
Reducing Cache Traffic and Energy
with Macro Data Load

Lei Jin Sangyeun Cho
Department of Computer Science

University of Pittsburgh

{jinlei,cho}@cs.pitt.edu

ABSTRACT
This paper presents a study on macro data load, an efficient
mechanism to enhance loaded value reuse. A macro data
load brings into the processor a maximum-width data value
the cache port allows, saves it in an internal structure, and
facilitates reuse by later loads. A comprehensive limit study
using a generalized memory value reuse table (MVRT) shows
the significantly increased reuse opportunities provided by
macro data load. We also describe a modified load store
queue design as an implementation of the proposed concept.
Our quantitative study shows that over 35% of L1 cache
accesses in the SPEC2k integer and MiBench programs can
be eliminated, resulting in a related energy reduction of 24%
and 35% on average, respectively.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; C.1.1
[Processor Architectures]: Single Data Stream Archi-
tectures

General Terms
Design, performance

Keywords
Memory hierarchy, LSQ design, low power

1. INTRODUCTION
Just as caches filter memory accesses so that main mem-

ory sees much less traffic, cache read traffic can be tackled
within a processor by store-to-load and load-to-load forward-
ing techniques [8, 10]. Cache traffic reduction can lead to
significantly decreased energy consumption in the cache.

In this work, we propose and study macro data load, an
efficient mechanism to uncover additional opportunities for
load-to-load forwarding by utilizing the spatial locality that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’06,October 4–6, 2006, Tegernsee, Germany.
Copyright 2006 ACM 1-59593-462-6/06/0010 ...$5.00.

exists in cache port wide macro data. When this mecha-
nism is in effect, memory loads always bring a macro data
from the processor cache. For example, a byte load would
trigger a 64-bit macro data transfer in a 64-bit processor1.
The processor then provides the necessary data portion to
the load instruction, while saving the loaded macro data in
a separate data storage. The saved macro data can be re-
trieved by a later load targeting the whole data or a smaller
part of it. Most previous works focused on reusing the exact
data described by its address and size [8,10]. The proposed
macro data load mechanism capitalizes on the largely under-
utilized data cache port bandwidth which is mainly due to
abundant narrow data accesses in programs.

As an implementation of the proposed concept, we present
a load store queue design and the necessary microarchitec-
tural changes. The implementation cost and complexity are
shown to be very modest. We perform a detailed perfor-
mance study using a realistic superscalar processor model
incorporating the microarchitectural changes. Our results
show that the proposed approach eliminates over 30% of L1
cache traffic leading to a commensurate energy reduction,
compared with a conventional processor design.

The rest of this paper is organized as follows. First, we
give a limit study on how macro data loads generate more
opportunities for loaded value reuse in Section 2. Then
Section 3 describes a set of microarchitectural techniques
to support macro data loads efficiently. Section 4 presents
our quantitative evaluation using a realistic processor model.
Related works are summarized and contrasted with our work
in Section 5. Lastly, conclusions are drawn in Section 6.

2. VALUE REUSE IN MEMORY ACCESSES

2.1 Evaluation model
To analyze the degree of data reuse among memory in-

structions, we constructed a 64-bit machine model with mem-

ory value reuse table (MVRT), a conceptual hardware struc-
ture that tracks the address, the value, and the type of mem-
ory instructions. Allocation of a new entry and replacement
of an old entry is done in a FIFO fashion. MVRT is param-
eterized and can have a varied number of entries.

The memory value reuse algorithm works as follows. When-
ever a new memory instruction is executed, it is recorded in
MVRT. If it is a store, all the MVRT entries with a previous

1This does not usually incur a change in cache designs. A
high-performance cache provides a full port wide value on
loads (e.g., [2]) and the processor core selects the necessary
portion using its internal data alignment logic.



Figure 1: Percentage of loads reusing memory values. Two segments from bottom stand for loads finding
their values from prior stores (“S2L” – store-to-load) and from prior loads(“L2L” – load-to-load). Each top
segment shows the extra opportunities offered by macro data loads (“ML”).

memory instruction that overlaps in the address space with
the store are invalidated. If the new instruction is a load,
MVRT is searched to find a valid entry with a matching ad-
dress, in which case, the load becomes redundant since the
valid data can be provided from a previous memory instruc-
tion (either store or load).

For all experiments, we use a set of SPEC2k integer pro-
grams (dubbed “CINT” hereafter), SPEC2k floating-point
programs (“CFP”) [13], and MiBench programs (“MiB”) [5].
After skipping the initialization phase, we collect analysis
data from two billion instructions or until the end of execu-
tion if it comes first. Programs were compiled with gcc 2.7.2
targeting PISA [3] at the -O3 optimization level.

