
A Flexible Data to L2 Cache Mapping Approach
for Future Multicore Processors

Lei Jin Hyunjin Lee Sangyeun Cho

Department of Computer Science
University of Pittsburgh

{jinlei,abraham,cho}@cs.pitt.edu

ABSTRACT
This paper proposes and studies a distributed L2 cache man-
agement approach through page-level data to cache slice
mapping in a future processor chip comprising many cores.
L2 cache management is a crucial multicore processor de-
sign aspect to overcome non-uniform cache access latency
for high program performance and to reduce on-chip net-
work traffic and related power consumption. Unlike pre-
viously studied “pure” hardware-based private and shared
cache designs, the proposed OS-microarchitecture approach
allows mimicking a wide spectrum of L2 caching policies
without complex hardware support. Moreover, processors
and cache slices can be isolated from each other without
hardware modifications, resulting in improved chip reliabil-
ity characteristics. We discuss the key design issues and
implementation strategies of the proposed approach, and
present an experimental result showing the promise of it.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
D.4.2 [Operating Systems]: Storage Management—Vir-
tual memory, Allocation/deallocation strategies

General Terms
Design, Management, Performance

Keywords
Non-uniform cache architecture (NUCA), page allocation

1. INTRODUCTION
Multicore processors have emerged as the mainstream com-

puting platform in major market segments, including PC,
server, and embedded domains. Processors with two to eight
cores are commercially available now [9, 16, 21]. Moreover,
projections suggest that future processors may carry many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSPC’06October 22, 2006, San Jose, CA, USA
Copyright 2006 ACM 1-59593-578-9/06/0010 ...$5.00.

more cores–10’s or even 100’s of cores within a single chip [3].
This trend is accelerated by the unprecedented technology
advances and the limited single core scalability [4].

In a future multicore processor, the ever widening proc-
essor-memory speed gap as well as the severely limited chip
bandwidth exacerbates the dependence of program perfor-
mance on the on-chip memory hierarchy design and manage-
ment [7]. The desire to keep more data on chip will lead to
a large L2 cache comprising many banks or slices, likely dis-
tributed over the chip space [14]. Unfortunately, the wire de-
lay dominance in nanometer-scale chip implementations and
the distributed nature of the L2 cache organization result in
non-uniform cache access latencies, making the L2 cache
design and management a challenging task [5,6,8,17,26].

So far, L2 cache research and development efforts have
been based on the two baseline designs: private cache and
shared cache. A private cache is associated with a specific
processor core and replicates data freely as the core accesses
them. This automatic data attraction allows each processor
core to access data quickly, leading to a low average L2 hit
latency. However, the limited per-core caching space pro-
vided by a single private L2 cache often incurs many capac-
ity misses, resulting in expensive off-chip memory accesses.
On the other hand, shared caches form a single logical cache
by having each cache slice accept only an exclusive subset
of all memory blocks. Overall, a shared cache design will
result in better utilization of on-chip caching capacity than
a private design because accesses are finely distributed over
a large caching space. Unfortunately, the average L2 cache
hit latency will be longer than that of a private cache since
the cache slice keeping critical data may be far off.

Previous works have shown that neither a pure private
design, nor a pure shared design, achieves optimal perfor-
mance under different workloads [7,8,12,18,26]. For exam-
ple, a program with its working set entirely fit into a cache
slice will perform better with private caching, while large ap-
plications with a high degree of data sharing may perform
better on shared caches. Therefore, researchers have further
examined optimizations such as cache block migration [14]
and data replication [26] in the context of a shared design
to improve data proximity. Alternatively, private caches can
be optimized to provide more capacity by limiting the de-
gree of data replication or reserving a portion of cache space
for other cores to use [5,6].

In this work, we investigate a dynamic data to cache slice
mapping approach at the memory page level in the context
of a shared L2 cache organization in future many-core pro-

cessors, similar to Figure 1. Unlike previous researches, the
primary focus of this paper is on achieving flexibility of us-
ing available L2 cache slices. For example, our approach,
using a conventional shared cache hardware, allows a cache
slice to be shared by a dynamically controllable number of
processor cores. Similarly, a cluster of cache slices can be
used by a group of processor cores or by a single processor
core. Furthermore, cache slices can be excluded from use.
The ability to isolate some cache slices is especially impor-
tant for achieving low power consumption and higher error
resilience. For instance, caches that malfunction due to ag-
ing phenomena [23] can be pulled out without affecting the
overall chip operation. As future processors will incorporate
many, possibly 100’s of processor cores and cache slices [3],
flexible L2 cache management will become extremely im-
portant for achieving high performance, low power, and re-
silience to hardware faults.

The key to achieving high flexibility in the L2 cache man-
agement lies in how data items (i.e., memory blocks) are
mapped to a cache slice and how efficiently the mapping
information is created and maintained. In our proposed ap-
proach, OS performs this mapping at the memory page gran-
ularity when it allocates a physical page to a virtual page. In
one implementation, OS can attach a cache slice number to
each page table entry. The assigned cache slice number, also
stored in TLB (Translation Look-aside Buffer), is used to di-
rect an L2 cache access request on an L1 cache miss. Since
mapping decisions are made by software, a very high de-
gree of flexibility is achievable. Moreover, run-time informa-
tion available to OS, such as scheduled process locations and
page allocation status, can be used to direct performance-
and priority-aware mappings. Indeed, our preliminary re-
sults suggest that the proposed approach can achieve higher
performance than (pure) private and shared designs.

