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Abstract

This paper presents a two-part study on managing dis-
tributed NUCA (Non-Uniform Cache Architecture) L2
caches in a future manycore processor to obtain high single-
thread program performance. The first part of our study is a
limit study where we determine data to cache slice mappings
at the memory page granularity based on detailed inter-page
conflict information derived from program’s memory refer-
ence trace. By considering cache access latency and cache
miss rate simultaneously when mapping data to L2 cache
slices, this “oracle” scheme outperforms the conventional
shared caching scheme by up to 208% with an average of
45% on a sixteen-core processor. In the second part of the
study, we propose and evaluate a dynamic cache manage-
ment scheme that determines the home cache slice and cache
bin for memory pages without any static program informa-
tion. The dynamic scheme outperforms the shared caching
scheme by up to 191% with an average of 32%, achieving
much of the performance we observed in the limit study. We
also find that the proposed dynamic scheme adapts to multi-
programmed workloads’ behavior well and performs signif-
icantly better than both the private caching scheme and the
shared caching scheme.

1. Introduction

Integrating multiple processor cores has become a clear
and natural architectural choice of mainstream microproces-
sors [4, 18, 25]. For one, Moore’s law is valid and will be
so for the foreseeable future [14]. For another, the perfor-
mance scalability of a single processor by pushing for higher
clock frequency and instruction-level parallelism is running
out of steam, and the power and energy consumption has be-
come the single most critical design constraint [6, 14]. It is
now conventional wisdom to double the number of processor
cores on a chip with each silicon technology generation [2].

With no sign of dramatic collapse of the memory wall,
the on-chip memory hierarchy design and management will
remain a challenge in the “manycore processor” era. Tra-
ditionally, different layers in the on-chip memory hierarchy
are cascaded vertically, and the trade-offs are made between
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Figure 1. A tiled manycore processor architecture.

the neighboring layers in terms of cache hit rate, hit latency,
miss penalty, and bandwidth [11]. When there are many pro-
cessor cores and lower-level cache slices linked together via
an on-chip interconnection network, a horizontal hierarchy
will begin to form. For instance, non-uniformity in L2 cache
access latencies will be inevitable [12, 16]. New innovative
design strategies to manage complex on-chip memory hier-
archy will be needed for future manycore processors.

Currently practiced L2 cache management approaches,
namely private caching and shared caching, do not scale
with the increased amount of on-chip resources. Let’s con-
sider a tiled manycore processor, depicted in Figure 1. A
private cache design does not directly use the large aggre-
gate on-chip caching capacity, wasting precious resources
when there are fewer programs running than the number of
cores. On the other hand, a conventional fine-grained shared
cache design will experience an increased access latency if
designed blindly as we scale the processor. In a 1024-core
processor, for example, the average L2 cache hit latency can
become as large as 180 cycles; the figure is close to the main
memory access latency in 1990’s!

In this paper, we are mainly concerned with the single-
thread program performance on distributed L2 caches in
a future manycore processor and present a two-part study
done with a view to achieving more scalable single-thread
program performance. More specifically, we develop and
evaluate a dynamic program location aware data placement
scheme on a simple shared cache, extended with the sup-
port for flexible data mapping at the memory page granu-
larity [9]. While much work has been done to optimize the
performance of parallel workloads, we believe single-thread
programs will remain an important branch of applications in



the future and focus in this paper on improving their perfor-
mance. We note that we can apply the ideas of this paper to
parallel workloads and leave this as a future work.

The results we obtain in this study lead to several interest-
ing insights: (1) When many distributed L2 caches are used,
cautious data placement is crucial to single-thread program
performance; (2) In a manycore processor design, the on-
chip network delay is becoming a nontrivial performance-
limiting factor, which, if not handled properly, will lead to
significantly degraded performance; and (3) As the number
of cores increases, a flexible L2 cache management frame-
work will be beneficial and of growing importance.

The rest of this paper is organized as follows. Section 2
briefly introduces the current L2 cache management ap-
proaches and summarizes recent related work. Section 3 and
4 describe in detail the profile-driven data mapping scheme
and the proposed dynamic cache management scheme, re-
spectively, followed by their quantitative evaluation in Sec-
tion 5. Conclusions and future work are given in Section 6.

2. Related Work

There are two baseline L2 cache design and management
approaches in current-generation multicore processors: pri-
vate caching and shared caching [1, 10, 13, 18, 20, 25, 28].
Previous work indicates that neither a pure private design,
nor a pure shared design, achieves optimal performance un-
der different workloads [9,12,21,31]. Researchers have thus
examined optimizations to balance between latency (by im-
proving data locality) and cache miss rate (by utilizing cache
capacity more efficiently).