2.2 Results
Although we performed a comprehensive limit study and

analysis per data size, per memory region, and using differ-
ent ISA, we only report a small set of results here due to
space limitations. More complete results can be found in [6].

2.2.1 Maximum memory value reuse
In this subsection, we use a 256-entry MVRT to study how

many loads find their reuse value from (1) previous stores
only, (2) previous stores and loads without macro data loads,
and (3) previous stores and loads with macro data loads.
Figure 1 shows that on average 70% or more loads find
their values within MVRT. Roughly, 20–25% of loads get
a reuse value from stores and 30–40% of loads from previ-
ous loads if macro data loads are not used. Macro data loads
consistently boost the number of loads that reuse a previ-
ously loaded data value. 13.6% (CINT) and 20.1% (MiB)
more loads reuse memory values. In CFP programs the con-
ventional load-to-load forwarding performs well and allows
nearly 44% of loads to find their data in MVRT. Macro data
loads provide a small benefit of only 4.3% additional loads.
Considering only load-to-load value reuse, macro data loads
provide 42.3% (CINT), 9.8% (CFP), and 57.2% (MiB) more
reuse opportunities, relative to a conventional load-to-load
forwarding technique.

2.2.2 Sensitivity to MVRT size
We changed the MVRT size from 16 to 256 and repeated

our experiments. Several important observations are made
from the results, although the graph is not shown here due
to limited space.

First, a larger MVRT captures more value reuse oppor-
tunities. The number of covered loads increases almost lin-
early as we keep doubling the MVRT size, although the slope
gradually dwindles after 64 entries in CINT and CFP.

Second, macro data loads expose significantly more oppor-
tunities for load-to-load forwarding in all the studied MVRT
configurations, especially when MVRT is small. With a 32-
entry MVRT, for example, there are 105% (CINT), 46%
(CFP), and 188% (MiB) more loaded value reuse.

Third, as a result of our second observation, the area-
effectiveness of MVRT, from the viewpoint of memory value
reuse, is substantially improved. In the case of CINT and
MiB, the total achievable degree of reuse with a 32-entry
MVRT with macro data loads is comparable to that with a
256-entry MVRT without macro data loads.

3. MICROARCHITECTURE FOR LOADED
VALUE REUSE

3.1 A modified LSQ design
Many recent high-performance processors implement LSQ

to allow out-of-order execution of memory instructions, as
well as to bypass correct store data to dependent loads [1,
4,7,15]. Adding the load-to-load forwarding feature in LSQ
then becomes a natural extension since it already provides
the necessary storage to save a loaded data and the function-
ality to identify it [8]. We present an example LSQ design
that supports both store-to-load and load-to-load forward-
ing with the proposed macro data load mechanism. Figure 2
shows the LSQ, data cache, and how data from them are cir-
culated via various buses.

A typical LSQ design is composed of two memory struc-
tures: address-matching tag and data storage. The data
storage, not used for a load entry in a conventional design,
can be used to hold a loaded macro data. We provide the
necessary datapath to guide the data as observed at the
cache port to the desired LSQ entry (Figure 2(d)).

The address tag portion is often implemented with an



Figure 2: The LSQ structure with the macro data
reuse mechanism implemented. (a) Normal load
data path. (b) Store data path. (c) Reuse data path
for both store-to-load and load-to-load forwarding.
(d) LSQ update path. The depicted LSQ design is
based on the published AMD K7 design [4].

associative memory logic such as content addressable mem-

ory (CAM), which helps resolve memory ordering conflicts
quickly and locate a previous store for forwarding. To detect
a load-to-load forwarding instance, however, LSQ should
perform a partial-match searching since the source macro
data can be larger than and inclusive of the dependent load,
potentially leading to different address bits in several LSB
positions. The tag has a few related bits in addition to
the address, including V (valid), P (data present), and SL
(store or load) bits. In a conventional design, an LSQ en-
try is invalidated once the corresponding instruction retires.
We keep the V bit on as long as the data in the entry is
up-to-date.

3.2 Pipeline design issues
To reduce L1 cache traffic, cache access should be sup-

pressed whenever the target data can be found in LSQ. This
requires that cache access be delayed and serialized with
LSQ lookup. This arrangement however is likely to incur
increased cache access latency for loads that do not reuse
values and can potentially lead to decreased performance
thereof. The performance degradation will highly depend
on how many loads find their values in LSQ in this case. It
is noted that the serialization delay may be avoided if we
can (1) predict accurately whether or not a load will find its
value in LSQ; and (2) selectively bypass the waiting time for
loads that are likely to find their values in cache. This idea
has been explored in similar, yet different contexts [11].