The rest of this paper is organized as follows. Section 2
gives a discussion on previous related works. The proposed
page-level data mapping approach is described in Section 3.
Section 4 presents preliminary experimental results, com-
paring two hardware-based L2 cache management schemes
and a scheme based on our approach. Finally, conclusions
and future works will be given in Section 5.

2. RELATED WORKS
This section discusses previous related works on L2 cache

management in multicore processors. Among many cache
design and behavioral aspects, we focus on how memory
blocks are mapped to a cache slice.

2.1 Private cache scheme
In a private cache scheme, data mapping is not explicit;

all the memory blocks accessed by a processor, regardless
of their address, are copied to the local cache slice [5, 18].
Therefore, the set of memory blocks residing in a cache slice
at a certain point of time is dictated by the programs that
have been running.

Since the behavior and interplay of running programs are
neither directly controlled nor easily predictable by the un-
derlying hardware or software, memory blocks in different L2
cache slices should be tracked and book-kept by a (hardware-
based) coherence mechanism. In Chang and Sohi [5], for
example, a centralized directory is provided to record who
(i.e., processor cores) has a copy of a cache block. When an-
other processor core wants to modify the same cache block

Figure 1: An example 16-tile multicore processor
chip and its node.

later, it must request an exclusive, up-to-date copy of the
block to the directory; it will then forward the request to
the set of cores that have cached the block, so that they can
provide the cache block and invalidate their local copy.

There are two important disadvantages in the private cache
scheme, compared with the shared cache scheme. First, the
limited caching space provided by a single private cache can
result in a high on-chip miss rate and accordingly more fre-
quent off-chip accesses [26]. Unbalanced use of caching space
is also undesirable. Second, the overhead of enforcing coher-
ence, in terms of hardware resources and run-time coherence
actions, is higher [19].

2.2 Shared cache scheme
In a shared cache design, data to cache slice mapping is

explicit. That is, given the address of a datum, its location
(i.e., the home cache slice) is directly determined. In recent
commercial products, this mapping of data to cache slice
is done at the cache line granularity in a round-robin fash-
ion [16, 21]. This mapping method improves the L2 cache
bandwidth by distributing temporally close loads and stores
to multiple cache slices.

To describe a shared cache design more formally, a map-
ping function f(·) is defined on the cache line address which
produces the home slice number. The commonly used map-
ping function is a modulo-N function, where N is the num-
ber of available cache slices [16,21,26]. In a future tile-based
processor, as sketched in Figure 1 [3, 26], this fine-grained
mapping method will likely lead to balanced utilization of
overall caching space. This mapping is however very rigid;
memory blocks are mapped to cache slices regardless of the
distance to the processor accessing them, leading to a longer
average L2 cache hit latency. Moreover, losing a cache slice
leaves 1/N of the total memory space uncacheable, resulting
in large performance degradation.

On the other hand, enforcing coherence in shared caches is
more straightforward than in private caches, because there
is no replication of data and the location of a cache line is
uniquely determined. Nayfeh et al. [19] showed that much of
the coherence-related traffic and the overhead of coherence
enforcement hardware can be eliminated by sharing cache
memory among the processor cores.

2.3 Shared/private hybrid schemes
Speight et al. [22] presented an eight-core chip where each

two cores form a processor cluster. Within a cluster, four
cache banks are shared, meaning that a cache line can be

Figure 2: (a) Memory to cache mapping at the cache line granularity. (b) Mapping at the page granularity.

found only in one of the four cache banks. The same cache
line, however, can be found in other clusters. Therefore,
each cache cluster can be considered a private cache from the
viewpoint of the processor clusters and the chip. Coherence
should be maintained among the four clusters.

Zhang and Asanović [26] proposed victim replication in a
shared L2 cache organization. In their design, L2 cache slices
can receive a replaced cache line from their local L1 caches as
well as their designated cache lines. Essentially, the local L2
cache slice provides a large victim caching space for the cache
lines whose home is remote, similar to [15]. A downside of
this approach happens on a coherence request; both L1 cache
and L2 cache (in parallel or in sequence) should be checked,
because it is not readily known if a (remote) cache block has
been copied in the local L2 cache slice.

Chishti et al. [6] proposed a cache design called CMP-
NuRAPID having a hybrid of private, per-processor tag ar-
rays and shared data arrays. Based on the hardware or-
ganization, they studied a series of optimizations, such as
controlled replication (to save capacity against migratory
clean copies), in-situ communication (to eliminate coher-
ence overhead for write-read access patterns), and capac-
ity stealing (to better utilize on-chip capacity). Compared
with a shared cache organization, however, CMP-NuRAPID
requires a more complex coherence and cache management
hardware. For example, it implements a distributed direc-
tory mechanism by maintaining forward and reverse pointers
between the private tag arrays and the shared data arrays.

Lastly, Chang and Sohi [5] proposed a cooperative caching
framework based on a private cache design with a centralized
directory scheme. They studied several optimizations such
as cache-to-cache transfer of clean data, replication-aware
data replacement, and global replacement of inactive data.
Experimental results show that the proposed optimizations
effectively limit cache block replication and thus result in a
higher on-chip cache hit rate. However, the optimizations
come at the expense of a more complex central directory
than that of a baseline private cache design.

2.4 Other flexible mapping schemes
Liu et al. [17] proposed an L2 cache organization where

a different number of cache banks can be dynamically al-
located to processors, connected through a shared bus. In
their scheme,the OS manages a hardware table which records
the mapping between the processors and the available cache
banks. When an L1 cache miss occurs, this table is looked

up, and a request is generated with the proper cache banks
selected for access. Despite its flexibility, the proposal has
several drawbacks: (1) their overall design is tuned for a
shared bus interconnect and the achievable L2 cache band-
width is severely limited thereof; (2) the coarse mapping
granularity (i.e., cache bank) can result in unbalanced cache
capacity usage; and (3) since their memory address to cache
bank mapping is not deterministic (similar to a private cache
scheme), when there is an L2 cache miss, a request should
be broadcast to all the other cache banks to find data and to
enforce coherence. The result is a large amount of L2 cache
traffic and cache access intervention.

