapping time. They are persistent
level data affinity optimization. SOS simply falls back to until the page is replaced out of main memory. Therefore
the plain shared cache scheme. We note that partitioning ththere is no consistency issue, and no TLB flush is required.

Component | Parameter [Program | Small [Median | Large
Processor Model in-order barnes (particle) 16K 32K 64K
Issue Width 2 cholesky tk15.0 | tk16.0 | tk29.0
L1 I/D Cache fft (point) 256K M aM
Cache Line Size 64 B fmm (particle) 16K 32K 64K
Cache Size / Associativityy 8 KB / direct-mapped lu (matrix) 512 1024 2048
Load-to-Use Latency 2 cycles ocean (grid) 258 514 1026

L2 Cache radiosity test room largeroom
Cache Line Size 64 B radix (key) am am 32M keys
Cache Size / Associativity) 128 KB / 8-way raytrace teapot | car balls4
Tag Latency 2 cycles volrend scaled4 | scaled2 | head
Data Latency 6 cycles water-ns (molecule) | 512 1000 2744
Replacement Policy Random water-sp (molecule) | 512 1000 4096
Network on Chip blackscholes (option) 64K 128K 256K
Topology 4% 4 2D mesh swaption (swaption) | 4K 8K 16K

Hop Latency 3 cycles

Main Memory Latency 300 cycles Table 11

BENCHMARKS WITH SMALL, MEDIAN AND LARGE INPUTS.

Table |
BASELINE ARCHITECTURE CONFIGURATION

memory allocations instead of implementing a full-blown
compiler. This method works well for C programs. Third,
our main focus in this work is on multithreaded applications
A. Experiment setup The SPLASH-2 and the PARSEC benchmark suites are the

To evaluate SOS, we constructed a detailed CMP memori'oSt commonly and widely used programs in the research
system simulator by extending the Simics [28] timing in- COMmunity today. In order_to evaluate. the ger_1eraI|ty of the
terface. It models a 16-tile CMP with ax4 2D mesh on- Proposed approach, we pick three different input sets for
chip network as shown in Figure 2. Each tile has a two-experiments. We use the small ir_1put set to collect tracas, an
issue in-order processor and private L1 instruction and datthen use the median and large input sets to report results.
caches. The distributed L2 cache slices are shared acmss th We évaluate and compare the shared cadl#s), the
chip. Cache coherence is enforced by a distributed dingctor Private cachel(2P), the victim replication scheme ZVR)
based coherence protocol with MESI states [20]. Network&nd the page coloring scheme using hints provided by SOS
contention is modeled within routers. Table | describes thdL2H). Finally, they are compared with our SOS scheme
baseline architecture configuration. Our architecturamar (SOS). SOS not only provides hints about which data are
eters have been derived from recent multicore processof¥ivate and where they should be placed, does it also suggest
with “light” processor cores [4], [15], [18] as we explore which s_hared pages are beneficial to have de_lta rephcated
a relatively large-scale processor with 16 tiles. The extrit run time and which should not. A data replication cost
level of page address translation as described in Figure ghalysis can be employed to derive the information. For
is done in the simulator to avoid the OS modifications.instance, both high data temporal locality and read-tdewri
The simulator is responsible for maintaining the transtati ratio can offer good indication for triggering/suppresgsin
table and looking up the target tile ID when a virtual pagedata replication. In this study, _however,_ we simply conside
number is given. Likewise, data affinity hints are fed inte th &l shared data as the replication candidate.
simulator directly. The overhead of making affinity decisio
in the OS is a small one-time cost and is ignored in ourB: Results
evaluation. 1) Hint accuracy: The first set of results demonstrate
We experiment with 12 programs from the SPLASH-2 the efficacy of the proposed data access pattern recognition
benchmark suite [27] and 2 programs from the PARSECalgorithm. Figure 8 shows the breakdown of the L2 cache
benchmark suite [24]. They are listed in Table Il with accesses of the studied benchmark. We do not show the part
associated inputs. There are a number of reasons for pickirfgr the Dominant Owner pattern as it is almost negligible.
up these programs. First, since the experiment involvetn case ofcholesky, the algorithm recognizes that around
page placement actions, most of which are done at th&5% of the total accesses exhibit the Private Scatter patter
very initial stage of program execution, it is necessaryNearly 80% of the total accesses come from the shared
to simulate the programs from the beginning to the enddata areas. These numbers are consistent with the profile
That is, “fast forwarding” is not an option. Given the slow result presented in Figure 1 (shown in Section I). Other
speed of a detailed CMP simulator, we were not able tdenchmarks such asaytrace, volrend, water-nsquared
simulate very large applications. Second, in this work weandwater-spatial also have a very large number of accesses
manually replace dynamic memory allocation function callsto shared data. This is aligned to the data structures of
in the source code by wrapper functions to capture dynamithese programs—they naturally have a lot of data sharing.

