J. Parallel Distrib. Comput. 71(2011) 1-15

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Advanced hashing schemes for packet forwarding using set associative

memory architectures

Michel Hanna *, Socrates Demetriades, Sangyeun Cho, Rami Melhem
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 22 December 2009
Received in revised form

12 October 2010

Accepted 12 October 2010
Available online 16 October 2010

Keywords:

Hardware hashing

Set associative memory
IP lookup

Packet forwarding
Hash schemes

Building a high performance IP packet forwarding (PF) engine remains a challenge due to increasingly
stringent throughput requirements and the growing size of IP forwarding tables. The router has to match
the incoming packet’s IP address against all entries in the forwarding table. The matching process has to
be done at increasingly higher wire speed; hence, scalability and low power consumption are critical for
PF engines.

Various hash table based schemes have been considered for use in PF engines. Set associative memory
can be used for hardware implementations of hash tables with the property that each bucket of a hash
table can be searched in a single memory cycle. However, the classic hashing downsides, such as collisions
and worst case memory access time have to be dealt with. While open addressing hash tables, in general,
provide good average case search performance, their memory utilization and worst case performance can
degrade quickly due to collisions (that lead to bucket overflows).

The two standard solutions to the overflow problem are either to use predefined probing (e.g., linear
or quadratic probing) or to use multiple hash functions. This work presents two new simple hash schemes
that extend both aforementioned solutions to tackle the overflow problem efficiently. The first scheme is
a hash probing scheme that is called Content-based HAsh Probing (CHAP). As the name suggests, CHAP,
based on the content of the hash table, avoids the classical side effects of predefined hash probing methods
(i.e., primary and secondary clustering phenomena) and at the same time reduces the overflow. The
second scheme, called Progressive Hashing (PH), is a general multiple hash scheme that reduces the
overflow as well. The basic idea of PH is to split the prefixes into groups where each group is assigned
one hash function, then reuse some hash functions in a progressive fashion to reduce the overflow. Both
schemes are amenable to high-performance hardware implementations with low overflow and constant
worst-case memory access time. We show by experimenting with real IP lookup tables and synthetic
traces that both schemes outperform other existing hashing schemes.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

prefix) is a binary string of a certain length (prefix length), followed
by don’t care bits. The adoption of Classless Inter-Domain Routing

High speed routers require wire speed packet forwarding while
the sizes of the IP tables across core routers are increasing at a very
high rate [16]. IP address lookup has been a significant bottleneck
for core routers. The advancement of optical networks made the
situation even worse with link rates already beyond 40 Gbps. It
is predicted that in the near future “Terabit” link rates will be
available at affordable prices [43,17].

IP lookup proceeds as follows: the destination address of every
incoming packet is matched against a large forwarding database
(i.e., routing table) to determine the packet’s next hop on its way
to the final destination. An entry in the forwarding table (called a

* Corresponding author.
E-mail addresses: mhanna@cs.pitt.edu (M. Hanna), socrates@cs.pitt.edu
(S. Demetriades), cho@cs.pitt.edu (S. Cho), melhem@cs.pitt.edu (R. Melhem).

0743-7315/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2010.10.006

resulted in the need for longest prefix match (LPM) in case of
multiple matchings [34].

Existing IP forwarding engines are categorized into two main
groups: hardware based and software based. The hardware based
schemes are generally constrained by the size and power con-
sumption of the engine. The software based schemes are mainly
constrained by the throughput, measured as the number of lookups
per second. Trie-based solutions are among the earliest IP lookup
schemes [38,9,11,27]. The main idea is to build a trie (a tree-like
structure) from the IP table. The problem with these schemes is
the low throughput [2].

Recently, hash-based IP lookup techniques gained a lot of mo-
mentum. Hash tables come in two flavors: open addressing hash
and closed addressing hash (or chaining)[4,23,39,5]. The hash table
in a closed addressing hash has a fixed height (number of buckets),
and each bucket is an unbounded linked list. During the lookup

http://dx.doi.org/10.1016/j.jpdc.2010.10.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:mhanna@cs.pitt.edu
mailto:socrates@cs.pitt.edu
mailto:cho@cs.pitt.edu
mailto:melhem@cs.pitt.edu
http://dx.doi.org/10.1016/j.jpdc.2010.10.006

2 M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

process, a specific row index is generated by the hash function and
the row is searched to find the target key.

In open addressing, the hash table has a fixed height and a fixed
bucket width (number of elements per bucket). Open addressing
hash has a simpler table structure than closed addressing hash
and is more amenable to hardware implementations. However, the
issues of overflow and overflow handling have to be dealt with.
Normally, the overflow is handled by means of probing or by using
multiple hash functions [8].

The hardware schemes use special hardware such as Ternary
Content Addressable Memory (TCAM) [24,28] to increase the
lookup throughput. Unfortunately, the TCAM approach has its own
set of limitations: high power consumption, poor scalability, and
low bit density [26,30,37,47].

In this paper, we assume open addressing hash schemes for
which a number of efficient hardware prototype implementations
have been proposed recently [7,20,46]. In these implementations,
the hash table is stored in a set associative memory where each
set stores all the elements in a bucket and the buckets are indexed
through the hash function.

Our goal is to fit an entire IP lookup table in a single fixed
size hash table by using simple and efficient hash functions that
could be easily implemented in hardware. The main challenge is
to achieve maximum space utilization and minimum overflow. In
addition, we want to keep both insertion/deletion into/from the
table simple and straightforward. This work makes the following
contributions to the area of open addressing hash:

e The introduction of the new concept of content-based hash
probing (CHAP) which tackles the overflow more effectively
than other existing probing techniques.

e The application of content-based probing to multiple hash func-
tion schemes.

e The introduction of the progressive hashing (PH) scheme for bet-
ter space utilization and overflow reduction.

e The use of content-based probing and progressive hashing to-
gether to implement an efficient hardware-based IP lookup
engine.

The rest of this paper is organized as follows. In Section 2 we
give a brief background on open addressing hashing and the use
of hashing in the presence of wildcards that play a major role in
packet forwarding tables. Furthermore, we describe an example
of the state-of-the-art set associative memory architecture in
Section 2 as well. In Section 3 we describe CHAP, our first scheme.
We discuss our second scheme Progressive Hashing in Section 4.
Section 5 shows the experimental results of each scheme alone and
the results of combining the two schemes. Finally, we give both the
conclusions and future work in Section 7.

2. Background

2.1. General open addressing hash

Searchable data items, or records, contain two fields: key and
data. Given a search key, k, the goal of searching is to find a record
associated with k in the database. Hash achieves fast searching by
providing a simple arithmetic function h(-) (hash function) on k so
that the location of the associated record is directly determined.
The memory containing the database can be viewed as a two-
dimensional memory array of N rows with L records per row.

It is possible that two distinct keys k; # k; hash to the same
value: h(k;) = h(k;). Such an occurrence is called a collision. A
worst-case (pathological) which restrict the effectiveness of hash-
ing is when all the keys are mapped to the same row. There are two
solutions to solve the problem of collision in this case: (1) Make
the row large enough to hold all the possible colliding prefixes

at the cost of a large amount of wasted memory. The statistics in
Section 2.2 shows that this is going to be fairly inefficient. (2) Con-
trol the row size and handle the overflow prefixes in a different
way such as “probing” which we describe next.

When there are too many (>L) colliding records, some of these
records must be placed elsewhere in the table by finding, or
probing, an empty space in a bucket. For example in linear probing
the probing sequence used to insert an element into a hash table is
given as follows:

(h(k))mod(N), (h(k) + Bo)mod(N), ...,
(h(k) + Bm—1)mod(N) (1)

where each g; is a constant, and m is the maximum number of
probes. Linear probing is simple, but often suffers from what is
called “primary key clustering” [8]. Another type of probing is
called quadratic probing where we use a quadratic equation to
determine the next bucket to be probed. The quadratic probing
sequence used to insert an element into a hash table is generated
by the following equation:

h(k,i) = (W (k) 4+ ¢; x i+ ¢ x i#)mod(N),
i=0,1,...m—1 (2)

where H'(-) is called the auxiliary hash function and both ¢; and
¢, are constants. Quadratic probing suffers from another type of
clustering which is called “secondary key clustering” [8].

Instead of probing, we can apply a second hash function to find
an empty bucket, which is known as double hashing [8]. In general,
the use of H > 2 hash functions is shown to be better in reducing
the overflow than probing [1]. In this case (which we will refer to
as multiple hashing in the rest of this paper) the probing sequence
of inserting a key into the hash table is given as follows:

ho(k), hi(k), ..., hy—_1(k) (3)

where H is the maximum number of hash functions. Most work
that is done in the multiple hashing area is for closed addressing
hash [1,44]. Note that using a different hash table for each hash
function in Eq. (3) is a valid design option; however, using different
hash tables leads to more overflow and hence results in poor space
utilization [12,20,43]. Here is how we argue that using a single hash
table is better than using multiple hash tables.

Proof. Consider the case where we have two identical hash tables,
A and B, of size (N x L), where N = number of rows and L = row
width, and the case where we have an equivalent single hash table,
C, of size (N x 2L). Assume that “a” elements are mapped to row i
of table A and “b” elements are mapped to row i of table B, then

¢” = (a + b) elements are mapped to row, i, of table C. The
overflow is calculated for tables A, B and C, respectively, as follows

overflow, = max{0, (a — L)}
overflowgs = max{0, (b — L)}
overflowc = max{0, (c — 2 x L)}.

It is straightforward to show thatif (a > Land b > L)or(a < L
and b < L), then: overflowc = (overflow, + overflows). if one of a
or bis larger than L and the other is smaller than L then overflowc <
(overflow, + overflowg). Specifically, if (a = L+x)and (b = L —y)
for some integers x, y > 0, then (overflow, + overflowz = x) while
(overflowc = 0) or (x — y) when (y < xory > x), respectively.
Thus, having more than one hash table case has more overflow than
having a single hash table. O

To achieve high space utilization (the ratio between the re-
quired memory to store the database and the capacity of the actual
RAM used) we apply multiple hash functions on a single hash ta-
ble. Specifically, a key is inserted in the hash table using any of the
H hash functions in Eq. (3).

M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15 3

9000
8000
7000
6000
5000
4000
3000
2000
1000

1 210 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 >100
x= size of the PSC-16 set

number of PSC-16 sets
of size 'x'

f(x)

Fig. 1. Histogram of the prefixes sharing the first 16 bits.