Huh et al. [8] studied a processor to cache bank map-
ping scheme where cache banks can be configured as shared
caches, private caches, or a mixture of both. The mapping
information, maintained by the OS, affects the behavior of
the L1 cache controllers, the bank controllers, and the cen-
tral on-chip directory. To make this scheme fully config-
urable, the sharing status vectors both in the L2 tags and
the central directory should have enough bits to represent
all processors, requiring much hardware resources devoted
to cache management.

There are two fundamental differences between the above
works and the approach proposed in this paper. First, both
the previous works maintain mappings between cache banks
and processor nodes; the mapped cache banks become pri-
vate to processor(s). In our approach, mappings are created
between a memory page and a cache slice. Therefore, more
fine-grained control of cache space utilization and perfor-
mance tuning is possible. Second, our approach does not
require a large amount of hardware resources spent on en-
forcing cache coherence and data mapping. A much simpler
organization equivalent to that of a shared cache will suf-
fice. By comparison, the above works require either a large
central directory [8] or a broadcast-based coherence proto-
col [17].

3. PROPOSED APPROACH
There are clear advantages of mapping memory data to

cache slices at the memory page granularity rather than at
the cache block granularity [16, 21, 26]. Figure 2 illustrates
the difference between the two choices. First, it fits natu-
rally in the current memory management practice of a mod-
ern OS like UNIX [2]. Only after a page is allocated does
a processor start to see and access cache lines in the page.
Therefore, the page allocation event in OS is an ideal trigger-

Figure 3: Node selection strategies. (a) Simple, fixed address bit selection method; (b) Region-based,
programmable hardware table method; (c) TLB (page table)-based method.

ing point to decide where (i.e., which cache slice) the page
should be mapped to. Second, the hardware cost of neces-
sary architectural support is none or minimal. For example,
the TLB (Translation Look-aside Buffer) can be extended
with a field to keep the cache slice number, copied from a
page table entry. The necessary number of bits per entry is
log

2
N where N is the number of cache slices. Lastly, the

memory access patterns seen by a monolithic cache is pre-
served to a large extent. For instance, sequential accesses to
consecutive cache lines (within a page) will be directed to
the same cache slice, instead of being dispersed to multiple
slices. This property allows previous memory optimization
techniques, such as hardware prefetching or OS page color-
ing [13], to be easily adapted to a multicore processor.

3.1 Architectural support
In this subsection, we present three architectural tech-

niques to efficiently support page-level memory data to cache
slice mapping. They differ in their implementation cost and
achievable flexibility. Figure 3 depicts the techniques.

The first technique (“Selection”) is to derive the cache
slice number from the address bits directly. In an N-slice
system, the log

2
N low-order bits from the physical page

number (PPN) of an address are selected (i.e., mod-N on
PPN). By comparison, current-generation multicore proces-
sors use the low-order bits from a cache line address [16,21,
26]. In essence, this technique partitions the physical mem-
ory into N equal-sized partitions, each of which is called a
congruence group. Memory blocks in a congruence group
are all together mapped to the same L2 cache slice. By
allocating a physical page belonging to a particular congru-
ence group, the OS can control where a virtual page will be
placed. In terms of hardware organization, this technique is
simplest; it does not require additional logic to compute the
cache slice number if N is a power of two. This scheme is
less flexible than the other two schemes however in that (1)
memory pages are tied to a particular cache slice and the
number of pages per cache slices is fixed; (2) therefore, the
OS is unable to allocate more pages to a cache slice if the
corresponding congruence group does not have enough free
pages; and (3) the OS may exclude certain cache slices from
normal use, but only at the expense of unusable physical
memory space.

The second technique (“Region”), shown in Figure 3(b),
provides a region mapping table comprising a set of registers
to hold two addresses specifying the beginning and end of

a region. Each region is mapped to a specific cache slice
(node); depending on the number of entries in the map-
ping table, several regions may be assigned a same cache
slice number. In essence, a congruence group is composed
of regions, mapped to the same node. This scheme is more
flexible than the first technique, in the sense that physical
pages are not tied to specific cache slices. In the first tech-
nique, physical pages are first mapped to cache slices, and
based on the mapping the OS tries to allocate physical pages
to virtual pages. When the second scheme is used, the OS
first partitions the physical memory space and assigns each
partition to a cache slice. Subsequent page allocations will
take advantage of this mapping information. Note that it
is more straightforward to exclude certain pages using this
scheme. Moreover, one can easily integrate the simple bit
selection scheme within the framework of the second scheme,
as shown in Figure 3(b). One can choose between the two
methods, or use them together by defining priorities between
the two methods (e.g., override the bit selection result if a
mapping is found in the table).

The third and most flexible technique (“PTable”) is to
assign a slice number to each individual (virtual or physical)
page. The mapping information is stored in the per-process
page table, as well as in the TLB. Since the TLB is looked up
on each memory access, the mapping information becomes
available immediately, to be used on an L1 cache miss. In
this scheme, the notion of congruence group is not valid any
more, because each page allocation is done independently of
previous allocations, and the per-page mapping information
is individually and explicitly managed.

