
Progressive Hashing for Packet Processing Using Set
Associative Memory.

Michel Hanna
Dept. of Comp. Sci.,

University of Pittsburgh

mhanna@cs.pitt.edu

Socrates Demetriades
Dept. of Comp. Sci.,

University of Pittsburgh

socrates@cs.pitt.edu

Sangyeun Cho
Dept. of Comp. Sci.,

University of Pittsburgh

cho@cs.pitt.edu

Rami Melhem
Dept. of Comp. Sci.,

University of Pittsburgh

melhem@cs.pitt.edu

ABSTRACT

As the Internet grows, both the number of rules in packet
filtering databases and the number of prefixes in IP lookup
tables inside the router are growing. The packet processing
engine is a critical part of the Internet router as it is used
to perform packet forwarding (PF) and packet classification
(PC). In both applications, processing has to be at wire
speed. It is common to use hash-based schemes in packet
processing engines; however, the downside of classic hashing
techniques such as overflow and worst case memory access
time, has to be dealt with. Implementing hash tables using
set associative memory has the property that each bucket of
a hash table can be searched in one memory cycle outper-
forming the conventional Ternary CAMs in terms of power
and scalability.

In this paper we present “Progressive Hashing” (PH), a
general open addressing hash-based packet processing scheme
for Internet routers using the set associative memory archi-
tecture. Our scheme is an extension of the multiple hashing
scheme and is amendable to high-performance hardware im-
plementation with low overflow and low memory access la-
tency. We show by experimenting with real IP lookup tables
and synthetic packet filtering databases that PH reduces the
overflow over the multiple hashing. The proposed PH pro-
cessing engine is estimated to achieve an average processing
speed of 160 Gbps for the PC application and 320 Gbps for
the PF application.

Categories and Subject Descriptors

C.2.6 [Internetworking]: Routers

General Terms

Architecture, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’09 October 9-20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010 ...$10.00.

Keywords

Packet Forwarding, Packet Classification, Hardware Hash

1. INTRODUCTION
High speed Internet routers and firewalls require wire speed

packet forwarding and filtering while the sizes of the filter
sets are increasing at a high rate [7, 25, 26]. In addition,
the advancement of optical networks keeps pushing the link
rates already beyond 40 Gbps [17, 26].

In packet forwarding (PF), the destination address of ev-
ery incoming packet is matched against a routing table to
determine the packet’s next hop on its way to the final des-
tination. An entry in the forwarding table, or an IP prefix,
is a binary string of a certain length (prefix length) followed
by don’t care bits and an associated port number. The ac-
tual matching requires finding the “Longest Prefix Match-
ing” (LPM) as instructed in the CIDR protocol [15].

In packet classification (PC), a packet header is matched
against a database of rules, or filters, to obtain the best
matching rule. There is a priority tag that is appended to
each rule and the packet classifier must return the rule with
the highest priority as the best matching rule in case of
multiple matches. Each filter consists of multiple field val-
ues. The number of fields per rule and the number of bits
associated with a field are variable and depend on the appli-
cation. Typically, filtering is applied to the following fields:
IP source address, IP destination address, source port, des-
tination port and the protocol. IP addresses are represented
by prefixes, which calls for prefix matching, while ports are
encoded as ranges, which requires range matching. Finally,
the “protocol” field, uses exact matching. At any field, it is
possible to specify a wild card to indicate that no matching
is needed for that field. Rules are associated with either an
“action” (e.g., firewall) or a “flow ID” (e.g., QoS).

Packet classification is a more complex process than packet
forwarding. This complexity arises from two factors: (1)
more fields need to be matched and (2) different kinds of
matching are required for each field. Packet forwarding, on
the other hand, is simpler since it tackles a single field and a
single matching type. A few researchers introduced schemes
that can be applied to both applications [2, 11, 18].

The two main streams of PF and PC research are: al-
gorithmic and architectural. Some researches propose al-
gorithmic solutions for PF and PC and provide space and

time complexity bounds [8, 6, 9, 21]. These solutions were
subsequently modified and extended to enhance their per-
formance [17, 18, 24]. Some of these solutions are amenable
to hardware implementations [24]. This motivated the in-
troduction of architectural solutions that mostly rely on
the Ternary Content Addressable Memory (TCAM) tech-
nology [10, 20]. A TCAM is a fully-associative memory that
can store binary values, 0’s and 1’s as well as don’t care bits.
TCAMs have been the de facto standard for packet process-
ing in industry [12, 25]. However, TCAM comes with signif-
icant deficiencies: high power consumption, low bit density,
poor scalability to long input keys and higher cost per bit
compared to other memories.

Architectural solutions based on hashing have also been
proposed [5, 11, 18]. Hash tables come in two flavors: closed
addressing hash (or chaining) and open addressing hash.
The hash table in closed addressing hash has a fixed height
(number of buckets), and each bucket is an infinite size
linked list. In open addressing, the hash table has a fixed
height and a fixed bucket width. The overflow in open ad-
dressing hashing is handled through probing [4]. The au-
thors in [21] introduce a special type of hash-based packet
classification scheme that is called Tuple Space Search (TSS).
In TSS, the five PC fields are represented by a “tuple”which
is simply a group of integers substituting the actual fields.
A prefix is presented by an integer that equals the number
of its defined bits, each range is converted to two integers
using range encoding and each protocol is presented by an
integer. Although TSS has been extensively studied theo-
retically, few papers addressed the actual implementation
issues of TSS such as overflow handling, memory efficiency
and memory delay. The work by Song et al. [19] is the first
to show how an actual “coarse-grained” TSS system can be
built by splitting the 2D TSS into coarse clusters. The work
in [11] enhances that of [19] by using multiple hash tables,
one table per hash function. In general, the closed address-
ing hash scheme suffers from low space utilization and the
use of a relatively large number of hash functions [11, 18].

In this paper, we assume open addressing hash schemes
for which a number of efficient hardware prototype imple-
mentations have been proposed recently [3, 9]. In these im-
plementations, the hash table is stored in a set associative
memory where each set stores all the elements in a bucket
and the buckets are indexed through the hash function. The
overflow problem is treated by first splitting the keys into
groups based on their lengths and for each group a hash
function is assigned. Our new idea is to define the groups
and the hash functions in a way that allows us to reuse the
hash functions on different categories in a progressive way,
hence the name Progressive Hashing or PH. We enhance the
average search time of the PF by sorting the lookup tables
and by applying during the search the same hash function
order used for insertion. We also introduce an optimization
that we call “I-Mark” where we distinguish keys into two
sets: independent and dependent; then we insert the inde-
pendent set at any order to reduce the overflow for both the
PC and PF applications. In addition, the I-Mark can be
used to also enhance the average search time for PC. Our
goal is to fit the packet processing database in a single fixed
size hash table with minimal overflow, high space utilization
and low average memory access time.