4. QUANTITATIVE EVALUATION

4.1 Experimental setup
We perform experiments using a detailed execution-driven

simulator derived from sim-outorder in the SimpleScalar tool
set [3]. We model a modest 4-issue processor, which has
32kB 2-way set associative L1 I/D cache, with 64B block
size and 2-cycle latency. L2 cache is 2MB 4-way associative,
with 128B block size and 10-cycle latency. Main memory
has 120-cycle latency. The numbers of RUU entries is 128
while the LSQ size is set to 64, similar to recent high perfor-
mance processors [4, 7, 15]. The data reuse latency in LSQ
is set to one cycle. Section 2.1 describes the setup for our

benchmarks.
We consider three configurations to reduce cache traffic:

S2L, L2L and ML. They save load traffic on store-to-load
forwarding, additionally on load-to-load forwarding (simi-
lar to [8]), and additionally on macro data load hits. The
baseline processor, to which we compare these three con-
figurations, accesses LSQ (for store-to-load forwarding) and
cache at the same time to minimize latency and thus will
have the highest number of cache accesses.

4.2 Evaluation results

4.2.1 L1 cache traffic
Figure 3 confirms the observations made in Section 2.

With only store-to-load forwarding (i.e., S2L), the cache
traffic reduction is limited: 10% (CFP) or less (CINT and
MiB). Only two programs among all the studied programs,
namely wupwise and rsynth, show a traffic reduction of 15%
or more. With ML, however, there is a significant reduction
in cache accesses, 35% (CINT), 33% (CFP), and 38% (MiB).
Four programs, namely bzip2, mgrid, jpeg.e, and gsm.d, had
over 50% of cache traffic reduction. With L2L, the cache
traffic reduction was 27% (CINT), 30% (CFP), and 23%
(MiB), considerably lower than that of ML.

Although the results are in accordance with our limit
study results presented in Figure 1, the actual traffic re-
duction is less than the maximum potential due to three
factors: (1) speculative memory references occupy available
LSQ entries and cause frequent pipeline flushing, not al-
lowing memory value reuse between distant references; (2)
speculative loads execute and generate cache traffic; and
(3) memory reordering results in later loads accessing cache
prior to or simultaneously with earlier loads, losing the reuse
opportunities.

4.2.2 Energy consumption
We used the CACTI 100nm model [12] to consider the

energy consumption related with both LSQ and cache. Since
a memory reuse scheme can increase LSQ activities (e.g.,
loads update the data array in LSQ), it is important to
consider not only cache but also LSQ as we evaluate the
energy consumption impact of different reuse schemes.

Experimental results show that S2L achieves a limited
energy reduction of less than 10%. L2L performs better and
results in additional savings totalling up to around 20%.
ML performs consistently better than S2L and L2L, with a
notable energy reduction of over 35% for MiB.

4.2.3 Performance impact
When the latency of memory value reuse is shorter than

the cache access latency, increase in the number of loads
finding their values from LSQ can lead to improved average
memory latency. Our simulation configuration captures this
case by setting the reuse latency to be one cycle and the
cache access latency to be two cycles.

Simulation results show that the ML configuration is per-
formance competitive with the baseline machine, in which,
LSQ and cache are accessed simultaneously. For CFP and
MiB, ML even performs slightly better. This is due to (1)
many loads find their values from LSQ; and (2) the increased
latency seen by the remaining loads is well tolerated by the
out-of-order processor model.

Among the three traffic-optimized configurations, only the



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip vp

r
gc

c
m

cf

pa
rs

er
pe

rl
ga

p

vo
rt
ex

bz
ip

2

tw
o
lf

w
u
pw

is
e

sw
im

m
gr

id

m
es

a
ar

t

eq
ua

ke

jp
eg

.e

jp
eg

.d

gs
m

.d

gs
m

.e

ri
jn

da
el

.d

ri
jn

da
el

.e

tif
f2

rg
ba

rs
yn

th

is
pe

l

se
ar

ch

C
IN

T.
av

g

C
FP

.a
vg

M
iB

.a
vg

Load Traffic

Store Traffic

;
Figure 3: Cache traffic of S2L, L2L, and ML (from left) relative to the baseline.

ML configuration achieves a competitive performance level
with the baseline design. It is noted that increase in exe-
cution time can have a detrimental effect on overall energy
consumption.