3.2 OS design issues

3.2.1 Data mapping through page allocation
The OS manages a free list to keep track of available pages

in physical memory. Whenever a running process needs new
memory space, the OS allocates free pages from this list by
creating a virtual-to-physical page mapping and deleting the
allocated page from the free list. Previously allocated pages
are reclaimed by backing up their content to a non-volatile
storage if needed, and putting them back to the free list.

If there is no sharing of data between programs running on
different cores (e.g., under a multiprogrammed workload),
the OS will have the full flexibility of using L2 cache slices
as a private cache, a shared cache, or a hybrid of the two,
by mapping virtual pages to a specific core, to anywhere, or
to a specific group of cores, respectively. For a more formal

Figure 4: Program-data proximity: program/data locations determine the minimum distance to bridge them.

discussion, we define the congruence group CGi (0 < i <
N − 1) given N processor cores and a physical page to core
mapping function pmap:

CGi = {physical page (PPN = j)|pmap(j) = i}

In other words, pmap defines a partition ({CGi}) of all avail-
able physical pages in the main memory so that each parti-
tion CGi maps to a unique processor core i. Note that the
Selection and Region techniques implement a pmap func-
tion. Given pmap, the home core for a physical page (and
accordingly the cache lines in it) is uniquely defined. Now,
the following virtual to physical page allocation strategies
achieve different caching schemes:
Private caching. For a page requested by Pi, a program
running on core i, allocate a free page from CGi.
Shared caching. For a requested page, allocate a free page
from all the congruence groups {CGi} (0 < i < N −1). One
can use a random selection strategy or a round-robin strategy
to pick up a free page from a congruence group with available
free pages.
Hybrid shared/private caching. First, partition {CGi}
into K groups (K < N). Then define a mapping from a
processor core to a group. For a page requested by Pi, allo-
cate a free page from the group that core i maps to. Here,
each group defines the cores that share their L2 cache slices.
Again, one can use a random or round-robin strategy within
the selected group. Alternatively, one can consider the loca-
tion of the core that requested a memory page when deciding
which free page to allocate.

Although the above descriptions assume the existence of
congruence groups (i.e., the Selection/Region schemes),
it is straightforward to adapt the strategies to the PTable

scheme. For example, the necessary action to implement a
private cache scheme is to simply record i in the page table
and the TLB entry assigned to the requested page.

3.2.2 Data proximity and page spreading
To obtain good program performance, it is important to

keep program’s critical data set close to the processor core
on which the program runs [14]. We showed in the previous
subsection that the OS has a full control over where (among
processor tiles) cache lines will be placed if memory to L2
cache slice mapping is done at the memory page granularity.

In an ideal situation where L2 cache slices are larger than
program working sets, the OS can allocate new pages to
requester cores; each L2 cache slice then becomes a private
cache, ensuring fast data access. On the other hand, if a

local cache slice is too small for the program’s working set
and its performance suffers due to this, subsequent page
allocations may be directed to cache slices in other cores
to increase the effective cache size. We call this operation
page spreading. Page spreading can effectively increase the
caching space seen by a program by selectively borrowing
space from other cache slices. In addition, the OS may be
forced to allocate physical pages from other free lists than
the most desirable ones, if they have very few free pages
currently, below a threshold. This operation is called page
spilling, and is important for a balanced use of available
physical pages, if either the Selection or Region method
is used.

While spreading pages, the OS page allocation should con-
sider data proximity. Figure 4 shows how tiles are assigned a
tier depending on the program location. Tiles marked with
a same tier number can be reached from the program loca-
tion in the same minimum latency, if there is no network
contention. As an example, consider a program running on
tile 5, as in the case 3 of Figure 4. Page spreading will be
performed on tile 1, 4, 6, and 9 (i.e., tier-1 tiles) before go-
ing to other tiles. This judicious page spreading is important
not only for achieving fast data access but also for reducing
overall network traffic and related power consumption.

Further, the OS page allocation should consider cache
pressure in addition to data proximity when spreading pages.
Under a heavy cache pressure, a tile may experience a large
volume of capacity misses, rendering itself unable to yield
cache space to other tiles. If all tier-1 tiles received many
pages and suffer from high cache pressure, for example, page
spreading must be done to other tiles with fewer pages allo-
cated to their cache slice, even if they are not a closest tile.
For this purpose, we define cache pressure to be program’s
time-varying working set (e.g., approximated by the number
of actively accessed pages) divided by cache size.

Finally, by applying different page spreading policies (i.e.,
by applying different parameters in the page allocation al-
gorithm) to different programs, the system can provide a
varied quality of service to them [11]. For instance, a high-
priority program may be given two cache slices, while other
programs do not see them.

3.2.3 Embracing parallel workloads
So far our discussions were concerned mostly with mul-

tiprogrammed workloads. In this subsection, we will dis-
cuss how the proposed OS-level page allocation approach
can help execute a parallel application efficiently on a tile-

Figure 5: Four virtual multicores on a 16-tile chip.

based multicore processor.
When parallel applications are running, the OS will try

to schedule the communicating processes and allocate their
pages in a coordinated way to minimize the overall cache ac-
cess latency as well as the network traffic. When a hardware-
based shared caching scheme with line interleaving is used,
the OS has no control over data distribution and there is
little it can do to improve performance and traffic. Using
our approach, on the other hand, the OS will ensure that
new page allocations are directed to cache slices close to the
requesting core (“data proximity”) to reduce the cache ac-
cess latency. Since a number of processes share their data in
a typical parallel application, it is natural to spread pages
to the cores that run these communicating processes.