The rest of the paper is organized as follows: Section 2
gives a brief background on open addressing hashing and

state-of-the-art set associative memory architectures. In
Section 3 we describe our main scheme PH. Optimizations
to the PH are discussed in Section 4 and Section 5. We
show the experimental results and evaluation in Section 6.
Finally, we conclude and talk about future work in Section 7.

2. BACKGROUND

2.1 Open Addressing Hash
Searchable data items, or records, contain two fields: key

and data. Given a search key, K, the goal of searching is
to find a record associated with K in the database. Hash
achieves fast searching by providing a simple arithmetic func-
tion h(·) (hash function) on K so that the location of the
associated record is directly determined. The memory con-
taining the database can be viewed as a two-dimensional
memory array of N rows with L records per row.

It is possible that two distinct keys Ki 6= Kj hash to the
same value: h(Ki) = h(Kj). Such an occurrence is called
collision. When there are too many (≥ L) colliding records,
some of those records must be placed elsewhere in the ta-
ble by finding, or probing, an empty space in a bucket. For
example, in linear probing, inserting an element into a hash
table is done by testing each bucket for a free space start-
ing at the hash index generated by this element. Another
way is to use a second order equation of the generated hash
index to specify which bucket should be tested, which is
called quadratic probing. Both probing schemes suffer from
“primary” and “secondary key clustering” respectively [4].

Instead of probing, one can apply a second hash function
to find an empty bucket, which is known as double hash-
ing [4]. In general, the use of H ≥ 2 hash functions is
shown to be better in eliminating hash overflow than prob-
ing [1]. Given a hash table with M records and N buckets,
the average number of hash table accesses to find a record is
heavily affected by the choice of hash function(s), the num-
ber of keys per bucket, L, and the load factor, α, defined as
M/(N × L). With a smaller α, the average number of hash
table accesses can be made smaller at the expense of unused
memory space.

2.2 Set Associative Memory Architectures
We use the CA-RAM (Content Addressable Random Ac-

cess Memory) as a representative of a number of set asso-
ciative memory architectures proposed for IP lookup [3, 9].
A CA-RAM takes as an input a search key and outputs
the result of a lookup. Its main components are: an index
generator, a memory array (SRAM or DRAM), and match
processors, as shown in Figure 1.

Given a key, the index generator uses a hash function to
create an index which is used to access a row of the memory
array. All the keys stored in that row are fetched simulta-
neously and the match processors compare the row of keys
with the search key in parallel, resulting in constant-time
matching. The matching processors are programmable and
the format of each memory row is flexible. The left corner of
Figure 1 shows how a row may be divided into entries (cells)
to store prefixes, their length and their port number for the
PF application [3, 8].

3. PROGRESSIVE HASHING
The predominant issue of any hashing system is the col-

lision handling method. In this section, we propose the

RAMRAMIndex Index GeneratorGenerator
IGIGKeyKey

An element An element is is mapped to this rowmapped to this row ���� ���� ���� ���� ����Matching ProcessorsMatching Processors

Priority EncoderPriority Encoder
Parallel MatchingParallel Matching

ResultResult

����
One CellOne Cell

PrefixPrefix LenLen PortPort

Figure 1: The basic CA-RAM Architecture.

PH scheme as an effective mechanism for reducing collisions
(hence overflow) for open-addressing hash systems. The PH
scheme can also be applied to closed-addressing hash sys-
tems. As we mentioned in Section 2, using multiple hash
functions is efficient in reducing collisions. For this reason
we use the multiple hash scheme throughout this paper. In
general, using different hash tables for different hash func-
tions is a valid design option; however, using different hash
tables leads to memory fragmentation and poor space uti-
lization. To achieve high space utilization (the ratio between
the required memory to store the database and the capacity
of the actually used RAM) we apply multiple hash functions
on a single hash table (per application). Specifically, a key is
inserted in the hash table using any of the H hash functions.

In Section 3.1 we discuss the issues of hashing with wild-
cards and in Section 3.2 we give the details of the PH scheme
and in Section 3.3 we talk about the search in PH. Finally
Section 3.4 talks about the incremental updates.

3.1 Multiple Hashing with Wildcards
In both applications, PF and PC, wildcards (or don’t care)

bits are heavily present in the routers’ databases. Hashing
with wildcards requires one of the two solutions: restricted
hashing or grouped hashing, as described next.

3.1.1 Restricted Hashing

In restricted hashing RH, the hash functions are restricted
to be using only the non-wildcard bits of the keys. For ex-
ample, in the PF case, prefixes can be either expanded [22]
to increase the number of non-wildcard bits or use only a
specific prefix length, say 16 bits, for hashing. In the latter
case, the shorter prefixes are kept in a small fast memory
that is searched in parallel with the main lookup table [8].
On the other hand, the RH scheme cannot be used in PC
since some rules have all wildcards bits in one or two of the
source or the destination fields; expanding those rules results
in huge database.

3.1.2 Grouped Hashing

In grouped hashing GH, keys are grouped based on their
prefix lengths, then a different hash function is applied to
each group. For example, for PF, the 32 bit IPv4 wide
address space can be split into 5 groups as follows:

• Group S24 that contains prefixes with at least 24 spe-
cific bits.

• Group S20 which contains prefixes of length between
20 and 23 bits.

• Group S18 which contains prefixes of length 19 and 18
bits.

• Group S16 which contains prefixes of length 17 and 16
bits.

• Group S8 which contains prefixes of length between 15
and 8 bits.

Then, each group can be associated with a different hash
function. For example, h0() that uses 24 bits can be associ-
ated with group S24, h1() that uses 20 bits can be associated
with group S20, · · · , and h4() that uses 8 bits can be asso-
ciated to group S8. This scheme is similar to the one used
in [9]. Figure 2(a) shows the five groups and their associ-
ated hash function. We represent the 32-bit address space
with a bold line and MSb and LSb stand for most signifi-
cant bit and least significant bit respectively. The prefixes
that are less than 8 bits long, which are less than 0.1% of
the lookup table, are stored in a special buffer which we call
“overflow buffer” that is searched in parallel with the main
hash table.