Given a database of M records and an N-bucket hash table, the
average number of hash table accesses to find a record is heavily
affected by the choice of h(-), L (the number of slots per bucket),
and «, or the load factor, defined as M/(N x L). With a smaller «,
the average number of hash table accesses can be made smaller,
however at the expense of more unused memory space, which
leads to increasing both the power consumption and access time
latency [2].

2.2. Hashing in the presence of wildcards

Applying hash functions in packet forwarding is very challeng-
ing due to the fact that wildcard, or don’t care bits are heavily
present in the IP lookup tables. Hashing with wildcards requires
one of two solutions: restricted hashing or grouped hashing [14].

In restricted hashing, RH, the hash functions are restricted to
use only the non-wildcard bits of the keys. For example, prefixes
can be either expanded [41] to increase the number of non-
wildcard bits or only a specific prefix length, that rarely includes
wildcards, is used for hashing. In the latter case, the shorter
prefixes are kept in a small fast memory [13,14]. The hashing
scheme that we use in our first scheme, CHAP, restricts the hash
functions to use only 16 bits to generate the hash indices, which
will lead to a lot of collisions. Fig. 1 shows a histogram of how many
prefixes share the most significant 16 bits for 15 real IP tables.! The
number of prefixes that are shorter than 16 is less than 2% of the
lookup table population and these are ignored in the figure.

To explain the figure, we define PSC-16 (Prefix Set with
Common 16 bits) as a set that contains prefixes from the same
IP forwarding table having an identical 16 first bits (sharing a
common 16-bit prefix). The size of a PSC-16 set is the number of
prefixes in that set. We then define f(x) as the number of PSC-
16 sets of size x averaged over the 15 tables and plot f(x) for
different ranges of x. For example, the point (1, 8920) in the figure
indicates that there are, on average, 8920 PSC-16 sets of size 1. In
other words, there are, on average, 8920 unique prefixes per table.
The next point, (2-10, 7000), indicates that there are on average
7000 PSC-16 sets per table, each containing between 2 and 10
prefixes that share the first 16 bits. The last point, (> 100, 247), is an
aggregation of the PSC-16 sets that contain more than 100 prefixes.

The maximum size of a PSC-16 set is 1552 (table rrc04) with an
average of 532 over the 15 tables. That is, on average, there may
be as many as 532 prefixes per table having an identical first 16
bits. These prefixes will definitely collide if a single hash function
is used. Using multiple hash functions alleviates that problem.

In grouped hashing, GH, prefixes are grouped based on their
lengths, then different hash functions are applied to each group.
For example, the 32 bit IPv4 wide address space can be split into 5
groups as follows:

1 These tables’ statistics are given in Table 1.

S24: 24 < |Prefix| < 32

.
. 520:20< |Prefix| <23 . hol)
{ s
. S18:18<|Prefix] <19 *hql)
Ii 1
| S16:16 < |Prefix| 17 ~hy()
f h

i
$8:8 < | Prefix| < 15 > hy)

'- 1

bommmmmmmeeeee ~hy()

Fig. 2. Splitting the hashing space into groups. We represent the 32-bit address
space with bold line and MSb and LSb stand for most significant bit and least
significant bit, respectively.

e Group S24 that contains prefixes with at least 24 specific (non-
wildcard) bits.

e Group S20 which contains prefixes of length between 20 and 23
bits.

e Group S18 which contains prefixes of length 18 and 19 bits.

e Group S16 which contains prefixes of length 16 and 17 bits.

e Group S8 which contains prefixes of length between 8 and 15
bits.

Then, each group is associated with a different hash function. For
example, a hash function hy() that uses 24 bits can be associated
with group 524, h;() that uses 20 bits can be associated with group
$20, ..., and hy() that uses 8 bits can be associated to group S8.
This scheme is similar to the one used in [20]. Fig. 2(a) shows the
five groups and their associated hash functions. The prefixes that
are less than 8 bits long, which are fewer than 0.1% of the lookup
table, are stored in a special buffer which we call “overflow_buffer”
that is searched after failing the search of the main hash table. As a
common practice, researchers proposed to use a small TCAM chip
to store the overflow [3]. Based on the results we got in Section 5
we suggest to add a TCAM of size 8 to 20 kB to the main hash table
to work as an overflow_buffer depending on which scheme is used.

Grouping the prefixes based on their lengths is not new. In
fact, the IPStash architecture [20,21] utilizes a special case of the
grouped hashing, where the number of groups is only three and
the groups are called classes. Grouped hashing is used in Section 4
to derive the progressive hashing (PH) scheme, which is our second
proposed scheme.

2.3. Set associative memory architecture overview

There are a few set associative memory architectures that are
devised to work for IP forwarding [7,20,21,46]. In this section we
use CA-RAM (Content Addressable-Random Access Memory) as a
representative of set associative memory architectures proposed
for IP lookup because of its flexibility [7,13,14]. We consider IP-
Stash [20,21] architecture as the second best representative in this
case. Both CA-RAM and IPStash are similar as they are set associa-
tive memory architectures. The main difference between the two
architectures is that IPStash is a cache memory architecture; but
CA-RAM is a more flexible and general memory architecture that
is proven to work for other applications in addition to IP forward-
ing [7,14].

CA-RAM is a specialized, yet generic memory structure that is
proposed to accelerate search operations. The basic idea of CA-RAM
is simple; it implements the well-known hashing technique in
hardware. It uses a conventional high-density memory (i.e., SRAM
or DRAM) and a number of small match logic blocks to provide
parallel search capability. Records are pre-classified and stored in

4 M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

An element is
mapped to this row

Index
Generator
- N@t ,... Processofs
;; Eaiﬁlla Matchlng@
" One Cell

Priority Encoder

Fig. 3. The CA-RAM as an example of set associative memory architectures.

memory so that given a search key, access can be made accurately
on the memory row having the target record. Each match logic
block then extracts a record key from the fetched memory row,
usually holding multiple candidate keys, and determines if the
record key under consideration is matched with the given search
key.

CA-RAM provides a row-wise search capability comparable
to TCAM. More importantly, the bit-density of CA-RAM is much
higher than that of TCAM, up to nearly five times higher if DRAM
is used in the CA-RAM implementation [7]. A CA-RAM takes, as an
input, a search key and outputs the result of a lookup. Its main com-
ponents are: an index generator, a memory array (SRAM or DRAM),
and match processors, as shown in Fig. 3.

The task of the index generator is to create an index from a key
input. The actual function of the index generator will highly de-
pend on the target application. In many applications, index gener-
ation is as simple as bit selection, incurring very little additional
logic or delay. In other cases, simple arithmetic functions, such as
addition or subtraction, may be necessary. Depending on the appli-
cation requirements, a small degree of programmability in index
generation can be implemented using a set of simple shift func-
tions and multiplexers.

A row may be divided into entries of the form shown at the
left corner of Fig. 3 where a CA-RAM entry (cell) stores a prefix,
its length and the port number. Alternatively, two bits can be
used to store a ternary digit to represent 0, 1 and don’t care,
rather than binary (like in TCAM arrays except that the comparison
hardware in this case is shared among all the rows in the memory
array). Optionally, each row can be augmented with an auxiliary
field to provide information on the status of the associated bucket
(e.g., how many keys are stored in this row). We use the auxiliary
field in our two hashing schemes.

Once the index is generated from the input key, the memory
array is accessed and L candidate keys are fetched simultaneously.
The match processors then compare the candidate keys with the
search key. A large area saving in CA-RAM comes from decoupling
memory cells and match logic. Unlike conventional CAM where
each individual row in the memory array is coupled with its own
match logic, CA-RAM separates the dense memory array from the
common match logic (i.e., match processors) completely. Since
the match processors are simple and lightweight, the overall area
cost of CA-RAM will be close to that of the memory array used.
At the same time, by performing a number of candidate key
matching operations in parallel, low-latency, constant-time search
performance is achieved.

CA-RAM was compared against TCAM in terms of performance,
power and area (cost). The result obtained in [7] shows that
CA-RAM is over 26 times more power-efficient than the 16T SRAM-
based TCAM [24], and over 7 times than the 6T dynamic TCAM [28].

All elements at this row
are matched in parallel

_______"_____

[Packet —>(h()] ' —-—-—2----:,'

(T CUm T =
(Il

Probing Pointers
To the

Matching Processors

Fig. 4. The CHAP basic concept.

The CA-RAM cell size is over 12x smaller than a 16T SRAM-
based TCAM cell, and 4.8 x smaller than a state-of-the-art 6T dy-
namic TCAM cell. Overall, CA-RAM is performance-competitive
with TCAM, in terms of both search latency and bandwidth. The
detailed area and power issues are addressed in [7].

3. Content-based hash probing

As we mentioned in the last section, a CA-RAM row stores
the elements of a bucket and is accessed in one memory cycle.
Because the CA-RAM architecture is very flexible, we may keep
some bits at the end of each row for auxiliary data; this allows for
more efficient probing schemes with multiple hash functions. In
this section we first present the basic content-based hash probing
scheme, CHAP(1,m), which is a natural evolution of the linear
probing scheme described by Eq. (1). We then extend this scheme
to H hash functions, which we call CHAP(H,m).

In open addressing hash, some rows may incur overflow while
others have unoccupied space. While linear probing uses prede-
termined offsets to solve that problem as specified by Eq. (1),
CHAP uses the same probing sequence, but with the constants
Bo, B1s - - - » Bm determined dynamically for each value of h(k), de-
pending on the distribution of the data stored in a particular hash
table. Specifically, the probing sequence to insert a key “k” is

h(k), Bolh(K)], B1[h ()], .. ., Bm—a[R(K)]. (4)

This means that for each row we associate a group of m pointers
to be used if overflow occurs to point to other rows that have space.
We call these pointers “probing pointers” and the overall scheme
is called CHAP(1,m) since it has one hash function and m probing
pointers per row.

Fig. 4 shows the basic idea of CHAP when m = 2. In order to
match the overflow excess keys to specific rows, we need to collect
all the overflow elements across all the rows. We achieve this by
counting the excess elements per row and finding for each row
i two rows in which these overflow elements can fit. These two
rows’ indices are recorded in SBy[i] and B1[i].

Assume that we are searching for a key k. If the hash function
points to row i = h(k) and it turns out that the input key k is not
in this row, we check to see if the probing pointers at row i are
defined or not. If defined, this means that there are other elements
that belong to row i but reside in either row Sy[i] or in row 81[i] and
these elements might contain k. Consequently, rows SBy[i] and 81[i]
are accessed in subsequent memory cycles to find the matching
key.