To minimize the network traffic between the cores, the OS
will try to schedule a parallel application onto a set of pro-
cessor cores that are close to each other (“program proxim-
ity”). Suppose we have four parallel applications requiring
six, four, four, and two processors, respectively. Figure 5
shows a mapping of the four parallel jobs to sixteen cores.
The cores are grouped by the OS to form virtual multicores.
Cache slices within a virtual multicore will be shared by
the parallel program running on the virtual multicore. As
the OS will opt for data and program proximity, a virtual
multicore will comprise tiles that form a cluster on the chip
surface.

Within each virtual multicore, OS can allocate pages in a
round-robin fashion, in response to the core which requested
the memory page, based on a data use prediction model
(e.g., obtained through compiler analysis or program profil-
ing), or using a hybrid of them. Depending on the parallel
programming model used, migrating processes (considering
data access patterns) within a virtual multicore may result
in improved data access latency.

Our virtual multicore approach guarantees that coher-
ence traffic and tile-to-tile data transfers are confined within
each virtual multicore, potentially improving the overall per-
formance and energy consumption of parallel jobs. Com-
pared with private caching, our approach maximizes the L2
caching space for shared data since there is no data replica-
tion, while placing an upper bound on the network latency
and minimizing the related network traffic on an L1 cache
miss. Compared with line-interleaved shared caching, our
approach results in much less network traffic and leads to
no cache contention between different (parallel) programs.
As discussed in Section 3.2.2, spreading pages outside a vir-
tual multicore should be done in the light of cache pressure
and data proximity at the virtual multicore level.

3.2.4 Data replication
When a page to cache slice mapping is created, one can

allocate a cache slice number to a virtual page number or
physical page number. If physical page numbers are used
during mapping, all running programs will have the same
view on the mappings, and will access an identical cache slice
for a same (physical) memory block. On the other hand, if
virtual pages are given cache slice numbers, it is possible
that two different programs will look for the same (physi-
cal) memory block in two distinct cache slices, leading to the
same cache lines cached in multiple cache slices (i.e., data
replication). Although a shared cache organization does not
allow data replication, we can allow data replication under
certain conditions without incurring cache coherence prob-
lems. For example, read-only data, such as program codes
or a constant table, can be replicated to achieve a lower
access latency.

3.3 Discussions
The proposed L2 cache management approach uses a sim-

ple shared cache hardware, while providing choices from a
wide spectrum of private and shared caching strategies in a
dynamically controllable way. Shared caches are especially
advantageous for large parallel applications [12], but pri-
vate caches offer better performance for applications with a
smaller memory footprint [8].

The OS will benefit from architectural support to track
page access behaviors (e.g., access frequency and sharing
degree) for more accurate decisions on page allocations. De-
tailed program execution information such as working set
sizes and data access patterns, obtained through compiler
analysis and on-line/off-line profiling, can be used as hints
to the OS page allocation.

Finally, we note that our approach does not preclude
incorporating previously proposed hardware optimizations.
For example, fine-grained cache line-level data replication
such as victim replication [26] can be employed within the
OS-based L2 cache management framework for even higher
performance.

4. PRELIMINARY EVALUATION

4.1 Experimental setup

4.1.1 Machine model
We develop and use cycle-accurate, execution- and trace-

driven simulators using the source code base of the Sim-
pleScalar tool set (version 4) [1], which model a 16-core pro-
cessor chip organized in a 4×4 mesh, similar to Figure 1.
Each tile includes a single-issue processor with a 16kB L1
I/D caches, similar to [16], and a 512kB L2 cache slice. The
single-cycle L1 caches are 4-way set-associative with a 32-
byte line size, and each 8-cycle L2 cache slice is 8-way set-
associative with 128-byte lines. The aggregate L2 cache size
is 8MB. For coherence enforcement, we model a distributed
directory scheme.

When data is traversing through the mesh-based network,
a two-cycle latency is incurred per each hop. In the worst
case, the contention-free cross chip latency amounts to 24
cycles round trip. We modeled contention at L2 caches, net-
work switches, and links. The 2-GB off-chip main memory
latency is set to 300 cycles.

Name Description Input

gzip compression reference
gcc gcc compiler reference (integrate.i)
mcf combinatorial optimization reference

crafty chess game reference
parser English parser reference
eon probabilistic ray tracer reference (chair)

vortex object-oriented database reference
twolf place & route simulator reference

wupwise quantum chromodynamics solver reference
galgel computational fluid dynamics reference
art image recognition reference (c756hel.in, a10.img)

equake seismic wave propagation simulation reference
ammp ODE solver for molecular dynamics reference

sixtrack particle tracking for accelerator design reference
apsi metrology; pollutant distribution reference

fft fast Fourier transform 4M complex numbers
lu dense matrix factorization 512×512 matrix

radix parallel radix sort 3M integers
ocean ocean simulator 258×258 grid

Table 1: Benchmark programs, grouped by CINT, CFP, and SPLASH-2.

The execution-driven simulator is used to run a single-
threaded application, a multiprogrammed workload com-
posed of a general benchmark and a “hard-wired” synthetic
benchmark called ttg (described below). The trace-driven
simulator is used to run an arbitrary mix of general bench-
marks or a parallel application. A trace is generated by a
cycle-accurate simulator with a perfect data memory sys-
tem. Delays due to instruction cache misses, branch mis-
predictions, inter-instruction dependences, and multi-cycle
instructions are accurately captured in the generated traces.
When traces are imported and processed in the trace-driven
simulator, additional delays due to cache misses and network
traversals are taken into account.