32 bits32 bits
S24: S24: 2424 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 3232

MSbMSb LSbLSb

hh��()()
hh��()()
hh��()()
hh��()()
hh��()()S20: S20: 2020 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 2323

S18: S18: 1818 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1919

S16:S16:1616 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1717

S8:S8:88 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1515

|Prefix| = prefix length|Prefix| = prefix length
(a)

(S16,S16)(S16,S16)
hh00()()(NS, S16)(NS, S16)

hh22()()

(S16, NS)(S16, NS)
hh11()()(S0,S8)(S0,S8)

hh55()()

(S0,S0)(S0,S0)

00 3232

00

3232
Src. Prefix Len.Src. Prefix Len.

Ds
t.

Pr
ef

ix
Le

n.
Ds

t.
Pr

ef
ix

Le
n.

(S8,S0)(S8,S0)
hh44()()

(S8,S8)(S8,S8)
hh33()()

(b)

Figure 2: Splitting the Hashing Space into Groups
for: (a) PF and (b) PC.

Grouped hashing can be also applied to PC using the
tuple space concept. For example, a coarse-grained tuple
space [19] can divide the PC hashing space (or keys to be
hashed) into 7 groups as shown in Figure 2(b). First, the
filters are split into 4 groups based on the source and the des-
tination prefixes lengths: (S16, S16), (S16, NS), (NS, S16)
and (NS, NS), where“S16”means that the prefix has 16 spe-
cific bits or more, while the “NS” stands for “Non-Specific”,
i.e., the prefix is less than 16 bits. The (NS, NS) group

is then split once more into 4 groups: (S8, S8), (S8, S0),
(S0, S8) and (S0, S0) where “S8” means that the prefix is
less than 16 and greater than or equal to 8 bits long and“S0”
includes all the prefixes that are less than 8 bits long. There
are many options to classify the rules in each PC database.
However we pick this example because of its simplicity.

It is possible to associate a different hash function to each
group as follows:

• Group (S16, S16) uses the hash function h0() which
uses the 16 most significant bits from each dimension
and merge them to make one word of 32 bits to com-
pute the hash index.

• Groups (S16, NS) and (NS, S16) use hash functions
h1() and h2() respectively, where each function uses
the 16 most significant bits of either the source or des-
tination prefixes to compute the hash index.

• Group (S8, S8) uses the hash function h3() which takes
the 8 most significant bits from each dimension and
merges them to make one word of 16 bits to compute
the hash index.

• Groups (S8, S0) and (S0, S8) use hash functions h4()
and h5() respectively, where each function uses the 8
most significant bit of either the source or the destina-
tion prefixes to compute the hash index.

• Group (S0, S0) is added to the overflow buffer since it
usually contains very few rules.

3.2 Using the PH Scheme
In the previous sections we described the two multiple

hashing schemes for packet processing, which are abstracted
in Figures 3(a) and (b) where the hashing space is repre-
sented as a circle. For the restricted hashing scheme (Fig-
ure 3(a)) the hash functions h′

0() · · ·h
′

3() are applied to all
the keys in the hashing space. For the grouped hashing (Fig-
ure 3(b)) we split the hashing space into 4 groups, Group
0, to Group 3 and a single hash function is associated with
each group as follows: h0() is associated with Group 0, · · · ,
and h3() is associated with Group 3.

Since the restricted hashing scheme cannot be applied to
the PC application, we consider further the grouped hash-
ing scheme. Note that the grouped hashing scheme’s search
algorithm has to try all the hash functions of all the groups
to find the key with the highest priority that matches a cer-
tain packet. This means that for each incoming packet, the
grouped hashing search algorithm will access the memory
H times if there are H groups. Also, since the groups are
based on the prefix lengths, groups with longer prefix length
can use the hash functions of other groups that have shorter
prefix lengths. For example, in the PF application of Fig-
ure 2(a), group S24 can use the hash functions of groups S20
and S16. Motivated by these two observations, we propose
our main scheme, Progressive Hashing (PH) where we apply
the hash functions in a progressive manner to other groups
as illustrated in Figure 3(c) to give some keys more chances
to be mapped to the hash table to reduce the overflow.

The effectiveness of progressive hashing depends mainly
on how we select the groups and their associated hash func-
tions. One important aspect during the grouping of the
keys is to maintain “hashing specificity hierarchy” between
the groups. To clarify, note that a key in a packet processing

Restricted Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00`(), `(), hh11`(), `(),
hh22`(), `(), hh33`()`()

Grouped Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00()()
hh11()()

hh22()()
hh33()()

(a) (b)
Progressive Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00(), h(), h11(), (),
hh22(), h(), h33()()hh11(), h(), h22(), (),

hh33()()

hh22(), h(), h33()()
hh33()()

(c)

Figure 3: The Evolution of The PH Scheme.

application can be one of two things: a single prefix in case
of the PF application (destination prefix) or two prefixes in
case of the PC application (source and destination prefixes).
We define the “hash function specificity” as follows:

Definition 1. In packet processing applications, a hash
function hi(·) is said to be more specific than another hash
function hj(·) if any bit used in hj(·) is also used in hi(·).

h�	
��(.) Most SpecificMost Specific

h�	

�(.)
h�	���(.)
h�	���(.)
h�	��(.) Least SpecificLeast Specific

PF ApplicationPF Application

h�	���	���(.)
h��	�	���(.)h�	����	�(.) h�	��	��(.)

h�	��	
�(.) h�	
�	��(.)
h�	
�	
�(.)

PC ApplicationPC Application

Figure 4: The Hash Function Specificity Hierarchy
of PF and PC Applications.

For example, the PF hash function hS24(·) in Figure 4 is
more specific than hS20(·) and the PC hash function h(S16,S16)(·)
in Figure 4 is more specific than h(S8,S8)(·). Note that for
the PC case in Figure 4, we cannot define a specificity re-
lationship between the two hash functions h(S16,NS)(·) and
h(NS,S16)(·) nor between h(S8,S0)(·) and h(S0,S8)(·). Figure 4
is a directed graph that represents the hierarchy between dif-
ferent hash functions for the two applications. Specifically,
there is a directed edge between group pairs that have a
direct specificity relation. Note that only in this graph we
replaced the hash functions subscript numbers, such as h0(·),
with the actual group name to eliminate any ambiguity. For
example, the PF h0(·) is hS24(·), while h0(·) of the PC is
h(S16,S16)(·).