The content-based probing can also be applied to the multi-
ple hashing scheme. Specifically, we refer to CHAP with H hash
functions and m probing pointers by CHAP(H,m). For example, in
CHAP(H,H) we have H hash functions and m = H probing point-
ers. In this case, the probing sequence for inserting a key, k, can be
defined by:

M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15 5

Bolholll Balhy{)] B,Lh,{)]

R

[packet | nm === — H
U] | N NN AN I m O

1NN AN — T

Multiple hesh Probing Pointers

To the
Matching Processors

functions

Fig. 5. The CHAP (3,3).

ho(k), h](")» cees hH—1(k)5 IBO[hO(k)]’ /3] [hl(k)]a]
Bm-1lhu-1()]. (5)

In essence, we dedicate to each hash function a pointer per row.
An example is shown in Fig. 5 for CHAP(3,3). In the example, this
key will have six different buckets to which it can be allocated:
ho(k), h1(k),hz(k), Bolho(K)], B1lh1(K)] and Bz[ha (k)] in the given
order, where g;[h;(-)] is the probing pointer of hash function h;(-).

There are different ways to organize CHAP(H,m) when m ##
H depending on whether or not the probing pointers are shared
among the hash functions in a given row. In the example described
above for CHAP(H,H), we assume that one probing pointer is asso-
ciated with each hash function. Another organization could share
probing pointers among hash functions. Yet a third organization
could assign multiple pointers for each hash function, which is the
only possible organization for CHAP(1,m), when m > 1. In the rest
of this paper, we limit our discussion to CHAP(1,m) and CHAP(H,H)
with one pointer for each hash function and with the probing order
given by Eqs. (4) and (5) for the two organizations, respectively.

3.1. The CHAP(H,H) scheme

In this section we describe how to establish an IP lookup engine
using CHAP(H,H). We present the setup algorithm that sets the
probing pointers and maps actual IP prefixes into the CHAP hash
table. With minor modifications, this algorithm can apply to the
case of CHAP(1,m).

Before we describe the CHAP setup algorithm, we note that on
average 98% of IP prefixes are 16 bits or longer [16]. In CHAP, we
use restricted hashing (RH) where we restrict the hash functions
to use only the most significant 16 bits. This means that prefixes
shorter than 16 bits are not included in the hash table and they
are stored as overflow in a separate memory (overflow_buffer). The
overflow_buffer is used also to store the prefixes that cannot fit in
the table during the setup algorithm as described in Section 3.2. In
addition, the overflow_buffer is searched after a lookup failure in
the main hash table [47,3,13,14].

3.2. The CHAP setup algorithm

Algorithm 1 lays out the setup phase of CHAP. In that algorithm,
j=0,...,M—1isused toindex the prefixes, where M is the total
number of prefixes in an IP routing table. The goal is to map this
table into a hash table with 28 = N rows, where R is the number
of bits used to index the hash table. We use i as an index for hash
functions and H as the maximum number of hash functions. An
array of counters, HC|[| of size N, is used to count the number of
elements that will be mapped to each row of the hash table. We
define a two dimensional array of counters OC|[][] of size N x H to
count the overflow elements for each hash function per row. The
maximum value of a single counter in this array is equal to A, where

A < L, and L is the number of prefixes per row. This bound comes
from the fact that a hole, or an empty space in any row of the hash
table, can never exceed L. The CHAP setup phase determines if the
configuration parameters of the hash table is valid or not. In other
words, do the parameters L, H, > and N result in a mapping of the M
prefixes into a single hash table with acceptable overflow or not?

Algorithm 1 CHAP(H,H) Setup Algorithm.

1: CHAP_Setup(IP forwarding table)
2: Sort the IP prefixes from longest to shortest
3: initialize the arrays HC[] and OC[][] to zeros
4: table_overflow = number of prefixes shorter than 16 bits
5: for(j=0;j < M;j+ +){
6: inserted = false
7: for(i=0;i <H;i++){
8: i = h,‘(kj) }
9: for (i = 0;i < H AND inserted == false; i + +) {
10: if(HC[r;] < L), then {
11: HC[r;] + +
12: inserted = true }
13: }
14: for (i = 0;i < H AND inserted == false; i + +) {
15: if(OC[r;][i] < A), then {
16: oC[r;]li] + +
17: inserted = true }
18:
19: table_overflow++
20: }

Algorithm 1 calculates the number of prefixes to be assigned
to each row. By “assigned” we mean not only the prefixes that are
hashed to this row, but also the overflow prefixes that are supposed
to be in this row but will reside in other rows that are pointed to by
this row’s probing pointers. It starts by sorting prefixes from long
to short, then initializing the two arrays HC and OC to zeros, while
the table_overflow counter is initialized to the number of prefixes
that are less than 16 bits long (lines 1-2). Sorting the prefixes helps
to stop at the first matching prefix as will be proved in Section 3.3.
The set of hash values {rg, ..., ry_1} for each prefix is calculated
(lines 6-7). Then, the algorithm updates the counter HC as follows:
if there is a spot for the current prefix in HC then the algorithm will
move on to the next prefix (lines 8-11), if not, it increments the
corresponding OC counter (lines 12-15).

When Algorithm 1 exits, table_overflow will include the num-
ber of prefixes that could not fit in either HC or OC (lines 16-17)
in addition to the number of prefixes that are shorter than 16 bits
long. If that number is not acceptable, then the algorithm can be
repeated with more hash functions, that is withanew H' = H + 1.
In that setting, the acceptability of the overflow depends on the
capacity of the overflow_buffer. The progressive hashing scheme
discussed in Section 4 may be applied in conjunction with CHAP to
further reduce the overflow.

3.2.1. The mapping of IP prefixes in CHAP

The last step in CHAP is to allocate the elements into the hash
table using hash functions and probing pointers. Before moving to
the actual mapping of the prefixes, we need to assign values to
the probing pointer’s array. This is done by running the best fit
algorithm [33]. The algorithm starts by finding the largest counter
value from the OC array, say OC[T][I], and the smallest counter
value from HC, say HC[J]. We say that row ‘J’ has a hole of size
“L — HC[J]". Then the Ith probing pointer of row T is assigned the
value of J, the row having the largest hole provided that the hole
size is larger than OC[T][I]. This process is repeated iteratively.

Clearly, the best fit algorithm may not find a hole for each over-
flow counter, which means that some keys will not be able to

6 M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

fit in the hash table. The number of these keys are added to ta-
ble_overflow, and again, if the resulting overflow is not acceptable,
then Algorithm 1 has to be re-executed with a larger value of H.
After setting the probing pointers, the prefixes are mapped to the
hash table.

3.3. Search in CHAP

As discussed in Section 2.3, a read operation fetches a full
row (bucket) from the hash table into a buffer and uses a set of
comparators to determine, in parallel, the longest prefix match
among the elements in that bucket. A complete search might need
to search more than one bucket. Hence, a metric that will be used
to measure the efficiency of the search in CHAP is the Average
Memory Access Time, AMAT, which is simply the average number
of rows accessed for successful search.

The CHAP search algorithm, Algorithm 2, is straightforward. We
call our main hash table “H_Table|[][]”, of size N x L where N
and L are the number of rows and the row capacity respectively.
Each element in H_Table[][] consists of the actual prefix, H_Table|
Il 1.key, and the prefix length, H_Table[|[].len which is used to
determine the LPM. Given a packet P, we calculate the row address
ri(P) = h;(P) and riyy = Bilhi(P)], wherei =0, ..., H — 1 (lines
1-3).

For each row of the 2H rows, we match the packet against all
the prefixes in this row in parallel and if we hit at this row, we
return the port number associated with the matched prefix (lines
4-6). If we do not find a match in these rows, we simply search the
overflow_buffer (line 8).

Algorithm 2 The CHAP Search Algorithm.
Search_Hash_Table(Packet P) {

1: for(i=0;i<H;i++){
2: ri = hl(P)
3: Tirn = Bilhi(P)]}
4: for(i=0;i<2H;i++){
5: if(P matches H_Table[r;][j].key),
then { /* done in parallel for all values of j */
6: return H_Table[r;][j].port }
7: }
8: search the overflow_buffer }

To be able to stop at the first matching prefix during search in
the CHAP’s search algorithm, Algorithm 2, we store the prefixes
according to their length from the longest to the shortest [13]. In
addition to sorting the prefixes during the insertion, we have to
maintain what is called the “hash order” during both insertion and
search phases. The hash order is merely the order of applying the
hash functions in addition to the order of accessing the probing
pointers. Theorem 1 proves that these two conditions are enough
to find the LPM first.

Theorem 1. In CHAP, the first matching prefix is the LPM if:

1. The prefixes are inserted from the longest to the shortest.

2. The search’s hash order, which includes both the order of accessing
the probing pointers and the order of applying the hash functions,
is the same as the insertion’s hash order.

Proof. In a restricted multi hashing scheme all the H hash func-
tions are applied to all keys. Let us assume that we have M keys
to be hashed and that they are sorted according to their length
from the longest to the shortest. Also, assume that the hash or-

der during the insertion is as follows: o (kss), . . . , r25—1(km), where
1i(km) = hi(ky) fori = 0,...,H — 1and ri(ky,) = Bilhi(ky)] for
i=H,...,2H — 1.In addition, assume that there exists a packet

Px that matches two prefixes ky and ky and that ky is longer than
ky. This means that ky is mapped to the hash table before ky.

Without losing the generality, assume thatr, (ky) = r;(ky) = 1.
We can see that it is impossible for ky to find a space in row r;
if ky could not find a space. This means that if ky is stored in
row ri(kx) = rx and if ky is stored in row rj(ky) = ry, then
i < j. Hence, while searching for a match for Py as follows:
ro(Px), ..., roy_1(Px), we will match ky at row ry before match-
ing ky atrowry. O

Note that if both prefixes ky and ky in Theorem 1 are mapped
to the same row, the matching processors will determine the LPM
in this case.

3.4. Incremental updates in CHAP

An important issue in the IP forwarding engine is the incremen-
tal updates of the prefix database. The number of prefixes included
in a routing table grows with time [16,43]. The updates consist of
two basic operations, Insert/Update and Delete a prefix. In CHAP the
delete operation is straightforward. For any prefix deletion oper-
ation we find the prefix first, then we delete it by storing all ze-
ros and then decrement the row counter HC which is used to keep
track of the rows’ populations. Deleting a prefix from any row does
not require shifting since the matching processors will ignore the
deleted prefix spot as it will contain all zeros.

The basic idea of the insert/update operation, which is detailed
in Algorithm 3, is to find the appropriate row that the new prefix
should fit in, taking into account the LPM feature. In other words,
we need to find where the new prefix should be stored according
to its length to achieve LPM. If it is found that the prefix already
exists in the CHAP table, the existing entry will be updated.