We implemented a parameterized page allocation unit in
our simulators. Based on the demand paging concept com-
monly used in UNIX-based systems [2], every memory ac-
cess is caught and checked against already allocated memory
pages. If a memory access is the first access to an unallo-
cated page, the page allocator will pick up an available phys-
ical page and allocate it according to the selected allocation
policy. Given the 2-GB main memory and the benchmark
programs, we did not experience any page spilling (see Sec-
tion 3.2.2) in all the experiments we performed.

4.1.2 Workloads
We use three types of workloads in our experiments: single-

threaded workloads, multiprogrammed workloads and paral-
lel workloads. For a single-threaded workload, we use one
program from a set of SPEC2k benchmarks [24], four in-
teger (gcc, parser, eon, twolf) and four floating-point pro-
grams (wupwise, galgel, ammp, sixtrack). These benchmark
programs were selected because they have largely different
memory footprints and access patterns. Programs were com-
piled to target the Alpha ISA using Compaq Alpha C com-
piler (V5.9) with the -O3 optimization flag.

To construct a multiprogrammed workload, we use one
program from the above SPEC2k benchmarks, which we
call a target benchmark, and a synthetic benchmark pro-

gram called ttg (tunable traffic generator). ttg generates a
continuous stream of memory accesses. We can adjust the
memory footprint of ttg, the rate of memory accesses in-
jected into the network and memory system, and the level
of contention within shared cache slices. During actual sim-
ulations, we run our target benchmark on core 5 and ttg
on all the other cores. This arrangement is required for us
to accurately assess the sensitivity of different L2 caching
strategies to various network traffic and cache contention
levels, which is not achievable by using an arbitrarily con-
structed mix of benchmark programs. After skipping the
initialization phase and a 100M-instruction warm-up period,
we collect analysis data during one billion instructions of the
target benchmark.

For parallel workloads, we use fft, lu, radix, and ocean
from the SPLASH-2 benchmark suite [25]. These programs
run on four cores (tile 5, 6, 9, and 10). Shared memory
program constructs such as locks and barriers are modeled
using a set of magic instructions implemented with the Sim-
pleScalar annotations [1]. We use gcc 2.7.2.3 (with -O3) to
compile these programs to target SimpleScalar PISA. The
benchmark programs and their input data used in our ex-
periments are summarized in Table 1.

4.2 Results

4.2.1 Comparing policies, single-threaded workloads
The following policies are compared in our first experi-

ment: PRV (private), SL (shared, hardware-based line inter-
leaved), SP* (shared, OS-based page allocation), and PRV8
(private, 8MB) as a limit case. For page allocation (SP*),
we consider four different page allocation policies: SP-RR
(page allocated to all cache slices round-robin), SP80 (80%
of pages allocated to the local cache slice and the remaining
pages spread to the cache slices in the tier-1 cores, numbered
1, 4, 6, and 9), SP60 (similar to SP80 but with 60% of pages
allocated locally), and SP40 (similar to SP80 but with 40%
of pages allocated locally). SP-RR is an OS version of fine-

Figure 6: Single program performance (time−1) of
different policies, relative to PRV.

grained shared cache implementation.
In our first experiment, we run and measure the perfor-

mance of a single benchmark program on core 5 and have
all the other cores stay idle. This “single-threaded” config-
uration is an important special case for a multicore proces-
sor [26], and gives us an insight into the maximum perfor-
mance each different configuration can offer.

Figure 6 shows that wupwise is almost insensitive to the
L2 caching scheme used since it has a very high L1 hit rate.
On the other hand, twolf, galgel, and ammp have a big-
ger data footprint and get a large performance gain if more
caching space is provided (e.g., with SL). In case of eon, SL
and SP-RR performed worse than PRV even though they
provide more caching space, due to their increased aver-
age L2 cache access latencies. The performance of SP-RR
closely matches that of SL, suggesting that this software-
based shared caching policy is a faithful imitator of the
hardware-based shared caching scheme.

Comparing with SL and SP-RR, the tier-1 page spreading
schemes (SP*) achieved comparable performance for pro-
grams like twolf, galgel, and sixtrack. In case of ammp,
SP* schemes did not provide enough caching space and they
perform relatively poorly, topped at around 2× the perfor-
mance of PRV, while SL and SP-RR achieve about 5×. SL
performed best for gcc, parser, twolf, and ammp in this ex-
periment; It is however very sensitive to cache and network
contention as we will see in the following discussions.

Table 2 shows the L2 cache load miss rates and the on-
chip network traffic of the studied programs. PRV showed
larger miss rates than other configurations, leading to higher
off-chip traffic levels. Page spreading (SP*) was shown to
be effective in reducing miss rates. As more caching space
is used (i.e., moving from SP80 to SP40), increasingly lower
miss rates were achieved. In case of wupwise, there are only
compulsory misses and caching space or caching strategy did

Figure 7: Performance sensitivity to network traffic.
Performance relative to PRV, no traffic case.

not make any impact.
In terms of on-chip network traffic, fine-grained shared

cache configurations, SL or SP-RR, resulted in much more
traffic than PRV. Again, the SP* configurations show vary-
ing on-chip traffic levels. Clearly, spreading pages leads to
more caching space and reduces miss rates and off-chip traf-
fic as a result; In turn, it increases on-chip network traffic.
This trade-off should be carefully considered while spreading
pages, given the on-chip and off-chip communication over-
heads and the performance and power consumption goals.