Progressive hashing for the PF application is based on
the observation that group S24 can use the less specific
hash functions of the groups S20, S18, S16 and S8, and
the same for group S20 which can use the less specific hash
functions of the groups S18, S16 and S8, · · · , etc. This is
illustrated in Figure 5(a). Similarly, for the PC application,
group (S16, S16) can use other less specific hash functions
of the groups (S16, NS), (NS, S16), (S8, S8), (S8, S0), and
(S0, S8), and the same applies for group (S16, NS) which
can use hash functions of the less specific group (S8, S0),
· · · , etc., as illustrated in Figure 5(b).

32 bits32 bits
S24: S24: 2424 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 3232

MSbMSb LSbLSb

hh��(), h(), h��(), (),
hh��(), h(), h��(), h(), h��()()

hh��(), h(), h��(), (),
hh��(), h(), h��()()

hh��(), h(), h��(), (),
hh��()()

hh��(), h(), h��()()
hh��()()S20: S20: 2020 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 2323

S18: S18: 1818 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1919

S16:S16:1616 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1717

S8:S8:88 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1515

|Prefix| = prefix length|Prefix| = prefix length

(a)

(S16,S16)(S16,S16)
hh00(), h(), h11(), h(), h22(),(),
hh33(), h(), h44(), h(), h55()()

(NS, S16)(NS, S16)
hh22(), h(), h55()()

(S16, NS)(S16, NS)
hh11(), h(), h44()()(S0,S8)(S0,S8)

hh55()()

(S0,S0)(S0,S0)

00 3232

00

3232
Src. Prefix Len.Src. Prefix Len.

Ds
t.

Pr
ef

ix
Le

n.
Ds

t.
Pr

ef
ix

Le
n.

(S8,S0)(S8,S0)
hh44()()

(S8,S8)(S8,S8)
hh��(), (), hh��(), (),

hh��()()

(b)

Figure 5: Applying PH on: (a) PF and (b) PC.

After dividing the keys into groups as we saw, we run the
setup algorithm, Algorithm 1, to store the keys into the hash
table. In the setup algorithm, j = 0, · · · , M − 1 is used to
index the keys, where M is the total number of prefixes/rules
in a database. The goal is to map the keys into a hash table,
H Table[row index][bucket size], with L = maximum bucket
size, and N = 2R maximum number of rows, where R is
the maximum number of bits used to index the hash table.
Each entry in H Table[N][L] contains the field “key” which
consists of multiple fields depending on the application. For
example, in the PF case we store the actual prefix, its length
(or its mask) and the port number, while in the PC case we
need to store the source and destination addresses prefixes,
ports, action and so on. H is the maximum number of hash
functions and an array of counters, HC[row index], is used
to count the number of elements that are mapped to each
row of the hash table and we use a counter OC to count the
overall overflow. Group number ‘i’ is represented by Gi.

Algorithm 1 attempts to allocate Kj , (line 5) in the hash
table, if the attempt is not successful, it stores the key in
the overflow buffer that is searched in parallel with the main
hash table. The amount of overflow to be handled depends
on the overflow buffer capacity.

Algorithm 1 The PH Setup Algorithm.

1: Initialize HC[N] array to zeros and OC = 0
2: for(j = 0; j < M ; j + +) {
3: define binary flag: inserted = false

4: for(i = 0 ; i < H ; i + +) {
5: if (Kj ∈ Gi), then {
6: ri = hi(Kj)
7: if(HC[ri] < L), then {
8: H Table[ri][HC[ri]].key = Kj

9: HC[ri] + +, inserted = true }
10: }
11: }
12: if(inserted == false), then

13: Store Kj in overflow buffer, OC++ }

3.3 Searching in PH
In this section we show how to search for a key in the pro-

gressive hashing. The goal is to find the highest priority key
that matches any given packet since we might find multiple
matches. For PF, the priority is simply the length of the
prefix, while PC assigns a priority tag to each rule.

The general PH search algorithm works as follows: for
each packet Px that arrives at the packet processing unit,
in the first cycle we calculate the row index addresses r0 =
h0(kx), · · · , rH−1 = hH−1(kx), where kx represents the header
of the packet Px. For each row ri we match Px against all
the elements in that row in parallel in a single clock cy-
cle using the matching processors. In case of PC we have
a different matching processor for each field such as prefix
matching processors, range matching processors, etc. The
matching processors calculate the best matching key in the
bucket and store the intermediate key. After H cycles, there
might be a maximum of H intermediate matching keys. In
the final cycle, the best matching key among the matched
intermediate keys is identified. In case there is no match in
the hash table, we search the overflow buffer for a match or
we apply the default rule or route.

Each successful search requires H + 2 cycles to calculate
the best matching key (1 cycle to calculate hash indices + H
cycles for the H memory accesses of the H rows + 1 cycle
to calculate the best match). In Section 4, we discuss an
optimization that improves the average memory access time
(AMAT) for the PF application and in Section 5 we give
another optimization that improves the AMAT for PC.

3.4 The Incremental Updates
The incremental update operations in PH are straightfor-

ward. An incremental update operation can be either key
deletion, key addition or key update.

To delete a key is simple; just search for the key in the
hash table then delete it and update the row counters ac-
cordingly. To insert a new key or to update the information
of an existing key KN we take the following steps: (1) first
we try to find if KN already exists by searching through
maximum of a H buckets. (2) If it exists, then we update
its information. For example, for PC, an action of an ex-
isting rule is needed to be changed from accept to drop or
vice versa or we need to assign a new port for an existing
prefix in case of PF. (3) If we do not find KN in the hash
table, then we try to find a row with an empty spot to store
it using one of the H hash functions. If there is no space,
then we append KN to the overflow buffer.

4. IMPROVING PF AMAT
We show in Section 3.3 that finding the best matching

key for a given packet requires searching through all the
H hash functions. In this section we seek to improve the
average search time by guaranteeing that the first matching
key is the best matching key. In other words, for the PF
applications, the first matching prefix will be the longest
matching prefix (LPM) under certain constraints. In the
following subsection we describe how such optimization can
be applied for any RH system and then we extend it to PH.

4.1 Stop at First Matching in RH
To be able to stop at the first matching prefix during

search in a PF restricted multiple hashing system, we store
the prefixes according to their length from the longest to the
shortest [8]. In addition to sorting the prefixes during the
insertion, we have to apply the hash function in a consistent
order (“hash order”) during both insertion and search time.
Theorem 1 proves that these two conditions are enough to
find the LPM first.