Zhang and Asanovi¢ [31] proposed victim replication
based on a shared L2 cache organization, where each L2
cache slice can receive a remote cache line replaced from its
local L1 cache as well as the designated cache lines. Essen-
tially, L2 cache slices provide a large victim caching space
for the cache blocks whose home is remote so that data lo-
cality (i.e., L2 hit latency) can be improved.

Chishti et al. [8] proposed a cache design called CMP-
NuRAPID having a hybrid of private per-processor tag arrays
and a shared data array. Based on the hardware organiza-
tion, they studied a series of optimizations such as controlled
replication (to save capacity against migratory clean copies),
in-situ communication (to eliminate coherence overhead for
write-read access patterns), and capacity stealing (to better
utilize on-chip capacity). Compared with a shared cache or-
ganization, however, CMP-NuRAPID requires much more
complex cache management hardware.

Chang and Sohi [7] proposed a cooperative caching
framework based on a private cache design with a central-
ized directory scheme. They studied several optimizations
such as cache-to-cache transfer of clean data, replication-
aware data replacement, and global replacement of inactive
data. Experimental results show that the proposed optimiza-
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Figure 2. TLB extended with a cache bin number.
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tions effectively limit data replication and achieve a higher
cache hit rate. However, the complex central directory is not
a scalable approach for large-scale multicore processors.

Finally, Cho and Jin [9] proposed an on-chip cache man-
agement framework where memory data can be dynamically
placed into any cache slice. By increasing the data map-
ping granularity from memory block to memory page, they
showed that the OS memory management mechanism can
be conveniently extended to handle the task of on-chip L2
cache management. This work however does not study how
to achieve high program performance when such a flexible
data mapping mechanism is given. Our work uses a simi-
lar data mapping mechanism, based on which we investigate
effective mapping policies to achieve high performance.

3. Static 2D Page Coloring

In this section, we describe our “oracle” scheme—static two-
dimensional (2D) page coloring, where data to cache bin
mappings are determined before program execution. A
cache bin is a smallest group of cache sets which would hold
an entire memory page. The number of cache bins in a cache
is simply the cache size divided by the product of the page
size and the associativity. Our off-line algorithm greedily
selects a cache bin (among all cache slices) for a page based
on detailed inter-page conflict information derived from a
program’s memory reference trace.

We call this scheme ‘“2D” page coloring because choos-
ing a target cache bin decides not only the color within a
cache slice, but also the cache slice itself, which in turn de-
termines the program-data distance. While collecting and
analyzing detailed traces for every program might be im-
practical, taking this oracle approach provides valuable in-
sights into the “ideal” program performance on distributed
shared caches, by optimizing cache access latency and miss
rate together. It is also noted that the performance of the pro-
posed profile-driven 2D page coloring places an upper bound
on the performance achieved by aggressive static compiler
analysis [5]. We assume that the cache bin number assigned
to a page can be directly derived from the physical page
number or retrieved from the TLB [9], as shown in Figure 2.

The static 2D page coloring scheme consists of three
phases: trace generation, trace analysis and generating
mappings between pages and cache bins. In the trace gen-
eration phase, memory references of the target program are



while trace is not empty {
get the next reference R from trace
PI = array index of the page accessed by R

for (i = 0; i < total number of pages; i++) {
Reference[i] [PI] = 1;
if (Reference[PI] [i]

+

1

== 1) {
Conflict [PI] [1]++;
Reference [PI] [1] = 0;
}
}
}

Figure 3. The algorithm to extract conflict informa-
tion from a reference trace.

collected. To accurately capture the related cost in the trace
analysis phase, we collect only L2 cache references. In the
trace analysis phase, we count the number of references to
different pages and the number of inter-page conflicts, with
the scope of the whole trace. While the number of references
per page is easily obtained given the memory reference trace,
computing the number of conflicts between pages is impos-
sible before they are assigned a cache bin. To tackle this
complication, we assume that if there are two references to
page A and B and there is no other reference to page B in
between, these two references can potentially cause a con-
flict miss if page A and page B are placed in the same cache
bin [24]. The algorithm is sketched in Figure 3.