IV. EVALUATION

100%

% |-
80% m Static

60% - W Private Sc.
Ordered Sc.

40% m Even Par.

M Shared

20% |-

0%

Breakdown of Accesses by Type

+ © QD - ™ v N Q& N O
FCNC N R R A -\+‘«§ K @@ & & &
& S & D C & : g =K & $©
& & S &o”" ,\QS & & & @ &
X & S K K Ny S
Figure 8. Breakdown of L2 cache accesses based on the classifiednpgipes (median input set).
Program Small Median structures are updated constantly, leading to maaylocs
Accuracy | Coverage | Accuracy | Coverage - p Y; g .
barnes 321% 778% 81 6% 733% and frees, whlqh poses a challenge for our current offline
cholesky 82.9% 7.3% 85.9% 9.0% pattern analysis framework.
fft 96.1% 53.7% 99.0% 69.4% i
fmm 88,200 28 10¢ 90,29 28.50% The coverage varies from program to program. Some
lu 96.7% 77.1% 98.3% 87.4% programs such adu, ocean, and rad|?<_ have good dlata!
ocean 99.0% 48.9% 98.7% 52.5% affinity and well recognized data partitions, thus achigvin
iosi 0, 0, 0, 0, . .
radiosity 97.7% | 26.8% | 96.6% | 33.5% a high coverage ratio. Others such @®lesky, raytrace,
radix 90.4% 69.0% 66.1% 54.3% ;
raytrace 68.4% 7.9% 31.7% 3.9% andvolrend ha_/e low coverage. This means thg cach_e access
volrend 80.4% 9.7% 79.6% 8.0% patterns of major data regions are not recognized since they
water-ns 45.0% 25.2% 45.0% 25.7% i i
water-sp 67 200 669 67 200 17 o0 are widely share(_j by_ threads. Interestingly, the a_ccurady a
blackscholes| 83.7% 34.0% 60.6% 59.8% coverage of m§d|an input set and t.hose of s_mall input set are
swaption 60.8% 44.8% 61.7% 47.3% very close. This proves that the hints provided by SOS are
Table 1Ii stable across different input sets. In some cases, theamcur
PATTERN RECOGNITION ACCURACY AND COVERAGE and coverage are even higher for the median input set even

though the hints are derived from the small input set. This

can happen because the target data area becomes larger with
In contrast,fft, lu, ocean, radix and swaptions exhibit the median input set, capturing relatively more accesses. W
abundant private data accesses that are captured by oge not show the result for the large input set because the
algorithm. Overall, the recognized patterns representemorresult is nearly identical to that of the median input set.

than 50% of the total L2 accesses. 2) Performance improvement:et us turn our attention

To further examine the effectiveness of the hints derivedo the program performance and behavior on the studied
by SOS, we collect the access histogram of each page and isachine architecture. Figure 9 shows the normalized exe-
page location suggested by the hints during the simulatiorcution times of the five cache management schemes for the
The data affinity hint is considered “accurate” and a pagesmall, median and large input sizes as given in Table II.
is considered “accurately colored” if the predicted localExecution time is normalized tb2S, the baseline design.
processor accesses the page the most as indicated by t8ace we derive the hints from small input, Figure 9(a)
hint. We define thédnint accuracyas the ratio of the number provides a measure of how our hints perform under ideal
of accurately colored pages to the total number of coloredituation. Comparing the results in Figure 9(a), (b) and
pages. Note that we do not count the shared pages ift), it is obvious that the relative performance of these
this calculation. The accuracy metric measures how goodchemes change little with different input sizes. One major
our algorithm is at identifying and representing the accesseason is that many of these examined benchmarks are
patterns. We define another metric calleaverage which well optimized and have relatively small working set sizes
is the ratio of the number of accesses to the “accuratelyhat do not scale with the benchmark input. This explains
colored” pages and the total L2 cache accesses. This metnighy L2P performs better thah2S most of the time. The
helps us to understand how much impact our affinity hintsesults also demonstrate that our offline pattern recagniti
would have on the overall L2 cache accesses. Table llalgorithm performs robustly for different input sizesla2H
shows the results with the small and median input setsconsistently provides around 10% performance improvement
The hints derived by SOS achieve a high accuracy of oveoverL2S. This proves that our proposed algorithm captures
80% in most cases. The exceptions exgtrace, water-ns, existing program access patterns effectively. The pattera
andwater-sp. These programs use complex data structurestable and help color memory pages correctly even with
such as trees and 3D matrices during computation. Datahanged input. In the following discussions, we will use