Theorem 1. In restricted multiple hashing’s search algo-
rithm, the first matching prefix is the LPM if:

1. The prefixes are inserted from the longest to shortest.

2. The search’s hash order is the same as the insertion’s
hash order.

Proof. In a restrictive multi-hashing scheme all the H
hash functions are applied to all the groups of keys. Let us
assume that we have M keys to be hashed and that they
are sorted according to their length from the longest to the
shortest. Also, assume that the hash order during the in-
sertion is as follows: h′

0(Km), · · · , h′

H−1(Km), ∀Km and
0 ≤ m ≤ M − 1. In addition, assume that there exists a
packet PX that matches two prefixes KX and KY and that
KX is longer than KY . This means that KX is mapped to
the hash table before KY .

Without losing the generality, assume that hl(KX) = hl(KY)
= row index ‘l’. We can see that it is not possible for KY

to find a space in row ‘l’ if KX could not find a place.
This means that if hi(KX) = X and hj(KY) = Y , then

i < j. Hence while searching for a match for PX in the
order: h0(PX), · · · hH−1(PX), we will match KX at row X
before we go to row Y .

Note that if both prefixes KX and KY , in Theorem 1, are
mapped to the same row, then the matching processors are
going to calculate the LPM in this case.

4.2 Stop at First Matching in GH and PH
Unfortunately Theorem 1 cannot be used for both GH

and PH schemes as some prefixes have a different insertion’s
hash order than their search’s hash order.

For example, if a packet PX matches prefix KX ∈ (S18)
and KY ∈ (S16) in Figure 5(a), then KX is the LPM of PX .
Assume that during the prefixes mapping, the two prefixes
are stored in two different rows as follows: h2(KX) = X
and h3(KY) = Y . During the search for PX we try all
the five hash functions h0() to h4(). Assume that one of
the hash functions that were not used to store either KX

or KY generates the row Y when it is applied to PX , i.e.,
h0(PX) = Y or h1(PX) = Y . This means that we will search

row Y before row X, thus, we incorrectly report KY as the
LPM instead of KX .

To solve the above problem, the hash function that was
used to insert KY has to be checked. In this case it turns
out that KY was stored using h3() and not h0(), hence KY

has to be skipped as a matching as there might be a bet-
ter matching, KX in this case. This requires that the PH
setup algorithm, Algorithm 1, has to be changed to store
also the hash function index that is used to store each prefix.
That is to add the following line after line 6 in Algorithm 1:
“H Table[ri][HC[ri]].h = i”. The search algorithm has to be
changed as well since it must stop only at the first matching
prefix for which the stored hash function index, “.h”, is iden-
tical to the hash function index that is used to lookup the
prefix during the search. Algorithm 2 shows the modified
search algorithm for the PF application.

Algorithm 2 The PH Modified Search Algorithm For The
PF Application.

1: Search Hash Table(Packet P)
2: for(i = 0 ; i ≤ H − 1 ; i + +) {
3: ri = hi(P)
4: if(P matches H Table[ri][j].key), then

5: if(i == H Table[ri][j].h), then

6: return H Table[ri][j].port number

7: else continue

8: }

The algorithm uses the hash index field “.h” to check for
the hash function that is used to store each prefix (line 5).
Note that applying the same procedure for PC is more com-
plicated by the fact that in some cases it is not clear which
group of rules is more specific than the other. For exam-
ple, group (S16, NS) and group (NS, S16) do not have a
clear indication about which one is more specific than the
other. Section 5 introduces an optimization that improves
the AMAT of PC.

5. THE I-MARK OPTIMIZATION
In this section we introduce an optimization that reduces

the overflow for the PF application. In addition to that, it
can be used to reduce the AMAT for the PC application.
Note that if we insert the keys that can be hashed by more
hash functions after the keys that can be hashed by fewer
hash functions then we may reduce the collisions and hence
the overflow. This is simple for the PC application since
there are no order restrictions over the rules during the in-
sertion; however, there is a strict order of insertion in the PF
application if we want to stop at the first matching prefix as
being the LPM. Definition 2 formally defines the dependence
relationship between keys:

Definition 2. If there is a packet Pi that matches two
keys, Ki and Kj, Ki and Kj are called dependent keys.

Therefore, for the packet forwarding, the independent pre-
fixes can be inserted in any order and not according to the
priority, while the dependent prefixes have to be inserted in
order according to the priority as in Section 4.2. To use this,
we define a binary flag, I-Mark, which is set to 1 if the key
is independent and is reset to 0 if not for all the keys in the
database. We call the set of keys which have I-Mark equal to
1 the“independent” set and the other set of keys the“depen-
dent” set. There are many ways to insert the independent

set, one particularly is to insert the independent keys first
before the dependent ones but in a reverse order according
to each key hash function specificity. For example, given
the PF example in Figure 5(a) we insert the independent
prefixes that use only the hash function h4() first, then we
insert the independent prefixes that use h3() and h4() sec-
ond and so on. This order can be justified logically as we
try to accommodate those keys that can be hashed only by
fewer number of hash functions before trying to accommo-
date other keys that can be hashed by more hash functions.
Based on the available data, we find that the independent
set represents 42.1% on average of the IP lookup table, while
it ranges between 64.0% to 89.7% for the PC database.

In addition to allowing keys insertion in an arbitrary or-
der, note that once one of the independent keys is matched
during the search, then we can stop the search since there
is no more matches. This helps us to reduce the AMAT of
the PC application significantly as we will see in Section 6.

6. EXPERIMENTAL EVALUATION
For the evaluation of the PH scheme, we use C++ to

build a simulation environment that allows us to choose be-
tween different types of hash functions. The hash functions
used in the experiments are from four hashing families: bit-
selecting, additive and rotative [13], CRC-based, and H3 [14]
hashing families. Those families can be realized in hardware
which is an advantage. For the PF evaluation, we collected
15 tables from the Border Gateway Protocol (BGP) Internet
core routers of the routing information service project [16]
on January 31st 2009. Table 1 lists the 15 routing tables and
their sizes. To measure the average search time, we generate
uniformly distributed synthetic traces using the same tables.

Table Size Table Size

rrc00 292,717 rrc10 276,912
rrc01 276,224 rrc11 275,903
rrc02 272,743 rrc12 277,132
rrc03 283,147 rrc13 280,961
rrc04 283,075 rrc14 274,824
rrc05 301,383 rrc15 275,828
rrc06 277,555 rrc16 280,744
rrc07 274,479 Average 280,242

Table 1: The Statistics of the IP lookup tables on
January 31st 2009.