The inter-page conflict information is used in the last
phase when estimating the potential cache misses caused by
placing a page to a cache bin. The target in this phase is then
to minimize the overall cost of L2 cache accesses by itera-
tively computing the cost of assigning a particular page to all
cache bins and selecting the cache bin with the smallest com-
puted cost. Given inter-page conflict information in Con-
flict[][] and other necessary microarchitectural parameters,
we can start mapping pages to cache bins. Since the page
coloring problem is in general NP-complete [15], we adopt
a heuristic approach to make the computation tractable. Our
coloring algorithm evaluates pages from the one with the
largest number of accesses and proceeds in a decreasing or-
der. The cost of assigning a particular color or bin C to a
page P is computed by the following cost function:

Cost(PC) = « x TotalConflicts(P,C) x MemLatency
+ (1 — a) x TotalAccesses(P)
x (L2Latency + NoCDelay(C)) (D

In the above equation, TotalConflicts(P,C) is given as
>~ Conflict[P][Xi]/N for any page Xi already mapped to C.
N stands for the number of pages that have been allocated to
the cache bin. NoCDelay(C) denotes the on-chip network
transmission latency. Without losing generality, we assumed
in the above that the program location is fixed (and thus not
shown) for the clarity of presentation.

Since TotalConflicts(P,C) is an estimated value, we in-

troduce a parameter o to mitigate the inaccuracy. « can
have a value ranging from O to 1 and controls the page ag-
gregation density. With a smaller o, more weight is put on
NoCDelay(), thus placing pages closer to the program loca-
tion. As such, when « is 0, the algorithm simulates a private
cache. On the other hand, with « equal to 1, the algorithm
simulates a shared cache by only considering the aggregate
on-chip miss penalty and ignoring the on-chip network la-
tency and cache hit time. The process of assigning a cache
bin to a page using the above cost function is repeated until
all pages are colored. The derived color assignment infor-
mation is then used to direct the OS page allocations [9].

4. Dynamic 2D Page Coloring

In this section, we present a dynamic 2D page coloring
scheme which optimizes both cache hit latency and cache
miss rate. The dynamic page placement exploits the on-line
cache resource usage information to select a home cache bin
having the smallest total expected cache access cost for a
new page. The key design issues for the proposed scheme
are: (1) what information to collect and (2) how to compute
the expected cache access cost with the information.

What run-time information do we collect? Selecting a
good home cache bin for a page involves estimating the com-
bined cost of cache access latency and cache misses, given
that the page is placed in the cache bin. The cache access
latency is simply the distance between the program and the
cache slice. The cache miss estimation process, however, re-
quires that we continuously monitor the cache bin hotness.
Because accurately predicting future page access behaviors
is difficult, we base our initial placement decisions on the
most recent hotness information of the cache bins in consid-
eration. There are potentially many different ways to assess
the hotness of a cache bin. For example, one can measure the
cache pressure by counting the number of hot pages [9] or
derive the cache utility by tracking the LRU stack positions
being touched [22]. In this study, we examine an alterna-
tive method which simply counts the number of misses (Bin-
Miss()) and accesses (BinAcc()) at each cache bin because
the values are directly used in our cost estimation process.
How do we determine a home tile for a page? The actual
cost of placing a new page to a cache bin C is computed
on-line using the following function:

BinMiss(C)

BinAcc(C)
+ (L2Latency + NoCDelay(C)), (2)

Cost(C) = x MemLatency

which is simply the average L2 cache access latency to the
bin C. The above cost function considers only the current
state of cache bins because at the time of initial page place-
ment there is little information about the page usage. Our
experimental results indicate that page placement decisions
guided by the proposed cost function are effective. In order
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Figure 4. Microarchitectural support for dynamic
2D page coloring.

to reflect program’s phase changes, BinMiss() and BinAcc()
need be continuously decayed. The decay period (Tdecay)
and decay method are a parameter to the overall cache man-
agement scheme. To determine a home tile for a page, we
simply choose a cache bin having the minimum cost.

4.1. Architectural support

Figure 4 depicts a block diagram that captures the hardware
support for the proposed dynamic 2D page coloring scheme.
First, each bin in the L2 cache is augmented with a pair of
counters, BinMiss() and BinAcc(). They are updated on ev-
ery L2 cache access. Second, we add a global bin usage
table, which provides information about how cache bins are
used across the chip. The number of entries in this table is
equal to the total number of tiles, since only the optimal bin
from each tile is recorded. We keep in the table such infor-
mation as BinIindex, BinMiss() and BinAcc(). It is noted
that the information carried in this table is only a hint to
our algorithm; inconsistent and imprecise information is still
acceptable. Henceforth, the global bin usage table can be
updated from time to time, via periodic messages between
tiles, or even utilizing piggybacked information in regular
messages in order to reduce synchronization and communi-
cation overhead.