Algorithm 3 CHAP Insert Update Algorithm.

0: define r; as an integer array of 2 x H elements
1:CHAP_Insert_Update (prefix k) {

2:for(i=0;i < H;i++){

3: ri=hiky)

4: ripy = Bilhi(ka)] }

5:By searching the rows ry, - - - 1oy _1, find: {

6: k; = longest prefix matching k, and [= index of row
containing k;

7: ks = shortest prefix matching k, and s = index of row
containing k; }

8:if(k; is not defined AND k; is not defined), then {

9: return(Insert_in_Rows(k,, 0,(2H — 1))) }

[* insert k, in any of rows rg, ..., rop_1 ¥/
10:else if ((|k,| == |ki|) OR (|k;] == |ks|)), then {
11: Replace k; or k; with k;, [*an update operation®/

12: return (true)}

13:else if(|k,| > |k|), then { return(Insert_in_Rows(k,, 0, 1))}
14:else if(|k,| < |ks|), then { return(Insert_in_Rows(k,, s, 2H —
1))}

15:else, return(Insert_in_Rows(ky, [, s))

}

16:Insert_in_Rows (prefix ky, a, b) {

[* insert k, in any of the rows ry, 1gy1---, 15 ¥/
17for(i=a;i <=b;i+ +){

18: if(HC[r;] < L), then {

19: insert k, in r; and HC[r;] + +
20: return (true)}
}

21:return (false) }

Algorithm 3 consists of two boolean functions, CHAP_Insert_
Update() and Insert_in_Rows(). The first function, CHAP_Insert_
Update(), determines the appropriate rows to insert the new prefix

M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15 7

Restricted Hashing Scheme

Group 0
H Group 1
H Group 2
H Group 3

Grouped Hashing Scheme

Group 0

h H Group 1
0() H Group 2
® Group 3

a b
Progressive Hashing Scheme
Group 0
h h M Group 1
ho()r hl(). = Groun2
2(): 3() H Group 3
Cc

Fig. 6. The evolution of the PH scheme.

k, (lines 16-21). The second function is where the actual insertion
is made, as it take a prefix k, then it tries to insert it in a series of
rows starting from row index a all the way to row index b.

In the first function, the row array r;, of size 2H, is used
to store the computed values of the hash functions of k, and
the corresponding probing pointers (lines 2-4). Note that r; is
a global variable because it is accessed by the second function,
Insert_in_Rows(). For each row r; we match k, against all the pre-
fixes in this row and extract both the longest prefix, k;, and the
shortest prefix, ks, that match k, (lines 5-7). We record the rows
indices I and s that include k; and ks if such matchings are found.
Depending on the length of k, relative to the length of both k; and
ks, we try to insert k;, in one of the 2H rows. This is done through an
if-else construct (lines 8-15). The first case is when neither k; nor kg
are defined (i.e., no matching), thus we can insert k, into any row
(lines 8-9). The second case, which is route update [16], is when k;
is equal either k; or k; in which case we replace either k; or k; with
ky, (lines 10-12). The third case is if |k, |? is larger than |k;|, then we
try to insert k, into one of the buckets {ry, . .., r;} if there is a space
(line 13). In the next case we check to see if |k,| < |ks| is true, then
we try to insert k, in a row among {rs, . .., Iy—1} (line 14). Finally,
if |[ks| < |kn,| < |k, then we try to put k, in any row between r;
and rs (line 15).

In any case, the functions terminate successfully if we are able
to insert k,. Otherwise, we try to either insert k, into the over-
flow_buffer, or use a backtracking scheme like “Cuckoo hash-
ing” [29] to replace an existing prefix, say ky, from the hash table
by k,, then try to recursively reinsert k, back to the hash table [12].

The implementation of the incremental updates algorithm is
done in the control plane (which contains a network processor to
preform the necessary compactions). We propose that the actual
updates are issued as a special case during the idle time of the
CA-RAM.

2
k.

Throughout this paper, we use the notation |k| to represent the length of prefix

4. The progressive hashing scheme

In this section, we propose the Progressive Hashing scheme
(PH) as another effective mechanism for reducing collisions (hence
overflow) for open-addressing hash systems. As we mentioned in
Section 2.1, using multiple hash functions is efficient in reducing
collisions. In Section 2.1 we described the two multiple hashing
schemes for dealing with don’t care bits, which are abstracted
in Fig. 6(a) and (b) where the hashing space is represented as
a circle. In the restricted hashing scheme (Fig. 6(a)) the hash
functions hy(), ..., h3() are applied to all the keys in the hashing
space. On the other hand, in the grouped hashing (Fig. 6(b)) we
split the hashing space into groups and a single hash function is
associated with each group. In Fig. 6(b), functions hy(), ..., h3()
are associated with groups 0, . . ., 3 respectively.

In this section we group the prefixes based on their lengths
(i.e., use grouped hashing or GH). Consequently, groups with a
longer prefix length can use the hash functions of other groups
that have shorter prefix lengths. For example, in Fig. 2, group
$24 can use the hash functions of groups S20 and S16. Motivated
by this observation, we propose to apply the hash functions in a
progressive manner as illustrated in Fig. 6(c) to give some keys
more chances to be mapped to the hash table thus reducing the
overflow.

The effectiveness of progressive hashing depends mainly on
how we select the groups and their associated hash functions. One
important aspect during the grouping of the keys is to maintain
“hashing specificity hierarchy”, where “hash function specificity”
is defined as follows:

Definition 1. A hash function h;(-) is said to be more specific than
another hash function h;(-) if any bit used in h;(-) is also used in
hi().

For example, in Fig. 2, the hash function hq(-) is more specific
than hq(-), ho(-), h3(-) and than h4(-). Fig. 7 demonstrate the PH
scheme applied to the same groups of Fig. 2. As an example, group
S$24, which is assigned to hash function hg(-), can use the less

8 M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

Msb 32 bits LSb

524: 24 < | Prefix| < 32 !

i_‘l - ho()l h1 ()I

\ $20: 20 < | Prefix| < 23 } "hz(), hy(), hal)
R v > h1()l hz();
. S18:18< |Prefix] <19 | hy(), hy()
H 1
' . .20, hy0),
. S16:16 < |Prefix| <17 | ha()
! 1
 s8:8< |Prefix| <15 b > hy(), hy)
'- ,-'
i = hy()

Fig. 7. Applying the PH scheme.

specific hash functions of groups $20, 518,516 and S8 as illustrated
in Fig. 7.

In the next two sections we show the PH setup and search
algorithms.

4.1. The PH setup algorithm

In this section we introduce the PH setup algorithm, Algorithm
4. Before dividing the prefixes into groups, we sort the prefixes
from longest to shortest and insert them in that order. In Algorithm
4,j = 0,...,M — 1 is used to index the keys, where M is the
total number of prefixes in an IP routing table. The goal is to map
the prefixes into a hash table, H_Table[][| of size N x L, where
L = maximum bucket size, N = 2R maximum number of rows and
Ris the maximum number of bits used to index the hash table. Each
entry in H_Table[][] contains the field “key” which consists of the
actual prefix, the prefix length (or mask), the prefix port number
and the hash function field (lines 9-12). The hash function index
is used to store the index of the hash function that is used to store
the prefix. In the next section, Section 4.2, we show the importance
of this field. H is the maximum number of hash functions and an
array of counters, HC[] of size N, is used to count the number of
elements that are mapped to each row of the hash table. A counter,
table_overflow, that records the number of overflow elements is
initialized by the number of prefixes that are shorter than 8 bits
long. Group number ‘i’ is represented by &;.

Algorithm 4 The PH Setup Algorithm.

PH_Setup(IP forwarding table){

1: Sort the IP prefixes from longest to shortest and define the
groups

2: Initialize HC[] array to zeros and table_overflow = number
of prefixes shorter than 8 bits

3:for(=0;j < M;j++){

4: inserted = false

5: for(i=0;i<H;i++){

6: if (k; € &;), then {

7: ri = hl(kj)

8: if(HC[r;] < L), then {

9: H_Table[r;][HC[r;]].key = k;

10: H_Table[r;][HC[r;]].len = |k;]

11: H_Table[r;][HC[r;]].port = k; port number
12: H_Table[r;][HC[ri]].h =i

13: HC[r;] + +, inserted = true }

14: 1

15: }

16: if(inserted == false), then

17: Store k; in overflow_buffer, table_overflow++ } }

Algorithm 4 attempts to allocate k;, (line 6) in the hash ta-
ble, if the attempt is not successful, it stores the key in the over-
flow_buffer that is searched after the main hash table. Note that
we apply the hash functions according to their specificity starting
from the most specific to the least specific during the insertion.

4.2. Searching in PH

In this section we show how to find the LPM in the PH scheme.
The goal for any given packet is to find its longest prefix matching.
But since we might find multiple matches, we want to guarantee
that the first prefix that matches a packet is its LPM. Unfortunately,
Theorem 1 cannot be used for PH as some prefixes have a different
insertion’s hash order than their search’s hash order. For example,
if a packet P matches two prefixes kxy € (518) and ky € (516) in
Fig. 7(a), then ky is the LPM of P. Assume that during the prefixes
mapping, both prefixes are stored in two different rows as follows:
hy(kx) = rx and hs(ky) = ry. During the search for P we try all
the five hash functions rg = hq(P), ..., 4 = h4(P). Assume that
one of the hash functions that was not used to store either ky or ky
generates the row ry when it is applied to P, i.e., 7o = ry orr; = ry.
This means that we search ry before ry, thus, we report ky as the
LPM instead of ky, which is wrong.

To solve this problem, the hash function that was used to insert
ky has to be checked. In this case it turns out that ky was stored
using h3() and not hy (). Hence, ky has to be skipped as a matching
because there is a better matching, which is ky in this case. This is
why we store the hash function index in the PH setup algorithm,
Algorithm 4, (line 12).

Algorithm 5 The PH Search Algorithm.

Search_Hash_Table(Packet P) {

1. for(i=0;i<H;i++){

2: r; = h;j(P)

3: if((P matches H_Table[r;][j].key)
H_Table[r;][j].h))

,then /* done in parallel for all values of j */

AND (i ==

4: return H_Table[r;][j].port
5: }
6: search the overflow_buffer }

The PH search algorithm is given in Algorithm 5. It works as
follows: for each packet P that arrives at the packet processing
unit, we calculate the row index addresses ry = ho(P), ..., 1Ty_1 =
hy_1(P) (lines 1 and 2). For each row r; we match P against all the
elements in that row in parallel in a single clock cycle using the
matching processors (line 4). The matching processors return the
LPM in the bucket if and only if the stored hash function index “.h”
is identical to the hash function index that is used to lookup the
prefix during the search (line 4). If we do not find any match, then
we search the overflow_buffer (line 6).