The PC case is studied using the ClassBench tool [23].
The tool provides synthetic packet classification databases
from real databases. The ClassBench defines 3 families of
PC applications: IPC (an old version of Firewalls), ACL
(Access Control List) and FW (modern version of Firewalls).
We generated 11 synthetic databases and their traces using
ClassBench and their statistics are given in table 2.

For a given hardware implementation, the number of rows,
N , and the number of entries per row, L, are fixed. We de-
fine a “configuration” by specifying both N and L. The
PH performance, in terms of both overflow percentage and
AMAT, depends on the number of groups for the application
(hence the number of hash functions), H. In addition to H,
the performance of PH depends on the load factor (space
utilization) α = M/(N × L) where M is the database size
and (N × L) is the hash table size. Section 6.1 compares
the modified PH scheme (defined in Section 4) against two
other schemes: grouped hashing (GH) scheme and restricted

Table Size (S16,S16) (S16,NS) (NS,S16) (NS,NS)
% % % %

ACL1 8905 92.49 6.00 0.00 1.52
ACL2 8072 48.20 20.69 28.43 2.68
ACL3 7714 60.72 17.14 18.58 3.56
ACL4 8960 59.63 15.33 20.42 4.61
ACL5 6593 92.08 0.00 7.92 0.00
FW1 7573 15.34 29.54 51.46 3.66
FW2 8874 14.59 73.91 11.46 0.03
FW3 6361 6.02 27.07 62.18 4.73
FW4 7144 19.16 29.16 44.85 6.83
IPC1 8310 72.97 11.07 15.17 0.78
IPC2 10000 36.60 11.14 52.26 0.00

Average 8046 36.60 11.14 52.26 2.58

Table 2: The Statistics of the Packet Classification
databases from ClassBench Tool.

hashing (RH) scheme for the packet forwarding application.
For the RH, all 5 hash functions use the most significant
16 bits and are applied to all the prefixes in the lookup ta-
bles. Those prefixes that are less than 16 bits are inserted
in the overflow buffer since they represent less than 2% of
the routing tables. For the packet classification application,
Section 6.2 compares the PH scheme only against the GH
scheme. In all cases, we compare the schemes that have the
same worst-case memory access time (WMAT). The results
for the I-Mark optimization are also reported for each appli-
cation. Finally, in Section 6.3, we apply the PH scheme for
the state-of-the-art content-based hash probing scheme for
the PF application.

6.1 Packet Forwarding Evaluation
We show in Figure 6(a) the overflow percentages, which

is the ratio of the overflow to the total number of prefixes
in the routing table, of the 15 routing tables for one config-
uration, C1 : {L = 180, N = 2048} and for three schemes:
GH, modified PH (after sorting the prefixes) and modified
PH with the I-Mark optimization. We refrained from plot-
ting restricted hashing (RH) scheme as its average overflow
is high (18.0%). On average, the modified PH reduces the
overflow by 95.0% compared to the RH scheme and by 66.7%
compared to the GH scheme. At the same time, the AMAT
(Figure 6(b)) of the modified PH is decreased by 62.6% over
the GH scheme which has a constant AMAT of 5. The mod-
ified PH with the I-Mark optimization reduces the overflow
by 72.8% and decreases the AMAT by 62.4% over the GH
scheme.

To show that the PH scheme is robust under other config-
urations, we use three configurations to evaluate PH for PF
applications: C1 : {L = 180, N = 2048}, C2 : {L = 90, N =
4096} and C3 : {L = 45, N = 8192} in Figure 7(a) and
(b). Figure 7(a) shows the average overflow over all the 15
lookup tables for the GH, modified PH and PH with I-Mark
schemes. These three configurations have the same average
load factor of 76.0% which is considerably high. Figure 7(b)
shows the AMAT of the same three configurations but only
for the modified PH and the modified PH with I-Mark.

The modified PH with I-Mark has the lowest overflow per-
centage among the three schemes, then the modified PH has
a little higher overflow percentage. The average (over the
three configurations) overflow reduction percentages of the
modified PH and the modified PH with I-Mark are 51.6%
and 57.8% compared to the GH scheme. The modified PH

0.0

1.0

2.0

3.0

4.0

5.0

6.0

rr
c0
0

rr
c0
1

rr
c0
2

rr
c0
3

rr
c0
4

rr
c0
5

rr
c0
6

rr
c0
7

rr
c1
0

rr
c1
1

rr
c1
2

rr
c1
3

rr
c1
4

rr
c1
5

rr
c1
6

AV
E.

O
ve
rf
lo
w
 %

Overflow for C1: 180 x 2048

GH

PH

PH + I-
Mark

(a)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 ����� ����� ����� ���� ����! ����" ����# ����$ ����� ����� ����� ���� ����! ����" ����# %&'(AM

AT

AMAT for C1: 180 x 2048

PH

PH + I-
Mark

(b)

Figure 6: (a) Average Overflow (b) AMAT of GH
vs. PH vs. PH +I -Mark for 15 Lookup Tables for
Config. C1: {180 × 2048}.

decreases the AMAT by 62.9% and the modified PH with
I-Mark decreases the AMAT by 61.7% compared to the GH
scheme which has a constant AMAT of 5.

6.2 Packet Classification Evaluation
We show in Figure 8 a comparison between the GH scheme

vs. the PH scheme with and without I-Mark optimization for
all the 11 PC databases for one configuration: C1 : {L = 100
and N = 128}. The PH reduces the overflow (Figure 8(a))
by 75.3% on average compared to the GH, while the PH with
I-Mark reduces it by 84.2% on average compared to the GH.
For the PH with I-Mark, the AMAT is decreased by 43.2%
compared to both the GH and the PH schemes. We do not
show the AMAT of GH and PH since both of them have a
constant AMAT of 6.

We believe that the comparison for the PC application
should be for each PC family as the average comparison
among the 11 databases is not fair in the sense that each
family, and sometimes even each database, has its own char-
acteristics that requires different configurations for better
performance. As a result, we show in Figure 9(a) the av-
erage overflow and in Figure 9(b) AMAT of the three PC
families for three different configurations: C1 : {L = 100 and
N = 128}, C2 : {L = 80 and N = 256} and C3 : {L = 50
and N = 512}. The average loading factors for these con-
figurations are 62.9%, 39.3% and 31.4% respectively.