o 120% -
= 100% |
k<]
5 80%
3
X 60% ||
°
@ 40% H
2
£ 20% -
S
Z 0%
x o - & ® 5 > > N
Ko & riob RS) o4 & +® S s &
& & Q& 4 S NS & @ S
R S N o & & 5 O)
& & & & & & 5
& & &4\ O K
(a)
qE.>120% r
= 100% |-
5
S 80% -
Q
L% 60% -
§ 0% |-
TE" 20% |-
)
© N- ™ ™
6"/ & ‘&f‘/@ AV & e @0&
<@ %\S & » S 9\6
.o’b' O\QJ &o
& &
o 120% -
£
= 100%
5
k= 80% H
Q
L 60% |
nj
B 40% H
N
T 20%
£
S o
o Q> ©
a}’b‘ dg, ({\@ @g)b‘ > \9’1/ Qoo@
\(\Q’ e\S c\@ » "§ .6\
2 N & S
QO <:'Q() o 6\0

Figure 9. Execution time with (a) median and (b) large input set. Resate normalized to those of the shared cache scheg®).(

results with the median input set unless otherwise noted. nearly 9% ovelL.2VR andL2P. It marks 19% performance
)] ~__ improvement overL2S. These results demonstrate that

Let us take a look at Figure 9(b) in more detail. First,| o4 js complementary to other hardware-based optimization
L2P performs considerably better tha@S due to the small gchniques. When hints are used to control both private
program working set size. The exceptions af®lesky, gata placement and shared data replicat®®S removes
ocean, raytrace and volrend, where data sharing is rela- ,nnecessary replications by allocating private data lpdal
tively high. For the same reasdrgVR is also very effective, | 5 cache. This helps reduce the cache pressure significantly
achieving around 11% execution time improvement OVehesulting in fewer off-chip accesses. On the other hand,
L2S and similar toL2P on averageL2VR brings the L2 | 5yR cuts the remote access latencyL@H by duplicating

cache access latency closelP through replicationL2H ghared data in local L2 cach®OS entertains the advantages
approaches the performance IdP and L2VR very well, o poth private cache and shared cache schemes.
achieving 10% execution time improvement ov@S. The

improvement oL2H comes from the optimized data affinity =~ 3) Miss rate comparisonFigure 10 provides more in-
for those data used mostly by one thread. No effort is madsights about the performance difference in Figure 9(b). It
by L2H to tackle highly shared data. When hints are usedshows the ratio of total number of off-chip reads to the
to direct data replicationSOS improves performance by total number of L2 accesses. In geneta?P incurs more

80%

60%

40%

20%

Aggregated L2 Miss Rate

0%

Figure 10. Aggregated L2 cache miss rates with the median input set.

100%
4 mL2s
£ 80% | L2VR
2 ° mL2H
o
5 eo% sos
@ 0
S
5 40%
Qo
E
Z 20%
el
()
N
3 0%
£ u ™ Q N\ N
5 o & S o & & & & & B & S & &)
& ¢ Q;‘b@. N ‘\&@ N & & & > & S ° & & é\’Q\/ Q-\\OQ
N o & G & @ @ N @
& & N © & R & =

Figure 11. Number of remote L2 data requests of the three shared caclatgal2VR, L2H, and SOS, normalized to that of.2S.