4.3. Incremental updates in PH

Deleting a certain prefix is straightforward in PH. It involves
locating this prefix, deleting it by storing all zeros in its place and
adjusting the corresponding HC row counter. The insert/update
operation for the PH scheme is similar to that of the CHAP scheme
that is given in Algorithm 3 except that the rows r; are not defined
fori = H,...,2H — 1. Also, we use only the hash functions that
are applicable to the prefix being inserted. Specifically, we replace
lines 1-3 in Algorithm 3 with the following lines:
2:for(i=0;i<H;i++){

3: if (k, € &;), then
4: ri = hi(kn) }

M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15 9

70 -
60
50
40
20
10

oLP (1,m)
& CHAP (1,m)

Overflow %

1 2 3 4 5 6 7 8 9 10
Number of Probing Steps or Pointers

(a) {L = 200, N = 1024}.

70
60
50
40
30
20
10
0- 1

OLP (1,m)
& CHAP (1,m)

Overflow %

2 3 4 5 6 7 8 9 10
Number of Probing Steps or Pointers

(b) {L = 100, N = 2048}.

Fig. 8. Overflow of CHAP(1,m) vs. Linear Probing(1,m) for table rrc07.

Table 1

The statistics of the IP lookup tables on January 31st 2009.
IP table name Size % Short prefixes
rrc00 (Amsterdam) 292,717 0.78
rrc01 (London) 276,224 0.82
rrc02 (Paris) 272,743 0.79
rrc03 (Amsterdam) 283,147 0.80
rrc04 (Geneva) 283,075 0.81
rrc05 (Vienna) 301,383 0.77
rrc06 (Otemachi) 277,555 0.81
rrc07 (Stockholm) 274,479 0.83
rrc10 (Milan) 276,912 0.82
rrc11 (New York) 275,903 0.82
rrc12 (Frankfurt) 277,132 0.82
rrc13 (Moscow) 280,961 0.81
rrc14 (Palo Alto) 274,824 0.82
rrc15 (Sao Paulo) 275,828 0.82
rrc16 (Miami) 280,744 0.81
Average 280,242 0.81

After that, we decide the bucket that should store the new
prefix, k,, as we did in Algorithm 3. To summarize, Algorithm 3
can be used as an insert/update algorithm for PH except for the
aforementioned modifications.

5. Evaluation

We used C++ to build our own simulation environment. This
environment allows us to choose and arrange different types of
hash functions. The hash functions used in our experiments are
from three different hashing families: bit-selecting, CRC-based,
and Hs [32] hashing families. Those families have the advantage
of being simple and fast enough to be easily realized in hardware.
Note that in all our experiments, we choose by trial and error the
hash functions that give the lowest overflow percentages for our
schemes as well as the rival schemes we are comparing against.

For the evaluation, we collected 15 tables from the Border Gate-
way Protocol (BGP) Internet core routers of the routing information
service project [35] on January 31st 2009. Table 1 lists the 15 rout-
ing tables, their sizes, and the percentage of “short prefixes”, that
are shorter than 16 bits long. To measure the average search time,
we generate uniformly distributed synthetic traces using the same
tables.

We define a “configuration” by specifying both N = the number
of rows, and L = the number of entries per row. The performance
of the CHAP and PH schemes, in terms of both overflow percentage
and AMAT, depends on the number of hash functions, H, and on
the load factor (space utilization) « = M/(N x L) where M is the
database size and (N x L) is the hash table size. For a given «, the
hashing overflow depends on the aspect ratio of the memory N /L.

In Section 5.1 we evaluate CHAP and in Section 5.2 we evaluate
PH. Finally, Section 5.4 evaluates the combined scheme of both PH
and CHAP.

5.1. The evaluation of content-based hash probing

For a given hardware implementation N and L are fixed and
the performance of CHAP depends on two important parameters,
namely the maximum overflow value of the OC counters, 2, and
the number of hash functions used, H, which is also the number
of probing pointers per row in CHAP(H,H). Intuitively, if A is
small, then the setup algorithm (Algorithm 1) may not be able
to eliminate the overflow. On the other hand, if A is large, then
Algorithm 1 may terminate with every OC having a value smaller
than A, but the best fit algorithm may not find holes that are large
enough in the table to accommodate the values of the OC, thus
increasing the overall overflow of the hash table. In Section 5.1.2,
we study the sensitivity of CHAP(H,H) against A.

5.1.1. The advantages of content-based hash probing

In order to show the advantage of content-based probing over
linear probing, we compare the overflow generated by both CHAP
(1,m) and linear probing (that has the same number of probing
steps) when mapping routing tables to hash tables with specific
configurations (that is with specific L and N). We use the table
“rrc07” and two different configurations: {L = 200, N = 1024}
and {L = 100, N = 2048}. We tried many different configurations
and they all led to results similar to those shown in Fig. 8. In addi-
tion, these two configurations have a high average load factor o =
98.5% for the “rrc07” table, which articulates the strength of CHAP.

Fig. 8 shows that for the same number of probing steps, over-
flow in CHAP(1,m) is less than that in linear probing. In fact, CHAP
achieves 72.4% more overflow reduction than linear probing on av-
erage. Moreover, we can see that the longer the probing sequence,
the more effective is CHAP in eliminating overflow compared to
linear probing. The main reason behind this is that CHAP is address-
ing the overflow problem directly by choosing empty, or partially
empty, buckets to reallocate the overflow elements. This is in con-
trast to linear probing which blindly tries to put the overflow el-
ements in the nearest available bucket which may not be found
within m probes.

5.1.2. Sensitivity analysis of CHAP (H,H)

In this section we study the effect of varying A in the CHAP setup
algorithm (Section 3.2). We only report the results for table “rrc07”
since all other tables give similar results. We show the results for
two different groups of configurations where each group has 4
configurations. In one group we use N = 22 = 4096 rows, and
in the other N = 2'3 = 8192 rows. In these groups we use H = 3.

Fig. 9(a) and (b) show the values of overflow versus A for the
two groups. For Fig. 9(a), we set L = 70, 80, 90 and 100 entry per
row for N = 4096 rows, which results in « = 94.9%, 83.1%, 73.8%
and 66.5% respectively. As for Fig. 9(b), we set L = 35, 40, 45 and
50 entry per row for N = 8192 rows, which results in the same
loading factors. Note that A € [0, L].

10 M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

25 -8~ L=170 30
« L
W -], =
53 R 20
g 15 E
= 2 15 |
5 10 =
> > 10
=} =}
5 5
(1}
5 10 20 30 35 40 45 50 60 70 75 80 85 90100 5 10 15 20 25 30 35 40 45 50
A A
(a)N = 4096. (b)N = 8192.
Fig.9. The overflow vs. A.
CHAP (H,H)
RH (H) 50
50 " EH=1
mH=1 |
w 407 ® E H=2
z 30 B H=2 3
é é o H=3
5 20 oH=3 &
> >
C 10 © B H=4
0 B H=4 2
200 100 50 30 200 100 50 30
Bucket Size Bucket Size
Fig. 10. Average overflow of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05.
3.0 RH (H) 3.0 CHAP (H,H) -
2.5 mH=1 25 . EH=1
520 BH=2 & 20 EH=2
= 15 Z1s i
<10 - H=3 £ i oDH=3
3(5] mH=4 0.5 eEH=4
’ 200 100 50 30 0.0 -
Bucket Size 200 100 50

Bucket Size

Fig. 11. Average AMAT of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05.

As the figures indicate, the overflow starts at some non-zero
value and then decreases in the range 0 < A < L. Ata = %
the overflow is almost zero in Fig. 9(a), which is an indication that
the average hole size in the hash table is equal to % For larger
values of A, the maximum hole size becomes smaller than A and
thus we are unable to insert all the elements that were counted
by OC into the hash table. This increases the overflow. In Fig. 9(b)
we notice that the overflow is smaller when A = L. This happens
because the bucket (row) size is small and we have a large number
of buckets and a lot of them are almost empty. This is expected
since there is low entropy (randomness) among the prefixes in the
lookup tables, which leads to a lot of empty spaces in the hash table.
In the following section we use A = % for bucket sizes larger than
50 and A = L for smaller bucket sizes.

5.1.3. CHAP(H,H) versus restricted hashing(H)

In this section we compare the CHAP(H,H) scheme against the
restricted hashing scheme (or RH(H)), where H is the number of
hash functions used. We compare the two schemes in terms of the
AMAT (Average Memory Access Time) and the overflow. In this
experiment we use the routing table “rrc05” since it has the largest
number of entries among other tables.

In Fig. 10 we show the average values of overflow for different
number of hash functions (between 1 and 4) and for four different
configurations. We set N = 2048, 4096, 8192 and 16,384 where
L = 200, 100, 50 and 30, respectively for CHAP. On the other hand,
we set the same N values for RH(H) but with L = 201, 102, 52 and
32 to compensate for the overhead of storing the CHAP probing

pointers and row counters (which are around 5 bytes). From this
point on in this work, we compensate the RH, GH and PH schemes
with more keys per row when compared against the CHAP scheme.
It is obvious from Fig. 10 that CHAP(H,H) has much less overflow
than multiple hashing for the same number of hash functions. On
average CHAP(H,H) overflow is 48.7% lower than RH(H) over all
four bucket sizes.

The results shown in Fig. 11 indicate that the average AMAT
over the four bucket sizes for RH(H) is 2.16, while it is 2.28 for
CHAP(H,H) which is only 5% higher than RH. We note here that
both CHAP and RH have a separate memory (overflow_buffer) to
accommodate the overflow prefixes which is searched after the
main hash table (CA-RAM) is searched. Therefore, the worst case
search time for CHAP(H,H) and RH(H) are 2H + 1 and H + 1,
respectively. Although the difference between the two schemes
seems large in terms of the worst case memory access time
(WMAT), we have to take into consideration that at H = 3 the
overflow of CHAP is almost zero (less than 1%) for the bucket sizes
of L = 200, 100 and 50, while it is less than 5% for L = 30.
Thus adding more hash functions only makes the average memory
access time worse. A classical trade-off between the overflow
and the AMAT can be seen in Figs. 10 and 11. However, a better
understanding of the trade-off that CHAP and RH present can be
obtained by comparing CHAP(H,H) with RH(2H) since both have
2H as the maximum number of table accesses (i.e., WMAT).