To make a decision about the home tile for a page, cal-
culations outlined in Equation (2) have to be performed effi-
ciently. As the cost depends only on the local and remote bin
information, calculation is done whenever there is an update
in BinMiss() and BinAcc() in the global bin usage table. The
cache bin having a minimum cost is continuously tracked so
that it can be used whenever there is a bin allocation request.
It is noted that only one comparison operation is needed on
each BinMiss() and BinAcc() update, in order to keep the
“current minimum cost bin” up-to-date.

We find that the cost of counters to collect cache bin us-
age information is modest. Assuming a counter width of 16
bits, the cost for each bin is only 4 bytes. For a 16-tile pro-
cessor with 256KB 4-way associativity L2 cache, only 512B
storage is needed to keep track of necessary information, as-
suming that the page size is 8KB.

5. Quantitative Study

5.1. Experimental setup

We extend the SimpleScalar tool set (v3.0) [3] to model
a tile-based multicore processor on a 2D mesh, similar to
Figure 1(a). The baseline processor configuration is (4 x4)
tiles. Each tile has a processor with private L1 I/D caches
and a globally shared L2 cache slice. The modeled proces-
sor is a 4-issue out-of-order processor. The 32KB, 2-cycle
L1 caches are 2-way associative and the 8-cycle L2 cache
slice is 4-way associative and 256KB in size. Cache blocks
are 64B (L1) and 128B (L2). A miss in an L1 cache trig-
gers a request sent through the on-chip network to the tar-
get L2 cache. Each hop in the network takes 5 cycles and
the main memory latency is 300 cycles. Otherwise stated, a
program always runs on tile 5. We select 11 integer and 7
floating-point programs from the SPEC2k CPU suite [27] as
workloads. After fast-forwarding the initial phase and hav-
ing a warm-up period, we collect statistics during a period
of 800M instructions. For the sake of consistency, we al-
ways report our result relative to the baseline shared caching
scheme (“SharedBase”) and simple page coloring with no
profile information.

5.2. Results

Static 2D page coloring. Figure 5 shows how a change in
(in Equation (1)) affects the page mappings and cache access
behaviors. Some programs with similar results are removed
from this figure due to the space limitation. We examine 9
different values of a, ranging from O to 1, with a stride of
%. When « equals to 0, the static 2D page coloring scheme
simulates a private cache. On the other hand, when « is set
to 1, it behaviors similar to a shared cache.

The upper graph shows the distribution of accesses going
to a local or remote cache slice. It clearly shows that increas-
ing the value of « scatters more references to a remote cache
slice. The bottom graph shows the distribution of hits and
misses. Programs like gzip, twolf and art have a very small
number of misses, which is not changed much by the value
of a.. Much of their conflict misses are removed by static 2D
page coloring (“Static2D” from now on) and unavoidable
cold misses remain. crafty and eon, though not shown in the
figure, have similar characteristics. As a result, they show
their best performance with the small « value we examined.
Other programs like mcf, parser, vortex, bzip2 and swim ex-
hibit a concave curve, whose peak is roughly in the middle.
mgrid and equake even show an increase in the number of
misses. We ascribe this situation to imperfect trace informa-
tion used in our algorithm, its heuristic nature and its inabil-
ity to capture program phase changes. In addition, when a
equals to 0, no conflict information is considered. This may
lead to nondeterministic behavior as exhibited in some pro-
grams such as the elevated miss rate in parser, vortex and
swim. In general, a value of a which balances miss rate and
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latency yields the best performance.

Figure 6 shows the performance of the private caching
scheme, shared caching scheme and our Static2D. Since
we use an aggressive profile-guided page coloring tech-
nique [24] on private caching and shared caching scheme for
fair comparison, we name them “Private” and “Shared” re-
spectively to differentiate from SharedBase.

Note that all performance numbers are normalized to that
of SharedBase. It is shown that Static2D consistently out-
performs Private and Shared. The performance of Private
often suffers due to the relatively small cache slice size of
256KB; vpr, twolf, art, and ammp are among the most af-
fected. We observe a high L2 cache miss rate in these pro-
grams, which cannot be simply compensated by L2 cache
latency savings.