off-chip accesses thah2S due to conflict misses caused shows thatl 2VR effectively removes nearly 60% of the
by smaller effective L2 cache size. In case abfolesky, remote accesses &f2S by duplicating clean L1 victims
ocean, raytrace and volrend, L2S performs better than in the local L2 cache slice. However, the remote access
L2P because the gain of more on-chip accessels2i@ is reduction comes at the sacrifice of the decreased L2 cache
large enough to compensate for the loss in longer remothit rate as shown in Figure 102H has on average 40%
access latency. However, the margin is very small for thdess remote accesses thaPS without any compromise in
rest of the benchmark&2VR increases the cache pressurethe L2 cache hit rate, since it essentially rearranges ttee da
even more thai.2P as it has to duplicate private data that distribution ofL2S. Becausd.2H only optimizes the private
are blindly distributed inL2S. This explains whyL2VR data whileL2VR replicates any clean data blocks, it has
has worse performance tha@P in Figure 9(b).L2H has a less remote access reduction th&VR. Surprisingly,SOS
comparable off-chip access rateld2S since it is basically eliminates over 85% the remote accesselsa8 on average.
the shared cache with improved data locaB@S mitigates = There are two reasons for this result. Fi®DS reduces the
the cache pressure b2VR by correctly placing the private number of remote accesses by correctly distributing data in
data. It effectively improves the L2 cache miss rateS&fS the local L2 cache in the first place. This also eliminates the
to closely match that oE2S. However, unlikeL2P, SOS need for replicating those data adi2VR. Second, a smaller
writes back the modified cache line directly to its home nodeamount of victim replication leads to lower cache pressure,
This eliminates the need for expensive three-way cache-towxhich in turn preserves more replications of shared data in
cache transfer of modified data when requested later by othéhe local L2 cache.

threads.
)) V. CONCLUSIONS
4) Remote access reductiomhe other determinate factor

of the distributed shared cache performance is the L2 cachENiS paper proposed and studied SOS, a new software-
access latency which is affected by the number of remote a@'iented shared cache management approach for CMP archi-
cesses. Figure 11 shows the number of remote data requedg§tures. We make the following contributions in this paper
for L2S and its variantd. 2VR, L2H andSOS, normalized « We carried out a classification of the memory access
to that of L2S. These four schemes have a similar number patterns for latency-oriented multithreaded application

of L1 misses. Therefore, the more remote L2 data requests Based on that, we proposed an efficient software-
there are, the longer the average L2 access latency. Fiqure 1~ oriented shared cache management method, which is

substantially different from existing hardware-based[12] J. L. Hennessy and D. A. PattersoGomputer Architecture
schemes. Our approach is orthogonal to the hardware A Quantitative Approach3rd Ed., Elsevier, 2003. _
schemes, and can work together with them for ever3] J. Huh, D. Burger, and S. W. Keckler. “Exploring the Dgsi
higher performance Space of Future CMPsProc. PACT pp. 199-210, Sep. 2001.

W d | tt [_14] Intel. “A New Era of Architectural Innovation Arrives it
¢ € prOPQSe a hovel memory access pa _ern recogn Intel Dual-Core ProcessorsTech.@Intel Mag. May 2005.
tion algorithm based on the K-means clustering methody; 5 |nte. Intel Atom Processor
Our results show that the algorithm works well in http://wwv. intel.conltechnol ogy/ at om
recognizing those commonly seen access patterns fqit6] L. Jin and S. Cho “Taming Single-Thread Program Perfor-
dynamic memory regions. The recognized patterns are mance on Many Distributed On-Chip L2 CacheBroc. ICPR
independent across program inputs and can be used for Sep. 2008.

multipl_e runs. Th_is makes our scheme very flexible Qs[l7] f g'vléi'rn;_géla;y [ﬁ,”mﬁ,i?ggvg’ n[\lé)hr: puggg[gg?crighissgfggre
the offline analysis needs be done only once at compile gt 2002.
or profile time. [18] P. Kongetira et al. “Niagara: A 32-Way MultithreadedaBp
« We evaluated the proposed scheme and compared it Processor’IEEE Micro, 25(2): 21-29, Mar.-Apr. 2005.
with the shared cache, the private cache, and theill9] R. P. LaRowe and C. S. Ellis. “Experimental Comparisén o
variants. We showed that by applying the hints to guide Memory Management Policies for NUMA Multiprocessors,”
page coloring and data replication on the shared L2[20]ACM TOCS 9(4):319-363, Nov. 1991.