5.1.4. CHAP(H,H) versus restricted hashing(2H)
In order to show that CHAP(H,H) can achieve both low overflow
and AMAT compared to RH(2H), we plot in Fig. 12(a) the overflow

M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

8 RH(6) ® CHAP(3,3)

O RH(6)

X CHAP@3,3)
3.0

Overflow %

2.5 1
2.0
1.5 7]
1.0 ¢
0.5 1

T w0 o
S o
[)

rrc00 h——f

- > e <
S @ — —
@ ¢ @ [)
o] b []
) B Bl B

rrel2 ssessseesseseseeeey —
rrel6 S—

0.0 -
€z2g8g8TLsgss=f3nTLsd e N~ &
O D P P P U V0 YWY YY Y Y Y > g 2 a >
EEEEEEEEREEEREEEEEE= £ E £ <«
Overflow for C1: 180 x 2048 AMAT for C1: 180 x 2048
a b
Fig. 12. (a) Average overflow and (b) AMAT for CHAP(3,3) vs. RH(6) for 15 lookup tables for C1: {L = 180, N = 2048}
" o RH(6) g CHAP(33) 35 B RH(6) m CHAP (33)
3.0
10 L 25
=8 <20
5 =
€ 6 < 15
o
> |
I 4 1.0
2 0.5+
0
C1: 180 X 2048 C2: 904096 C3: 45 x 8192 C1: 180 x 2048 C2: 90 x 4096 ~ C3: 45 8192
a b
Fig. 13. (a) Average overflow and (b) Average AMAT for CHAP(3,3) vs. RH(6) for 3 configurations
14.0 3.0
ORH() BGH(S) OPH(S) RH(5) BGH(5) OPH(5)
12.0 25 4
w 1007 L 20
g 80 <
S 1.5 HEHAHEHE
T 6.0 =
2 1o (|l i !
O 4.0

2.0 0.5 -

0.0- . O.OGﬁNMﬂ‘m\OI\CﬂNMVm\O'
$3333285335534%¢4 3333335833553 733%¢
EEEEEEEEEEREEREERE«= R H R == = EEEaa<

Overflow for C1: 180 x 2048 AMAT for C1: 180 x 2048
a b
Fig. 14.

and (b) the average memory access time of both schemes for one
configuration C1 : {L = 180, N = 2048}. We increased the bucket
size by one prefix for RH(2H) to compensate for the CHAP overhead
as we discussed previously. For this experiment we map each of the
15 IP tables into a fixed hash table of 368,640 entries.

Note that we represent the average of all files as another
independent point that is called AVE in Fig. 12. As we can see,
CHAP(3,3) is better than RH(6) for all files in terms of both the
AMAT and the overflow. In fact CHAP(3,3) reduces the overflow by
90% and at the same time improves the AMAT by 12.2% for this
configuration.

To evaluate CHAP performance under other configurations, we
use three different configurations: C1 : {L = 180, N = 2048}, C2:
{L =90, N = 4096} and C3 : {L = 45, N = 8192} in Fig. 13(a) and
(b). Again, we set L = 181, 92 and 47 for RH(6). Fig. 13(a) shows the
average overflow over all 15 lookup tables for RH(6) and CHAP(3,3).
These three configurations have the same average load factor of

76.0% which is considerably high. Fig. 13(b) shows the AMAT of the
same three configurations for RH(6) and CHAP(3,3).

(a) Average overflow (b) AMAT of RH(5) vs. GH(5) vs. PH(5) for 15 lookup tables for C1 : {180 x 2048}

For the three configurations, CHAP(3,3) reduces the overflow by
90%, 82.9% and 79.7% respectively over RH(6). At the same time

CHAP(3,3) improves the AMAT over RH(6) by 12.2%, 10.2% and
14.4% respectively.

5.2. The evaluation of progressive hashing

In this section we compare PH against grouped hashing (GH)
and restricted hashing (RH) each using 5 hash functions. For RH(5),
all 5 hash functions use the most significant 16 bits and are applied
to all the prefixes in the lookup tables. Those prefixes that are less
than 16 bits long are inserted in the overflow_buffer. On the other
hand, we split the 32 bits IPv4 address space according to Fig. 2 for
both GH(5) and PH(5).

Fig. 14(a) shows the overflow percentage, which is the ratio of
the overflow to the total number of prefixes of a routing table.
We show results for all 15 routing tables for one configuration
C1: {L = 180, N = 2048}, for the three schemes: RH, GH and PH.
On average, PH reduces the overflow by 86.5% compared to RH and
by 66.9% compared to GH. At the same time, the AMAT (Fig. 14(b))

12 M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

3.0
254 T [l BRH(5)
= 2.0
<«
E 1.5 - BGH(5)
1.0
0.5 m PH(5)

0.0
C1: 180 x 2048 C2: 90 x 4096 C3: 45 x 8192

b

Fig. 15. (a) Average overflow and (b) Average AMAT for of RH(5) vs. GH(5) vs. PH(5) for 3 configurations.

20
18 +
16 @ RH(S)
R 14
s 12 |
210 OGH(5)
8 I
C 6
4 mPH(5)
2
0 -
C1: 180 x 2048 C2:90 x 4096 C3:45 x 8192
a
12.0
O IPStash(3) B GHQ3) OPH@Q3)
10.0 1
S 80
g
= 6.0
)
& 4.0
2.0
0.0
S = AN TN >SS =T NS
(= — R N - e e e B
¥ Y Y YV Y VY Y Y Y Y Y Y W W
tt‘;:t‘::‘s:b‘s:%:‘c‘:::.ti:t<
Overflow for C2:{90 x 4096}
a

OIPStash(3) ® GHQ3) OPH(@3)

< wn o i [Se I o o
2232383 ERE S
- - -
i ot ot

1.5

AMAT
b—‘
c
rre00 E
—
Fre)? —
rrel3 T—
T
Ire(f ———
T
e} e——
T
rrel§ —
AVE,

£
Ll
T

Fig. 16. (a) Average overflow and (b) Average AMAT of IPStash(3) vs. GH(3) vs. PH(3) for C2 : {90 x 4096}.

of PH is improved by 22.0% over RH and 3.4% over GH. Note that the
overflow prefixes are added to the overflow_buffer thatis searched
after exhausting all possible buckets in the main hash table.

To show that PH is robust under other configurations, we use
the same three configurations that we used before: C1 : {L = 180,
N = 2048}, C2 : {L = 90,N = 4096} and C3 : {L = 45,N =
8192} in Fig. 15(a) and (b). Fig. 15(a) shows the average overflow
over all the 15 lookup tables for the three schemes RH, GH and
PH. Fig. 15(b) shows the AMAT for the same configurations and
schemes.

PH has the lowest overflow percentage among the three sche-
mes. The average (over the three configurations) overflow reduc-
tion percentages of PH is 55.2% compared to GH, while it is 75.3%
compared to RH. PH improves the AMAT by 20.5% and 7.9% com-
pared to RH and GH respectively.

5.3. Progressive hashing v.s. IPStash

In this section we evaluate our progressive hashing scheme
against IPStash [21] which is another open address hashing
scheme. In Section 2.3 we mentioned that IPStash architecture is
similar to the CA-RAM architecture and that IPStash uses a special
form of the grouped hashing scheme as it classifies the prefixes into
only three groups according to their lengths and uses only 12 bits
for hash table indexing. The main difference is that IPStash use the
controlled prefix expansion [41] (CPE) to expand prefixes of length
from 8 to 15 bits to at least 16 bits then choose any 12 bits to index
the hash table [21], while GH does not utilize any prefix expansion.

We implemented the IPStash scheme and compared it against
the GH and our PH schemes. Since IPStash uses only 12 bits for
indexing, we have to use configuration C2 : {90 x 4096}. Fig. 16(a)
shows that IPStash has an average overflow of 5% while GH and PH
reduce the overflow by 75% and 85%. The high overflow percentage
is directly due to the CPE technique used by IPStash. The AMAT is
depicted in Fig. 16(b). The AMAT of the three schemes is almost

=

2

AMAT for C2: {90 x 4096}
b

identical. Note that in case we could not find the prefix in the main

hash table we search the overflow_buffer thus we have a maximum

of 4 memory accesses as a worst case.

5.4. Applying content-based hash probing to progressive hashing

In this section we combine both proposed schemes PH and
CHAP into a third scheme that we call PH_CHAP(H,H). As described
before, CHAP is using restricted hashing scheme where the hash
functions uses only the most significant 16 bits of all the prefixes.
However, we use PH instead of RH to get better performance than
both schemes.

In Fig. 17(a) we show the average overflow of CHAP(5,5), PH(5)
and PH_CHAP(5,5) for the same three configurations we used
in Sections 5.1 and 5.2. The largest average overflow belongs to
PH(5) with 3.38% and the lowest average overflow is 0.3% for
PH_CHAP(5,5) over the 3 configurations. The first two configu-
rations, C1 and C2, have zero overflow for PH_CHAP(5,5) with a
reduction of 100%. For the third configuration, C3, PH_CHAP(5,5)
reduced the overflow by 86.9% over PH(5) and by 23.6% over
CHAP(5,5).

At the same time, we note that PH_CHAP(5,5) has a lower AMAT
(Fig. 17(b)) than CHAP(5,5) and PH(5) with an average of 19.7%
improvement and 2.3%. The improvement in the AMAT comes from
the fact that the PH_CHAP(5,5) uses PH to reduce the overflow
in addition to the probing pointers, in contrast to CHAP(5,5) that
relies only on its probing pointers to reduce the overflow since
CHAP uses hash functions that are restricted to use only 16 bits,
thus, increasing its AMAT. This is why the largest average AMAT
over the 3 configurations belongs to CHAP(5,5) though it has the
second lowest overflow percentage among the three schemes.

5.5. Memory overhead of CHAP and PH

In this section we estimate the memory overhead of the PH(5),
CHAP(5,5) and PH_CHAP(5,5) packet forwarding schemes. Note

M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15 13

6 “ "
5 O CHAP(5,5)
Ny
H BPH(S
S 3- 3 PH(S)
g
o 2
1 OPH_
|:I_ CHAP(5,5)
C1: 180 x 2048C2: 90 x 4096 C3: 45 x 8192

a

3.0

25 OCHAP(,5)
= 2.0
%c 151 BPH(5)
<

1.0 -+ -

OPH_
0.5 CHAP(5,5)
0.0
C1: 180 x 2048C2: 90 x 4096 C3: 45 x 8192

b

Fig. 17. (a) Average overflow and (b) Average AMAT of CHAP(5,5) vs. PH(5) vs. PH_CHAP(5,5) for 3 configurations.

that this estimation does not include a 8 to 20 kB of TCAM that
is used to accommodate the overflow_buffer. We estimate the
memory requirements for one configuration C1 {L = 180,
N = 2048} as an example for the three schemes. In general, C1
requires 180 x 2048 = 368,640 or 370 K entry, where an entry is
represented by 4 bytes prefix plus 5 bits prefix length. 1 byte per
row is used for the row counter.