4.2.2 Sensitivity to cache/network contention, multi-
programmed workloads

We repeated experiments with a varying level of con-
tention in cache and network, by running multiple copies of
ttg. Three traffic levels, LOW (low traffic), MID, and HIGH,
were generated, by setting the average L2 cache miss inter-
val of ttg to 1500, 300, and 60 cycles, respectively. These
values were determined after examining the eight SPEC2k
programs we study; Their average L2 cache miss interval is
in the range of 30 to 500 cycles when there is no contention.
In this experiment, We focus on comparing the following
three policies: SL (shared, hardware-based line-interleaved),
SP40 (shared, page-interleaved, 40% of pages allocated lo-
cally and the rest spread to tier-1 tiles), and SP40-CS (SP40
with “controlled spreading”). In SP40-CS, we limit spread-
ing unrelated pages onto the cores that keep the data of the
target application.

Overall, Figure 7 shows that shared cache designs (e.g.,
SL and SP40) are sensitive to cache and network contention,
since cache lines are often fetched over the on-chip network.
The target benchmark performance of SL is comparable to
that of SP40 under a light traffic load, but at a heavier
traffic level, SP40 gradually performs better than SL except
for ammp.

In terms of overall chip throughput (i.e. the number of

PRV SL SP-RR SP80 SP60 SP40 PRV8

gcc 2.9 0.1 0.5 2.8 2.1 1.8 0.1
parser 6.6 0.5 0.6 5.8 3.7 2.6 0.4

load eon 0.0 0.0 0.0 0.0 0.0 0.0 0.0
miss twolf 16.3 0.1 0.1 13.1 7.3 1.6 0.0
rate wupwise 25.0 25.0 25.0 25.0 25.0 25.0 25.0
(%) galgel 6.3 0.1 0.1 5.0 3.4 0.9 0.1

ammp 46.6 0.1 0.4 34.9 26.4 18.9 0.1
sixtrack 13.5 0.5 0.5 10.4 3.2 1.4 0.5

gcc 10.8 270.4 261.7 55.6 76.0 135.9 0.4
parser 8.7 96.8 96.5 18.2 18.9 40.4 0.5

on-chip eon 0.0 86.9 90.2 17.7 20.4 23.7 0.0
network twolf 35.0 138.2 150.1 37.8 48.4 67.8 0.1
traffic wupwise 35.1 39.4 39.9 10.1 15.6 20.3 0.1

galgel 38.0 412.0 406.6 76.2 132.3 185.8 0.6
ammp 441.7 810.9 803.4 306.9 361.9 424.6 0.5
sixtrack 9.6 57.2 60.9 15.8 18.9 22.0 0.4

Table 2: L2 cache load miss rate and on-chip network traffic (message-hops) per 1k instructions.

instructions committed over a same period of time), SP40
was better than SL slightly, by 2% to 4%. Interestingly,
SP40 often experienced more cache sharing contention than
SL, since programs have less network contention and tend to
access caches more frequently, and caches are not globally
shared as in SL, resulting in more hot cache sets.

In terms of network traffic, SP40 cuts down the on-chip
network traffic by at least 50% in all the programs, compared
with SL. Considering these trade-offs, a complete OS and
microarchitecture design of our approach will try to optimize
performance and power by controlling both data placement,
which will determine the minimum latency to fetch data
and the associated network traffic, and data sharing degrees,
which will affect contention within each cache slice.

Lastly, SP40-CS achieves best performance under heavy
traffic (except for ammp); This result shows that the pro-
posed software-based cache management approach can dif-
ferentiate the hardware resources (i.e., execution environ-
ment) seen by programs and can give preference to a high-
priority program by not allowing other programs to interfere
with it. A pure hardware-based scheme like SL does not pro-
vide this flexibility.

4.2.3 Parallel workloads
In this experiment, we measured the performance of par-

allel workloads. We compare three caching policies: PRV,
SL, and VM (virtual multicore). In VM, page allocations
were performed in a round-robin fashion on the participat-
ing cores. Figure 8 reports the result.

Except fft, PRV outperformed SL. Apparently, the stud-
ied programs were highly optimized to maximize data local-
ity even on small caches [25] and as a result their perfor-
mance on PRV is often better than that of SL, as similarly
evidenced in previous studies [8,26].

In case of fft and radix, the studied caching schemes re-
sulted in small performance difference. On the other hand,
lu and ocean had a higher L1 miss rate than fft and radix,
and were affected to a larger extent by the L2 caching scheme
employed. VM was shown to be consistently better than
other policies. In the case of ocean, VM outperformed PRV
by 5% and SL by 21%.

Figure 8: Performance of parallel workloads, rela-
tive to PRV.

4.2.4 Cache slice isolation
Figure 9 shows how program performance degrades as a

variable number of cache slices become unavailable (e.g., due
to hardware faults). For this experiment, we use three multi-
programmed workloads: W1 (gzip, mcf, crafty, vortex), W2
(mcf, crafty, wupwise, art), and W3 (wupwise, art, equake,
apsi). We compare two policies, namely SL and SP-RR. SP-
RR performs a round-robin page mapping to the available
cache slices.

The result shows that SL is very sensitive to the loss of
cache slices; this is because much of the total memory space
become uncacheable. On the other hand, the performance
of SP-RR is almost insensitive, clearly showing how the pro-
posed flexible L2 cache management helps harvest good per-
formance even in the presence of unavailable cache slices.

5. CONCLUSIONS
This paper considered an OS-microarchitecture approach

to managing on-chip L2 cache slices in a future multicore
processor built with an advanced process technology. In
such processors, L2 cache management becomes a crucial
design aspect in order to overcome non-uniform cache access
latency for good program performance and to reduce on-chip
network traffic and related power consumption.