. L J. Laudon and D. Lenoski. “The SGI Origin: A ccNUMA
cache, it performs significantly better than both the Highly Scalable Server,Proc. ISCA June 1997.
shared cache and the private cache. '

[21] J. Marathe and F. Mueller. “Hardware profile-guidedcaut
Our future work includes (1) exploring the access patterns matic page placement for ccNUMA system$toc. PPoPR
for throughput-oriented workloads; and (2) exploiting mor March 2006.

sophisticated access patterns to fully uncover the patenti [22]_S. Naffziger et al. “The Implementation of a 2-core Mult

i Threaded Itanium-Family ProcessoRtoc. ISSCC Feb. 2005.
of our software-oriented cache management approach. (23] S. Palacharla, N. P. Jouppi and J. E. Smith. “Complexity

VI. ACKNOWLEDGEMENT effective Superscalar Processor&toc. ISCA pp. 206-218,

. . May 1997.
This work was supported in part by NSF grant CC':'[24] C. Bienia et al. “The PARSEC Benchmark Suite: Charac-

0702236. The authors thank Tomas Singliar (currently with™ “tarization and Architectural Implications,Proc. PACT Oct.
Boeing) for his input on earlier drafts of this work and the 2008.

anonymous reviewers for their constructive comments. [25] T. Sherwood, B. Calder, and J. Emer. “Reducing Cache
Misses Using Hardware and Software Page Placememnbg.

REFERENCES ICS June 1999.
[1] AMD Dual-Core Processorsht t p: / / www. and. com [26] B. Sinharoy et al. “POWERS system microarchitectui8m
[2] B. M. Beckmann et al. “ASR: Adaptive Selective Replicati J. Res. & Dev. 49(4/5):505-521, July/Sep. 200S.
for CMP Caches’Proc. MICRQ pp. 443-454, Dec. 2006. [27] S. C. Woo et al. “The SPLASH-2 Programs: Characterirati
[3] S. Borkar et al. “Platform 2015: Intel Processor and f@kan and Methodological Considerations?toc. (ISCA) June 1995.

Evolution for the Next DecadeTech.@Intel Mag.Mar. 2005. [28] Virtutech ~ AB. Simics ~ Full System Simulator.
[4] S. Bell et al. “TILE64 Processor: A 64-Core SoC with Mesh http://ww.simcs.cont.

Interconnect,”Proc. ISSCC pp. 88-89, 598, Feb. 2008. [29] J. E. Smith and G. S. Sohi. “The Microarchitecture of
[5] J. Chang and G. S. Sohi. “Cooperative Caching for Chip _ Superscalar Processorsztoc. IEEE Dec. 1995.

Multiprocessors,”Proc. ISCA June 2006. [30] T Takayanagi et al. ‘A DuaI-Core_ 64—b|t UltraSPARC
[6] Z. Chishti et al. “Optimizing Replication, Communicati, and Microprocessor for Dense Server ApplicationsEEE JSSC

Capacity Allocation in CMPs,Proc. ISCA pp. 357-368, June 40(1), Jan. 2005. _

2005. [31] S. Tandri and T. Abdelrahman. “Computation and Data
[7] S. Cho and L. Jin. “Managing Distributed, Shared L2 Cache Partitioning on Scalable Shared Memory Multiprocessors,”

through OS-Level Page AllocationProc. MICRQ pp. 455— Proc. PDPTA 40(1), Nov. 1995. _

465, Dec. 2006. [32] B. Verghese et al. “Operating System Support for Imprgv
[8] A.L.Coxand R.J. Fowler. “The Implementation of a Cohrere Data Locality on CC-NUMA Compute ServersProc. ASP-

Memory Abstraction on a NUMA Multiprocessor: Experiences LOS OCt; 1996. o .

with PLATINUM,” Proc. SOSP pp. 32—44, Dec. 1989. [33] K. M. Wilson and B. B. Aglietti. “Dynamic Page Placement
[9] M. Gupta and P. Banerjee. “Automatic Data Partitioniny o tonlmprove Locality in CC-NUMA Multiprocessors for TPC-

Distributed Memory MultiprocessorsProc. DMCG pp. 43— C,” Supercomputing (SCpp. 258-265, Nov. 2001.

50, 1991. [34] M. Zhang and K. Asanovit. “Victim Replication: Maxizing
[10] M. Gupta and P. Banerjee. “Demonstration of Automatic ~ Capacity while Hiding Wire Delay in Tiled Chip Multiproces-

Data Partitioning Techniques for Parallelizing Compilers sors,” Proc. ISCA pp. 336-345, June 2005.

Multicomputers,” IEEE TPDS pp. 179-193, Vol.3 1992.

[11] J. M. Hart et al. “Implementation of a Fourth-Generatio
1.8-GHz Dual-Core SPARC V9 MicroprocessolZEE JSSC
41(1), 2006.