For PH(5), we need 3 bits per entry for the hash function index.
Thus, the total memory requirement for PH(5) for the configuration
C1is ~2.12 MB. For CHAP(5,5) we add 5 pointers per row where
each pointer is represented by 12 bits. Note that we will use the
auxiliary field of the CA-RAM that is at the end of each row, as
we mentioned in Section 2.3, to store the pointers and the row
counters. Thus, the total memory requirement for CHAP(5,5) is
~2.00 MB for the configuration C1. For the same C1 configuration,
the combined PH_CHAP(5,5) scheme needs ~2.13 MB.

Finally, we estimate the actual size of the over_flow buffer. The
maximum overflow, belonging to CHAP for the rrc04 file, equals
0.93%+0.81% (short prefixes) = 4926 prefixes. Each prefix takes 4
bytes to be stored in a TCAM; thus the maximum overflow_buffer
size is 19.7 kB =~ 20 kB. The maximum overflow_buffer size for
the PH_CHAP(5,5) hybrid scheme is ~8 kB for configuration C3 :
{45 x 8192}, while it is zero for both C1 and C2.

5.6. Performance estimation of CHAP and PH

We estimate both the average and the minimum throughput
of our hybrid scheme “PH_CHAP(H,H)” using two different SRAM
memory architectures. Since our scheme depends on a set associa-
tive RAM, we conservatively assume that the clock rate is halved.
This will take care of the delay for the hash functions computation
and the matching logic. The first memory architecture that we use
is the 500 MHz QDR III SRAM [31]. This is the latest architecture
among the famous Quad Data Rate (QDR) SRAM family which is
to be commercially available soon. The QDR is an SRAM that can
transfer up to four words of data in each clock cycle [31]. The other
memory architecture is a state-of-the-art CMOS technology SRAM
memory design [45] which reports an experimental single chip of
36.375 MB that runs at 4.0 GHz.

Assuming an AMAT of ~2.0 (according to Fig. 15(b)), if the clock
rates are 250 MHz and 2.0 GHz for the two architectures, then we
have a forwarding throughput of 125 mega packets per seconds
and 1.0 giga packets per seconds. In other words, 40 Gbps and
320 Gbps for the minimum packet size of 40 bytes.

Beside the AMAT we use another throughput metric which is
the Worst case Memory Access Time (WMAT). The WMAT of the
hybrid PH_CHAP(5,5) scheme is 10+ 1 = 11 (2 x H+ searching the
overflow_buffer). Thus, the worst case throughput is slightly less
than 20% of the AMAT throughput. Note that all these estimated
rates are for a single CA-RAM chip. In order to increase both
throughputs (AMAT-based and WMAT-based) we can use multiple
CA-RAM chips per line card as described in [19,18]. In addition, a
typical router has multiple line cards [6]. The aggregate throughput
of a router is calculated as the sum of throughputs of the line cards.

5.6.1. Performance estimation using CACTI

In addition to the above estimations, we use the standard
“CACTI” (version 5.3) cache simulator [42] to estimate the through-
put in addition to the area and the power requirements of our
PH-CHAP(5,5) scheme. We assume a total memory of 2.25 MB (ac-
tually CACTI takes only the total amount of memory as a power
of 2) and that the row width is 512 bytes. Since we propose to
build our schemes as high-performance hardware ASIC chip; we
use the High Performance International Technology Roadmap for
Semiconductors SRAM 45 nm technology model (ITRS-HP). CACTI
gives us a 2.12 ns access time with a 0.77 ns cycle time. In other
words, CACTI estimates that this chip has 3 pipeline stages each
runs on 1.3 GHz frequency, which translates to a throughput of 1.3
giga packets per second or 416 Gbps for the minimum packet size
of 40 bytes.

In addition to the time and frequency information, CACTI pro-
vides area and power information. The total dynamic power con-
sumed per read port (we assumed only one read port and one write
port) is 4.9 W at the maximum frequency, while the total dynamic
energy per read port is 3.8 nJ. The total area, excluding the match-
ing processors, is estimated to be 33.5 mm?. The authors in [7] es-
timated that the matching processors overhead is less than 10% of
the RAM space, thus the total area comes to 36.9 mm?.

6. Related work

The IP lookup is a mature and well-researched problem. How-
ever, it remains a challenging problem in the networking area. Var-
ious techniques have been proposed to achieve high-performance
IP lookup. In this section we discuss some of these techniques.

As we mentioned in Section 1, there are two families of schemes
for the IP lookup problem: software-based and hardware-based.
Most software solutions are based on tries. A trie is a tree-based
data structure allowing the organization of prefixes on a digital
basis by using the bits of prefixes to direct the branching [43].
Many schemes are devised in this area [38,9,11,27]. The main
advantages of these solutions are that they provide straightforward
time and space bounds but with low throughput [2]. In addition,
most of these early works are built on compressing the trie which
saves the space hence the power [38,9,27], but on the other
hand makes the incremental updates very hard. Newer versions
of trie-based solutions that are based on pipelining have been
recently proposed [10,2,25,19,18,17,22,36]. These solutions are
elegant pipeline hardware architectures that use smart caching
techniques as well as multiple pipelines [19,18,17,22] to boost the
throughput. The average number of pipeline stages varies between
20 and 25 stages, where each stage consumes between 20 and
40 kB.

Another software-based family of schemes that are used to
solve the IP lookup is hash-based. Hashing is a well known software
technique that can be adapted in hardware [8,32]. Most of the work
done in this area is adapting closed addressing hashing [8]. Since

14 M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15

chaining is used to solve the collision problem, an important design
goal in this case is to minimize efficiently the worst-case length
of the linked lists and to balance the bucket population by using
Bloom filter [4] data structures as done in [23,39,15,40]. A Bloom
filter is an efficient data structure for membership queries with
tunable false positive errors [4]. Hence, the problem with these
kind of solutions is to control the false positive probability. M.
Mitzenmacher et al., proposed another elegant family of IP lookup
tables that uses multiple hash tables where each table has its own
hash function [5,23]. The original seminal scheme is called “d-left”
scheme which is very efficient in reducing the hash collisions. The
authors also introduced a full analysis to this scheme. The only
problem with using multiple tables is memory fragmentation.

Using Ternary Content Addressable Memories (TCAM) is the
defacto standard in the industry [43]. A TCAM cell is capable of
storing 3 logic states (0, 1 and wildcard). Upon receiving a packet,
the TCAM searches the entire chip in parallel for the LPM [26]. Thus
providing the right answer in a single memory cycle. This high
degree of parallelism comes at the cost of storage density, access
time, and power consumption [39,7]. Moreover, most commodity
TCAMs run at low speed compared to SRAM memory [17,7]. Many
researchers proposed optimizations to the TCAM architecture
trying to accommodate these disadvantages [26,30,37,47].

Our work is unique in the sense that we use an open addressing
hash-based architecture. Hence, it is not appropriate to compare
our schemes against trie-based schemes or other closed addressing
hash-based schemes. We only compare with them indirectly with
respect to memory size (hence power) and throughput.

7. Conclusions and future work

In this paper we describe and study two different hash-based
schemes for IP forwarding: Content-based HAsh Probing (CHAP)
and Progressive Hashing (PH). The schemes solve the overflow
problem by utilizing content-based probing and multiple hash
functions, respectively, and have small average memory access
times. We also illustrate that both schemes can be realized in hard-
ware by taking advantage of set associative memory architectures.
In this work we use simple hash functions that can be easily real-
ized in hardware. We provide setup and incremental update algo-
rithms for both schemes.

Simulation results show that CHAP is superior compared to
linear probing in terms of overflow elimination. CHAP achieves
71.61% more overflow reduction than linear probing on average.
The results also show that CHAP improves the average memory
access time over the restricted multiple hash function scheme
while reducing the overflow.

While we introduce PH as a new open addressing hash-based
packet processing scheme, it can also work for closed addressing
hash systems. PH is effective in reducing the overflow on average
by 55.2% compared to grouped hashing (IPStash [20]), while it is
75.3% compared to restricted hashing. We show that our schemes
can have an average forwarding speed of 320 Gbps if using
future SRAM technology and 40 Gbps with the standard QDR III
SRAM. Both our schemes use less than 2.5 MB of RAM. The CACTI
memory simulator shows that such architecture could achieve a
throughput of 416 Gbps while maintaining a moderate area and
power requirements.

Our future work includes applying both schemes to other
packet processing applications such as Packet Classification (PC). In
addition, we plan to introduce optimizations to reduce the worst
case memory access time of both CHAP and PH schemes. We want
to study a fully synthesized PH_CHAP(H,H) packet forwarding
engine.

Finally, the authors recognize that the schemes presented are
general and can be applied to many other applications that use
hashing. In this paper we showed that both schemes give good

results for the IP application. We will consider other applications
as well in the future work.

References

[1] Y. Azar, A. Broder, A. Karlin, E. Upfal, Balanced allocations, SIAM J. Comput. 29
(1) (2000) 180-200.

[2] F. Baboescu, D.M. Tullse, G. Rosu, S. Singh, A tree based router search engine
architecture with single port memories, Sigarch Comput. Archit. News 33 (2)
(2005) 123-133.

[3] A. Basu, G. Narlikar, Fast incremental updates for pipelined forwarding
engines, IEEE Infocom (July) (2003) 64-74.

[4] B. Bloom, Space/time trade-offs in hash coding with allowable errors,
Commun. ACM 13 (7) (1970) 422-426.

[5] A. Broder, M. Mitzenmacher, Using multiple hash functions to improve IP
lookups, IEEE Infocom (April) (2001) 1454-1463.

[6] HJ. Chao, B. Liu, High Performance Switches and Routers, 1st ed., Wiley-IEEE
Press, 2007.

[7] S. Cho, J. Martin, M. Hammoud, R. Melhem, CA-RAM: a high-performance
memory substrate for search-intensive applications, IEEE ISPASS (April) (2007)
230-241.

[8] T.Cormen, C. Leiserson, R. Rivest, C. Stien, Introduction to Algorithms, McGraw
Hill, 2003.

[9] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, Small forwarding tables for fast
routing lookups, ACM Sigcomm (September) (1997) 3-14.