5. RELATED WORK
Önder and Gupta proposed value address association struc-

ture (VAAS) to eliminate redundant loads and silent stores [10].
Nicolaescu et al. [8] proposed cached load store queue (CLSQ)
to detect redundant loads and provide reuse data. In their
design, each data entry in LSQ is allowed to cache a loaded
value as well as to keep store data. Both VAAS and LSQ
manage memory accesses with a FIFO policy and therefore
our limit study with MVRT accurately models and predicts
their performance. Our study showed that macro data loads
give significantly boosted loaded value reuse compared with
these techniques, given the same storage space to keep data.

More recently, Nicolaescu et al. [9] proposed wide cached

load store queue (WCLSQ) to take advantage of spatial lo-
cality by having each LSQ entry keep multiple words or
by increasing the LSQ data width to accomodate a large
16-byte or even 32-byte memory block. To fill WCLSQ,
however, the cache should be accessed multiple times or
the cache port should be widened to match the WCLSQ
width. This approach potentially maximizes the loaded
data reuse opportunities, but its effectiveness is offset by
increased LSQ size (and thus energy consumption per ac-
cess), increased initial overhead to fill WCLSQ, and much
decreased area efficiency due to short stores occupying large
data entries. Compared to WCLSQ, our proposal exploits
only the freely available cache port bandwidth and requires
no change to the cache design, promoting reuse of exist-
ing designs. It is also compatible with popular cache sub-

banking techniques [14].

6. CONCLUSIONS
This paper introduced and studied cache port wide macro

data loads to enhance loaded value reuse in high-performance
processors. As future microprocessors will be critically con-
strained by power consumption, performance-competitive,
power-efficient design techniques will become even more im-
portant. Our work shows that the proposed macro data

load scheme is practical and at the same time effective in
reducing L1 cache traffic and energy.

7. REFERENCES
[1] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller, P.

Roussel, R. Singhal, B. Toll, and K. S. Venkatraman. “The
Microarchitecture of the Intel Pentium 4 Processor on 90nm
Technology,” Intel Technology Journal, 8(1), Feb. 2004.

[2] D. Bradley, P. Mahoney, and B. Stackhouse. “The 16kB
single-cycle read access cache on a next-generation 64b Itanium
microprocessor,” Proc. Int’l Solid State Circuits Conf., pp. 110
– 111. Feb. 2002.

[3] D. Burger and T. M. Austin. “The SimpleScalar Tool Set,
Version 2.0,” Computer Sciences Dept. TR, No. 1342, Univ. of
Wisconsin, June 1997.

[4] K. Diefendorff. “K7 Challenges Intel,” Microprocessor Report,
Vol. 12, No. 14, pp. 1 – 7, Oct. 1998.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown. “MiBench: A Free, Commercially
Representative Embedded Benchmark Suite,” Proc. Annual
Workshop Workload Characterization, Dec. 2001.

[6] L. Jin and S. Cho. “A Characterization Study on Memory Value
Reuse,” Proc. Workshop Memory Performance Issues, during

Int’l Symp. High-Performance Computer Architecture, Feb.
2006.

[7] R. E. Kessler. “The Alpha 21264 Microprocessor,” IEEE Micro,
19(2):24 – 36, March/April 1999.

[8] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. “Reducing Data
Cache Energy Consumption via Cached Load/Store Queue,”
Proc. Int’l Symp. Low-Power Electronics and Design, pp. 252,
Aug. 2003.

[9] D. Nicolaescu, A. Veidenbaum, and A. Nicolau. “Caching Values
in the Load Store Queue,” Proc. Int’l Symp. Modeling,

Analysis, and Simulation of Computer and Telecomm.
Systems, pp. 580 – 587, Oct. 2004.

[10] S. Önder and R. Gupta. “Load and Store Reuse Using Register
File Contents,” Proc. Int’l Conf. Supercomputing, pp. 289 –
302, June 2001.

[11] T. Sha, M. Martin, and A. Roth. “Scalable Store-Load
Forwarding via Store Queue Index Prediction,” Proc. Int’l
Symp. Microarchitecture, Nov. 2005.

[12] P. Shivakumar and N. P. Jouppi. “CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model,” HP WRL Research
Report 2001/2, Aug. 2001.

[13] Standard Performance Evaluation Corporation.
http://www.specbench.org.

[14] C.-L. Su and A. M. Despain. “Cache Designs for Energy
Efficiency,” Proc. Hawaii Int’l Conf. System Sciences, pp. 306
– 315, Jan. 1995.

[15] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B.
Sinharoy. “POWER4 System Microarchitecture,” IBM J.
Research & Development, 46(1), Jan. 2002.