Shared always shows better performance than Shared-
Base by reducing conflict misses (but not access latency).
Programs like mcf, swim, mgrid benefit much from the miss
rate reduction and achieve over 50% performance improve-
ment. Static2D achieves higher performance than both Pri-
vate and Shared by balancing cache miss rate and cache ac-
cess latency. swim is a notable exception, for which Shared
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Figure 7. Average performance when (a) cache
slice size is varied and (b) tile count is varied.

achieves a better miss rate than Static2D due to its fine-
grained block interleaving. On average, Static2D achieves
44.7% performance improvement over SharedBase, 23.7%
over Shared, and 83.2% over Private.

Figure 7 shows how performance of different schemes
scales when the cache slice size or the tile count is var-
ied. When cache slices are small, miss rate is the domi-
nant performance factor and Private performs poorly. As
we increase the cache slice size, however, the gap between
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Private and Shared decreases and Private begins to out-
perform Shared at 2MB, where cache access latency be-
comes a determining factor. Though not plotted, Private
and Static2D will merge finally and Shared will approach
1 (i.e., degenerate to SharedBase) as we increase the cache
size indefinitely. When there are more tiles on a chip, the
average cache access latency of Shared and SharedBase
grows (also shown in Figure 1(b)). Shared is shown to ap-
proach 1 as we add more tiles since latency becomes the
dominant factor and the benefit of profile-guided coloring
becomes negligible. By comparison, the performance of Pri-
vate and Static2D is largely insensitive to the addition of
tiles. Private begins to outperform Shared due to the per-
formance degradation of Shared in larger-scale chips.

Lastly, Figure 8 gives an example of how Static2D allo-
cates pages to different L2 cache bins. In case of ammp, if o
is set to 0.5, most pages are allocated to the local cache slice
while a few pages are spread out to neighboring tiles. Ac-
cess distribution exhibits similar pattern. After increasing
a to 1.0, Static2D simulates Shared, except at granular-
ity of page. Pages and memory accesses are almost evenly
distributed across the whole chip. It is clearly shown that
a larger v value results in more spread memory accesses
among the cache bins.

Dynamic 2D page coloring. Tdecay is an important pa-
rameter, which controls the sensitivity to the program phase
change. Due to the space limitation, we present results
with empirically chosen values for Tdecay (8,192 L2 cache

misses). Figure 9 shows the performance of Static2D, vic-
tim replication [31] (“VR”) and the dynamic 2D page col-
oring scheme. Again, the results are normalized to the per-
formance of SharedBase. VR achieves better performance

than SharedBase for most of programs, except swim and
mgrid, in which case, VR degrades performance consider-
ably. This degradation is mainly caused by the interference
introduced by replications. Overall, the performance im-
provement of VR over SharedBase is shown to be limited.

Dyn2D provides slightly lower performance than
Static2D in general. This is due to the limited scope of run-
time information used in Dyn2D. For mcfand swim, the dy-
namic scheme performs considerably worse than Static2D.
The major reason for this is that the two programs access a
lot of pages for a relatively small number of times per page.
The dynamic scheme did not react to the page usage changes
in a timely manner.

Static2D and Dyn2D perform significantly better than
VR, and the improvements come from two factors: (1) Page
coloring schemes place data close to the program location
when it is not able to fit data in the local cache. VR, on the
other hand, does not provide such benefit; and (2) Page col-
oring schemes provide extra benefit by minimizing miss rate
through cautious data placement. VR can potentially intro-
duce more misses, however, by increasing the local cache
pressure by injecting replicas without control. Overall, the
performance of the dynamic 2D coloring scheme is com-
parable to that of Static2D and boost the performance by
32.3% and 40.9%, respectively, compared with Shared-
Base. Compared to VR, the dynamic 2D coloring schemes
gain 24.7% (Dyn2D).

Figure 10 takes mgrid as an example to show how differ-
ent schemes, SharedBase, Shared, Static2D, and Dyn2D
(from (a) to (d)), create changes in how frequently cache
slices (grouped into fiers) are accessed and how often ac-
cesses hit. Tier O refers to the local cache slice, tier 1 refers
to the four neighbors in north, south, west, and east, and so
on. Compared with SharedBase, Shared does not change
the access frequencies to different tiers. However, it reduces
the miss rate from over 22% down to 10.4%, resulting in
an 1.5x speed-up. Static2D further reduces the miss rate
to 2.2%, while attracting almost all pages to the local cache
slice. Lastly, Dyn2D trades access latency for an even lower
miss rate, thus achieving the best performance.