The proposed approach is flexible; it can easily mimic var-
ious hardware strategies and furthermore can provide differ-

Figure 9: Average L2 cache latency when cache
slices are deleted (relative to SL configurations).

entiated hardware environment to running programs by con-
trolling network traffic and cache contention due to sharing.
Such flexibility can be a critical advantage, because under
a severe power constraint it will be of utmost importance
to maximize the efficiency of on-chip resource usage with
varying workload behaviors [3,10]. Furthermore, unreliable
cache slices can be easily isolated in our approach.

There are several directions for future research. It will
be interesting to incorporate architectural techniques such
as cache block replication [26] or page recoloring [20] and to
study how they will improve data locality and cache traffic in
the context of our L2 cache management approach. Also the
impact of page level granularity mapping needs to be further
investigated. To accurately monitor cache performance and
its behavior, light-weight hardware-based monitors will be
beneficial. Detailed program information (e.g., data usage
pattern) through compiler analysis or profiling may prove
very useful.

6. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. “SimpleScalar: An

Infrastructure for Computer System Modeling,” IEEE Computer,
35(2):59–67, Feb. 2002.

[2] M. J. Bach. Design of the UNIX Operating System, Prentice Hall,
Feb. 1987.

[3] S. Borkar et al. “Platform 2015: Intel Processor and Platform
Evolution for the Next Decade,” Technology@Intel Magazine,
March 2005.

[4] D. Burger and J. R. Goodman. “Billion-Transistor
Architectures: There and Back Again.” IEEE Computer,
37(3):22–28, March 2004.

[5] J. Chang and G. S. Sohi. “Cooperative Caching for Chip
Multiprocessors,” Proc. Int’l Symp. Computer Architecture,
pp. 264–276, June 2006.

[6] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Optimizing
Replication, Communication, and Capacity Allocation in
CMPs,” Proc. Int’l Symp. Computer Architecture, pp.
357–368, June 2005.

[7] J. Huh, D. Burger, and S. W. Keckler. “Exploring the Design
Space of Future CMPs,” Proc. Int’l Conf. Parallel
Architectures and Compilation Techniques, pp. 199–210, Sept.
2001.

[8] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. “A NUCA Substrate for Flexible CMP Cache Sharing,”
Proc. Int’l Conf. Supercomputing, pp. 31–40, June 2005.

[9] Intel Corp. “A New Era of Architectural Innovation Arrives
with Intel Dual-Core Processors,” Technology@Intel Magazine,
May 2005.

[10] ITRS (Int’l Technology Roadmap for Semiconductors). 2005
Edition. http://public.itrs.net.

[11] R. Iyer. “CQoS: A Framework for Enabling QoS in Shared
Caches of CMP Platforms,” Proc. Int’l Conf. Supercomputing,
pp. 257–266, June 2004.

[12] A. Jaleel, M. Mattina, and B. Jacob. “Last Level Cache (LLC)
Performance of Data Mining Workloads on a CMP – A Case
Study of Parallel Bioinformatics Workloads,” Proc. Int’l Symp.
High-Perf. Computer Arch., pp. 88–98, Feb. 2006.

[13] R. E. Kessler and M. D. Hill. “Page Placement Algorithms for
Large Real-Indexed Caches,” ACM Trans. Computer Systems,
10(4):338–359, Nov. 1992.

[14] C. Kim, D. Burger, and S. W. Keckler. “An Adaptive,
Non-Uniform Cache Structure for Wire-Delay Dominated
On-Chip Caches,” Proc. Int’l Conf. Architectural Support for

Prog. Languages and Operating Systems, pp. 211–222, Oct.
2002.

[15] J. Kong and G. Lee. “Relaxing the Inclusion Property in Cache
Only Memory Architecture,” Proc. Euro-Par, pp. 435–444,
August 1996.

[16] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: A
32-Way Multithreaded Sparc Processor,” IEEE Micro, 25(2):
21–29, March-April 2005.

[17] C. Liu, A. Sivasubramaniam, and M. Kandemir. “Organizing
the Last Line of Defense before Hitting the Memory Wall for
CMPs,” Proc. Int’l Symp. High-Performance Computer
Architecture, pp. 176–185, Feb. 2004.

[18] B. A. Nayfeh and K. Olukotun. “Exploring the Design Space
for a Shared-Cache Multiprocessor,” Proc. Int’l Symp.

Computer Architecture, pp. 166–175, April 1994.

[19] B. A. Nayfeh, K. Olukotun, and J. P. Singh. “The Impact of
Shared-Cache Clustering in Small-Scale Shared-Memory
Multiprocessors,” Proc. Int’l Symp. High-Performance

Computer Architecture, pp. 74–84, Feb. 1996.

[20] T. Sherwood, B. Calder, and J. Emer. “Reducing Cache Misses
Using Hardware and Software Page Placement,” Proc. Int’l
Conf. Supercomputing, pp. 155–164, June 1999.

[21] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, J. B.
Joyner. “POWER5 System Microarchitecture,” IBM J. Res. &

Dev., 49(4): 505–521, July. 2005.

[22] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. “Adaptive
Mechanisms and Policies for Managing Cache Hierarchies in
Chip Multiprocessors,” Proc. Int’l Symp. Computer

Architecture, pp. 346–356, June 2005.

[23] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. “The
Impact of Technology Scaling on Lifetime Reliability,” Proc.
Int’l Conf. Dependable Systems and Networks, pp. 177–186,
June 2004.

[24] Standard Performance Evaluation Corporation.
http://www.specbench.org.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
“The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proc. Int’l Symp. Computer

Architecture, pp. 24–36, July 1995.

[26] M. Zhang and K. Asanović. “Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip
Multiprocessors,” Proc. Int’l Symp. Computer Architecture,
pp. 336–345, June 2005.