[10] L. Devroye, Efficient construction of multibit tries for IP lookup, IEEE/ACM
Trans. on Net. (TON) 11 (August) (2003) 650-662.

[11] P. Gupta, S. Lin, N. Mckeown, Routing lookups in hardware at memory access
speeds, IEEE Infocom (April) (1998) 1240-1247.

[12] M. Hanna, S. Demetriades, S. Cho, R. Melhem, An efficient hardware-based
multi-hash scheme for high speed IP lookup, IEEE HOTi (August) (2008)
103-110.

[13] M. Hanna, S. Demetriades, S. Cho, R. Melhem, CHAP: enabling efficient
hardware-based multiple hash schemes for IP lookup, IFIP Netw. (May) (2009)
756-769.

[14] M. Hanna, S. Demetriades, S. Cho, R. Melhem, Progressive hashing for packet
processing using set associative memory, IEEE/ACM ANCS (October) (2009)
103-112.

[15] J. Hasan, S. Cadambi, V. Jakkula, S. Chakradhar, Chisel: a storage-efficient,
collision-free hash-based network processing architecture, IEEE ISCA (May)
(2006) 203-215.

[16] G. Huston, Analyzing the internet bgp routing table, The Internet Protocol J. 4
(1) (2001).

[17] W. Jiang, V. Prasanna, A Memory-Balanced Linear Pipeline Architecture for
Trie-Based IP Lookup, 2007, pp. 83-90.

[18] W. Jiang, V. Prasanna, Multi-Terabit IP Lookup Using Parallel Bidirectional
Pipelines, 2008, pp. 241-250.

[19] W. Jiang, V. Prasanna, Reducing dynamic power dissipation in pipelined
forwarding engines, IEEE ICCD (October) (2009) 144-149.

[20] S.Kaxiras, G. Keramidas, IPSTASH: a power-efficient memory architecture for
IP-lookup, IEEE Micro (November) (2003) 361-373.

[21] S. Kaxiras, G. Keramidas, IPSTASH: a set-associative memory approach for
efficient IP-lookup, IEEE Infocom (March) (2005) 992-1001.

[22] K.Kim, S. Sahni, Efficient construction of pipelined multibit-trie router-tables,
IEEE Trans. Comput. 56 (1) (2007) 32-43.

[23] A. Kirsch, M. Mitzenmacher, Simple summaries for hashing with multiple
choices, [EEE/ACM Trans. Netw. 16 (1) (2008) 218-231.

[24] H. Noda, K. Inoue, H.J. Mattauschtt, T. Koide, K. Arimoto, A cost-efficient dy-
namic Ternary CAM in 130 nm cmos technology with planar complementary
capacitors and tsr architecture, IEEE Symp. VLSI Circuits (June) (2003) 83-84.

[25] S. Kumar, M. Becchi, P. Crowley,]. Turner, CAMP: fast and efficient IP lookup
architecture, ACM/IEEE ANCS (October) (2006) 51-60.

[26] K. Lakshminarayanan, A. Rangarajan, S. Venkatachary, Algorithms for ad-
vanced packet classification with Ternary CAMs, ACM Sigcomm (May) (2005)
193-204.

[27] S. Nilsson, G. Karlsson, IP-Address Lookup Using LC-Tries, vol. 17, 1999,
pp. 1083-1092.

[28] H. Noda, et al., A cost-efficient high-performance dynamic TCAM with
pipelined hierarchical searching and shift redundancy architecture, IEEE J.
Solid-State Circuits 40 (1) (2005) 245-253.

[29] R.Pagh,F.Rodler, Cuckoo hashing, in: Lec. Notes in Comp. Sci. (LNCS), vol. 2161,
2001, pp. 121-133.

[30] R. Panigrahy, S. Sharma, Reducing TCAM power consumption and increasing
throughput, HOTi’'02 (August) (2002) 107-112.

[31] M. Pearson, Qdrtmiii: Next generation SRAM for networking. http://www.
qdrconsortium.org/.

[32] M.Ramakrishna, E. Fu, E. Bahcekapili, Efficient hardware hashing functions for
high performance computers, IEEE Trans. Comput. 46 (12) (1997) 1378-1381.

[33] B. Randell, A note on storage fragmentation and program segmentation,
Commun. ACM 12 (July) (1969) 365-372.

[34] Y. Rekhter, T. Li, An Architecure for IP address allocation with CIDR, RFC 1518
(1)(1993) 1-27.

[35] RIS. Routing information service. http://www.ripe.net/ris/, December 2009.

[36] S.Sahni, H. Lu, Dynamic tree bitmap for IP lookup and update, IEEE ICN (April)
(2007) 79.

http://www.qdrconsortium.org/
http://www.qdrconsortium.org/
http://www.qdrconsortium.org/
http://www.qdrconsortium.org/
http://www.ripe.net/ris/

M. Hanna et al. /]. Parallel Distrib. Comput. 71 (2011) 1-15 15

[37] D. Shah, P. Gupta, Fast updating algorithms for TCAMs, IEEE Micro Mag. 21 (1)
(2001) 36-47.

[38] K. Sklower, A tree-based packet routing table for berkeley UNIX, in: Winter
Usenix Conference, 1991, pp. 93-99.

[39] H.Song, S. Dharmapurikar, J. Turner, J. Lockwood, Fast hash table lookup using
extended Bloom filter: an aid to network processing, ACM Sigcomm (August)
(2005) 181-192.

[40] H. Song, F. Hao, M. Kodialam, T. Lakshman, IPV6 Lookups Using Distributed
and Load Balanced Bloom Filters for 100 Gbps Core Router Line Cards, 2009,
pp. 2518-2526.

[41] V. Srinivasan, G. Varghese, Fast address lookups using controlled prefix
expansion, ACM Trans. Comput. Syst. 17 (1) (1999) 1-40.

[42] S.Thoziyoor, N. Muralimanohar, J.H. Ahn, N.P. Jouppi, Cacti 5.1: An integrated
cache timing, power, and area model. Technical report, HP Labs, April 2008.

[43] G. Varghese, Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices, 1 edition, Morgan Kaufmann, 2005.

[44] B. Vocking, How asymmetry helps load balancing, ACM]. 50 (4) (2003)
568-589.

[45] Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y. Ng, L. Wei, Y. Zhang,
K. Zhang, M. Bohr, A 4.0 ghz 291 mb voltage-scalable SRAM design in 32
nm high-k metal-gate cmos with integrated power management, IEEE ISSCC
(February) (2009) 456-457.

[46] S. Yun, Hardware-based IP lookup using n-way set associative memory
and Ipm comparator, in: Lec. Notes in Comp. Sci. (LNCS), vol. 4017, 2006,
pp. 406-414.

[47] F.Zane, G. Narlikar, A. Basu, Coolcams: power-efficient TCAMs for forwarding
engines, IEEE Infocom (April) (2003) 42-52.

£ | Mlchel Hanna is a Ph.D. student in the Computer En-
| gineering program, Computer Science department at the
~ University of Pittsburgh. Michel is working under the
; supervision of Professor Rami Melhem and Professor
Sangyeun Cho both are with the computer science depart-
ment at the University of Pittsburgh. In November 2009
he defended his Master’s degree in Computer Engineer-
ing from the University of Pittsburgh. He also received his
Electrical Engineering Master’s degree from Cairo Univer-
sity, Egypt in November 2004 after he got his Bachelor’s
degree in Electrical Engineering from Cairo University at
Fayoum, Egypt in May 1999. Michel’s research interests are: high-performance IP
routers and switches packet processing engines, computer network security and
high-performance computing.

Socrates Demetriades is a Ph.D. student in the Computer
Science department at the University of Pittsburgh. His
advisor is Prof. Sangyeun Cho. He joined the computer
science department in August 2006 after receiving his
Computer Engineering Diploma from the Polytechnic
school, University of Patras, Cyprus in May 2006. Socrates’
current research interests are in Computer Architecture.

Sangyeun Cho received his B.S. in Computer Engineer-
ing from Seoul National University, Seoul, in 1994, and
his Ph.D. in Computer Science from the University of
Minnesota, Minneapolis, in 2002. From 1999 to 2004, he
worked for Samsung Semiconductor, where he designed
several generations of the CalmRISC™ embedded proces-
sor core and their cache memories. His research focus is in
the area of computer architecture, microprocessor design,
and system-on-a-chip (SOC). Dr. Cho joined the Depart-
ment of Computer Science at the University of Pittsburgh
in fall 2004.

Rami Melhem has received the following degrees: B.S.
(Electrical Engineering, 1976) from Cairo University; B.S.
(Mathematics, 1978) from Ein Shams University, Cairo;
MA (Mathematics, 1981), M.S. (Computer Science, 1981),
and Ph.D. (Computer Science, 1983) from the University of
Pittsburgh. He was Assistant Professor in the Department
of Computer Science at Purdue University 1984-87 (on
leave 1985-87), and Visiting Professor in the Department
of Mathematics at the University of Pittsburgh 1985-86.
Since 1986 he has been on the faculty of the Department
of Computer Science at the University of Pittsburgh. He has
published numerous papers in the areas of systolic architectures, parallel comput-
ing, fault-tolerant computing, and optical interconnection networks. He served on
program committees for several conferences and is on the Editorial Board of IEEE
Transactions on Computers. He is a member of the IEEE Computer Society, the As-
sociation for Computing Machinery, and the International Society for Optical Engi-
neering. His research interests include: parallel and distributed high-performance
computing, fault-tolerant computing, multiprocessor interconnection networks,
real-time systems and optical computing.

	Advanced hashing schemes for packet forwarding using set associative memory architectures
	Introduction
	Background
	General open addressing hash
	Hashing in the presence of wildcards
	Set associative memory architecture overview

	Content-based hash probing
	The CHAP(H,H) scheme
	The CHAP setup algorithm
	The mapping of IP prefixes in CHAP

	Search in CHAP
	Incremental updates in CHAP

	The progressive hashing scheme
	The PH setup algorithm
	Searching in PH
	Incremental updates in PH

	Evaluation
	The evaluation of content-based hash probing
	The advantages of content-based hash probing
	Sensitivity analysis of CHAP (H,H)
	CHAP(H,H) versus restricted hashing(H)
	CHAP(H,H) versus restricted hashing(2H)

	The evaluation of progressive hashing
	Progressive hashing v.s. IPStash
	Applying content-based hash probing to progressive hashing
	Memory overhead of CHAP and PH
	Performance estimation of CHAP and PH
	Performance estimation using CACTI

	Related work
	Conclusions and future work
	References