From Figure 9(a) we can see that both PH with I-Mark
optimization and PH outperform GH in terms of overflow
reduction. The PH achieves zero percent overflow for the
FW family, while reduces the overflow by 66.25% for the
ACL family and by 94.35% for the IPC family compared to
the GH. Similarly, the PH with I-Mark achieves zero over-
flow for both FW and IPC families and reduces it by 74.3%
for the ACL family compared to the GH. The AMAT of the
PH with I-Mark is decreased by 31.0%, 56.0% and 48.4%

)*)+*),*)-*).*)/)*)/+*) 012 134 5 6473 062 84 5 7489 0:2 7; 5 3186<=>?@ABCD EFGFGF H IJKLMN
(a)OPOOPQOPROPSOPTUPOUPQUPRUPSUPTQPO VUW UTO X QORT VQW YO X ROYS VZW R[X TUYQ\]\̂ _`_`a bcdefg
(b)

Figure 7: (a) Average Overflow of GH vs. PH vs.
PH + I-Mark and (b)Average AMAT for PH vs.
PH + I-Mark for PF for 3 Config’s.

respectively for the three families compared to both the GH
and the PH schemes as illustrated in Figure 9(b).

6.3 Applying PF to Content-based Probing
In this section the progressive hashing is applied to the

Content-based HAsh Probing (CHAP) for the PF applica-
tion [8]. While regular probing uses predetermined offsets
to solve that problem, CHAP [8] uses a mix of restricted
multiple hash functions (all use the most significant 16 bits)
and probing in the following probing sequence:

h0(k), h1(k), · · · ,hH−1(k), β0[h0(k)],

β1[h1(k)], · · · , βm−1[hH−1(k)]
(1)

The probing pointers, β0, β1, · · · , βm, are determined dy-
namically for each value of hi(k), where k is the key to be
hashed, depending on the distribution of the data stored
in a particular hash table. The overall scheme is called
CHAP(H,m) since it has H hash functions and m prob-
ing pointers per row. Figure 10 shows CHAP(3,3) when
m = H = 3. As presented in [8], CHAP uses restricted mul-
tiple hash functions where each function takes the most sig-
nificant 16 bits; we apply our PH scheme to enhance CHAP
performance.

In Figure 11(a) we show the average overflow of the RH
CHAP, PH CHAP and PH with the I-Mark CHAP for the
same three configurations we used in Section 6.1. The first
two configurations have zero overflow for both the PH schemes
(with and without the I-Mark) with a reduction of 100% in
this case. For the third configuration, C3: 45 × 8192, PH
reduced the overflow by 23.6% and PH with I-Mark reduced
it by 28.7% compared to RH.

We note that both schemes PH + CHAP with and without
I-Mark have a lower AMAT (Figure 11(b)) than the RH +
CHAP scheme with an average of 21.3% reduction in case
of PH only and 23.1% in case of PH with I-Mark.

0.0

5.0

10.0

15.0

20.0

25.0

A
C
L1

A
C
L2

A
C
L3

A
C
L4

A
C
L5

FW
1

FW
2

FW
3

FW
4

IP
C
1

IP
C
2

Overflow for C1: 100 x 128

O
ve
rf
lo
w
 %

GH

PH

PH + I-
Mark

hijk
(a)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

AC
L1

AC
L2

AC
L3

AC
L4

AC
L5

FW
1

FW
2

FW
3

FW
4

IP
C1

IP
C2

AMAT for C1: 100 x 128

AM
AT

PH + I-
Mark

(b)

Figure 8: (a) Average Overflow of GH vs. PH vs.
PH + I-Mark and (b) AMAT of PH + I-Mark for the
11 PC databases for configuration C1: {100 × 128}.

6.4 Actual Performance Estimation
In this section we estimate the actual processing rate of

the PH packet processing engine using sound approxima-
tions. We estimate the memory requirements for two con-
figurations C1 for the PF and C1 for the PC. For PF, the
configuration C1 requires 180×2048 = 368, 640 or 370K en-
try, where an entry is represented by 5 bytes prefix plus 5
bits prefix length plus 1 bit for the I-Mark plus 3 bits for the
hash function flag, which is 49 bits and there is 1 byte per
row for the row counter. The total memory requirement for
this PF configuration is ∼ 2.16 MB. For PC, the configura-
tion C1 requires 100× 128 = 12, 800 or 13K entry, where an
entry is represented by 2×5 bytes for prefixes plus 2×5 bits
prefix length plus 4×2 bytes for port ranges plus 1 byte pro-
tocol and other fields encoding plus 1 bit for the I-Mark plus
3 bits for the hash function flag, which is 166 bits and there
is 1 byte per row for the row counter. The total memory
requirement for this PC configuration is ∼ 0.25 MB.

A state-of-the-art CMOS technology SRAM memory de-
sign [27] reports of a single chip of 36.375 MB that runs
on 4.0GHz. Since our scheme depends on a set associative
RAM, we conservatively assume that the clock rate is 2.0
GHz. For the PF application, and if we assume AMAT of
∼ 2.0 (according to Figure 7(b)), then we have a forwarding
speed of 1.0 Giga packets per seconds or 320 Gbps for the
minimum packet size of 40 bytes. For the PC application,
and if we assume AMAT of ∼ 4.0 (according to Figure 9(b)),
then we have a filtering speed of 0.5 Giga packets per seconds
or 160 Gbps for the minimum packet size of 40 bytes.

7. CONCLUSIONS AND FUTURE WORK
In this paper we introduce Progressive Hashing (PH), a

new open addressing hash-based packet processing scheme
that can also work for closed addressing hash systems. PH

lmlnmlomlpmlqmlrlmlrnmlromlrpmlrqmlnlml stu vw xyt stu vw xyt stu vw xyttrz rll { rnq tnz ql { n|p t}z |l { |rn~�������� ��y�y�� x�����2 2 .8

(a)��������������������������������� ��� �� ��� ��� �� ��� ��� �� ������ ��� � ��� ��� �� � �� ��� �� � ���¡¢¡£ �¤ ¥ �¦§¨©ª
(b)

Figure 9: (a) Average Overflow for GH vs. PH vs.
PH +I-Mark and (b) Average AMAT of PH + I-
Mark for 3 PC Families for 3 Config’s.

Probing Probing
PointersPointers

Hash Hash
FunctionsFunctions

hh««(.)(.)
PacketPacket

To theTo the
Matching ProcessorsMatching Processors

¬¬ ββββββββ­­[h[h­­()]()]ββββββββ®®[h[h®®()]()]
hh¯̄(.)(.) ¬¬
hh°°(.)(.)