Multiprogrammed workloads. We also evaluated how the
dynamic 2D page coloring scheme performs when multipro-
grammed workloads are run. We conducted this study on
a full-system simulator built on Simics [26] modeling the
same machine configurations used in previous experiments.
To form workloads, we group programs into three classes,
low pressure, medium pressure, and high pressure, based on
their cache usage. We then select a combination of eight pro-
grams for each of the three workloads. In the first workload
that we label “mix.low,” we have gzip, crafty, parser, eon,
vortex, vpr, mesa, and swim. The workload is designed to
mimic a situation where each individual program scheduled
together requires a small L2 cache space. The next work-
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load, labeled “mix.mid,” has wupwise, gzip, mcf, crafty,
parser, mgrid, eon, and art. Lastly, the workload “mix.high”
comprises of twolf, gap, mcf, wupwise, mgrid, art, equake,
and ammp.

After skipping the initialization phase of the programs,
we measure the progress of each program after one sim-
ulated second. Program locations are fixed, ranging from
tile 4 to tile 11. Additionally, we slightly modified the de-
cay method in the dynamic 2D coloring scheme as follows.
When we right-shift counters on every 50k cycles, we add
the values in the bin miss counters to the bin access coun-
ters. This is to better distinguish between hot bins and rel-
atively cold bins that have many cold misses. The intuition
behind our method is that adding the miss count to the ac-
cess count will decrease the miss rate and hence the effect of
cold misses. There may be many different implementations
to achieve the same effect, but we find this simple method

sufficiently good in our experiments.

Figure 11 shows the performance of these workloads in
terms of averaged speedup (a) and aggregate throughput (b).
As expected, the performance of the private caching scheme
keeps decreasing (compared with that of the shared caching)
as the workloads have an increased L2 cache demand. When
there is high L2 cache contention (“mix.high”), the private
caching scheme performs poorly, worse than SharedBase.
The dynamic 2D page coloring scheme outperforms both the
private and the shared caching scheme robustly, in almost
all the comparison points. In particular, it achieves an im-
provement of up to 26.4% using the average speedup met-
ric and 38.6% using the aggregate throughput metric when
compared to SharedBase. In comparison with the private
caching scheme, the dynamic 2D scheme achieves an im-
provement of up to 14.3% in average speedup and 18.8% in
throughput in the best case. The dynamic 2D page coloring
scheme had a very slight throughput degradation than the
private caching scheme for the “mix.low” workload. This is
because the programs in this workload have low cache space
requirement each and can run efficiently on private caches.
On the other hand, our dynamic scheme introduced some in-
terferences in allocating pages and accesses. An interesting
observation is that the dynamic 2D page coloring scheme
performs best in the “mix.mid” workload in both the met-
rics. This is because the workload provides the largest room
for trade-off between miss rate and access latency, and our
scheme was able to hit the right point in the trade-off span.

6. Conclusions

This research investigated the problem of how to manage
distributed L2 caches on a large-scale chip multiprocessor to
achieve high single-thread program performance. We make
the following contributions in this paper:

e We propose a static off-line algorithm to assign a cache
bin to each memory page based on detailed page con-
flict and access frequency information. The result we
obtain using this scheme presents a relative tight limit
on the performance with the shared cache hardware



o

0.5

o
o

Dprivate
Wdynamic 2D

Oprivate
W dynamic 2D

Average speedup over SharedBase
o
C

mix.low mix.mid mix.high

(a) (b)

mix.low mix.mid mix.high

Throughput improvement over SharedBase

Figure 11. Performance of multiprogrammed work-
loads under the private caching and dynamic 2D
page coloring schemes.

when the cache hit latency and the on-chip cache miss
rate are optimized together via flexible data mapping.

e We propose a dynamic on-line algorithm to map pages
to L2 cache bins. The proposed algorithm uses only
run-time information on cache bin and page usage
when selecting a target cache bin for a new page map-
ping. We discuss the key design issues in detail.

e We evaluate the proposed schemes and compare
them with the existing shared and private caching
schemes. Our quantitative study shows that the pro-
posed schemes achieve higher performance than the ex-
isting schemes because they balance cache miss rate
and cache access latency effectively. We showed that
the proposed dynamic 2D coloring scheme achieves
much of the performance potential identified through
our limit study using the off-line algorithm.

Our future work includes (1) exploring the design space
of the dynamic 2D page coloring scheme, especially for
multiprogrammed workloads; (2) studying how to support
a parallel application effectively; and (3) utilizing process
scheduling and data placement schemes with synergy.
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