ββββββββ±±[h[h±±()]()]
Figure 10: The CHAP(3,3).

is effective in reducing the classical hashing overflow on av-
erage by 95% compared to restricted hashing (RH) and by
66.7% compared to grouped hashing (GH) for the packet for-
warding (PF) application and 73.3% for the packet classifi-
cation (PC) application compared to GH. We also introduce
an optimization to improve the average memory access time
for the PF application with an estimated 320 Gbps average
processing speed. The PH processing engine is estimated
to achieve an average processing speed 160 Gbps for the
PC application with the I-Mark optimization which is used
to reduce both the overflow and the AMAT at the same
time. PH is also applied to the state-of-the-art PF hash-
based system, CHAP, and showed that CHAP achieves a
better performance than that with RH.

This paper also introduced optimizations that reduce the
average memory access time, however we have some pre-
liminary results of optimizations that reduce the worst case
memory access time. The optimal insertion order of keys for
the I-Mark optimization into the hash table is not discussed
here, rather a heuristic is introduced. We believe that find-
ing such an order needs further investigation and calls for
studying the effect of the number of keys per group on this

²³²²³´²³µ²³¶²³·³̧²³̧´ ¹¸º ·̧² » ´²µ· ¹´º¼² » µ²¼¶ ¹½ºµ¾ » · ¼̧´¿ÀÁÂÃÄÅÆÇ ÈÉÊ¹ÉËÌÌÉÊ¹ÉËÌÌÉÊ¹ÉËÌÊ ÍÎÏÐÑÒ
(a)ÓÔÓÓÔÕÖÔÓÖÔÕ×ÔÓ×ÔÕØÔÓ ÙÖÚ ÖÛÓ Ü ×ÓÝÛ Ù×Ú ÞÓ Ü ÝÓÞß ÙØÚ ÝÕ Ü ÛÖÞ×àáàâ ãäåÙäæççäåÙäæççäåÙäæçå èéêëìí
(b)

Figure 11: (a) Average Overflow and (b) Average
AMAT of PH vs. PH + CHAP vs. PH + CHAP +
I-Mark for the Lookup Tables for 3 Config’s.

order. We will study a fully synthesized PH packet pro-
cessing engine in a future work. The future work will also
propose a full design of a pipeline-based PH packet process-
ing engine to achieve a single lookup per clock cycle.

8. REFERENCES

[1] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced
allocations. SIAM J. Comput., 29(1):180–200, 2000.

[2] F. Baboescu, D. Tullse, G. Rosu, and S. Singh. A tree
based router search engine architecture with single
port memories. SIGARCH Comput. Archit. News,
33(2):123–133, 2005.

[3] S. Cho, J. Martin, R. Xu, M. Hammoud, and
R. Melhem. Ca-ram: A high-performance memory
substrate for search-intensive applications. pages
230–241. IEEE ISPASS, 2007.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stien.
Introdcution to Algorithms. McGraw Hill, 2003.

[5] S. Dharmapurikar, H. Song, J. Turner, and
J. Lockwood. Fast ppacket classification using bloom
filters. In ACM/IEEE ANCS, pages 61–70, New York,
NY, USA, 2006.

[6] P. Gupta and N. Mckeown. Packet classification using
hierarchical intelligent cuttings. In IEEE Hoti, pages
34–41, 1999.

[7] P. Gupta and N. Mckeown. Algorithms for packet
classification. IEEE Network, 15(2):24–32, 2001.

[8] M. Hanna, S. Demetriades, S. Cho, and R. Melhem.
Chap: Enabling efficient hardware-based multiple
hash schemes for ip lookup. pages 756–769. IFIP
Networking, 2009.

[9] S. Kaxiras and G. Keramidas. Ipstash: A
power-efficient memory architecture for ip-lookup.
pages 361–373. Micro’03, 2003.

[10] R. A. Kempke and A. J. McAuley. Ternary cam
memory architecture and methodology.
http://www.freepatentsonline.com/5841874.html,
1998. United States Patent 5841874.

[11] A. Kirsch and M. Mitzenmacher. Simple summaries
for hashing with choices. IEEE/ACM Trans. Netw.,
16(1):218–231, 2008.

[12] K. Lakshminarayanan, A. Rangarajan, and
S. Venkatachary. Algorithms for advanced packet
classification with ternary cams. pages 193–204. ACM
Sigcomm, 2005.

[13] A. Partow. General purpose hash function algorithms
library. http://www.partow.net/.

[14] M. Ramakrishna and et Al. Efficient hardware hashing
functions for high performance computers. IEEE
Trans. on Comp., 46(12):1378–1381, 1997.

[15] Y. Rekhter and T. Li. An architecure for ip address
allocation with cidr. RFC, 1993.

[16] RIS. Routing information service.
http://www.ripe.net/ris/, 2006.

[17] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional cutting.
pages 213–224, New York, NY, USA, 2003. ACM
SIGCOMM.

[18] H. Song, S. Dharmapurikar, J. Turner, and
J. Lockwood. Fast hash table lookup using extended
bloom filter: an aid to network processing. In ACM
SIGCOMM, pages 181–192, New York, NY, USA,
August 2005. ACM.

[19] H. Song, J. Turner, and S. Dharmapurikar. Packet
classification using coarse-grained tuple spaces. In
ACM/IEEE ANCS, pages 41–50, New York, NY,
USA, 2006. ACM.

[20] E. Spitznagel, D. Taylor, and J. Turner. Packet
classification using extended tcams. pages 181–192.
IEEE ICNP, 2003.

[21] V. Srinivasan, S. Suri, and G. Varghese. Packet
classification using tuple space search. In ACM
SIGCOMM, pages 135–146, New York, NY, USA,
1999.

[22] V. Srinivasan and G. Varghese. Fast address lookups
using controlled prefix expansion. ACM Trans.
Comput. Syst., 17(1):1–40, 1999.

[23] D. Taylor and J. Turner. Classbench: A packet
classification benchmark. In IEEE INFOCOM,
volume 15, pages 499–511, 2007.

[24] D. E. Taylor and J. S. Turner. Scalable packet
classification using distributed crossproducing of field
labels. volume 1, pages 269–280. IEEE Infocom, 2005.

[25] D. E. Turner. Survey and taxonomy of packet
classification techniques. ACM Computing Surveys,
37(3):238–275, 2005.

[26] G. Varghese. Network Algorithmics: An
Interdisciplinary Approach to Designing Fast
Networked Devices. Morgan Kaufmann, 2005.

[27] Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar,
Y. Ng, L. Wei, Y. Zhang, K. Zhang, and M. Bohr. A
4.0 ghz 291 mb voltage-scalable sram design in 32nm
high-k metal-gate cmos with integrated power
management. In IEEE ISSCC, pages 456–457, 2009.

