
J. Parallel Distrib. Comput. 71 (2011) 889–896
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Research note

C-AMTE: A location mechanism for flexible cache management in chip
multiprocessors
Mohammad Hammoud ∗, Sangyeun Cho, Rami Melhem
Department of Computer Science, University of Pittsburgh, United States

a r t i c l e i n f o

Article history:
Received 17 November 2009
Received in revised form
13 November 2010
Accepted 16 November 2010
Available online 14 December 2010

Keywords:
CMP
Shared scheme
Private scheme
Associative mapping
Fixed mapping
Tracking entries

a b s t r a c t

This paper describes Constrained Associative-Mapping-of-Tracking-Entries (C-AMTE), a scalable mecha-
nism to facilitate flexible and efficient distributed cache management in large-scale chip multiprocessors
(CMPs). C-AMTE enables fast locating of cache blocks in CMP cache schemes that employ one-to-one or
one-to-many associative mappings. C-AMTE stores in per-core data structures tracking entries to avoid
on-chip interconnect traffic outburst or long distance directory lookups. Simulation results using a full
system simulator demonstrate that C-AMTE achieves improvement in cache access latency by up to 34.4%,
close to that of a perfect location strategy.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Crossing the billion-transistor per chip barrier has had a
profound influence on the emergence of chip multiprocessors
(CMPs) as a mainstream architecture of choice. As CMPs’ realm
is continuously expanding, they must provide high and scalable
performance. One of the key challenges to obtaining high
performance from CMPs is the management of the limited on-
chip cache resources (typically the L2 cache) shared by multiple
executing threads/processes.

Economic, manufacturing, and physical design considerations
suggest tiled CMP architectures (e.g., Tilera’s Tile64 and Intel’s
Teraflops Research Chip) that co-locate distributed cores with
distributed cache banks in tiles communicating via a network
on-chip (NoC) [12]. A tile typically includes a core, private
L1 caches (I/D), and an L2 cache bank. A traditional practice,
referred to as the shared scheme, logically shares the physically
distributed L2 banks. On-chip access latencies differ depending on
the distances between requester cores and target banks creating a
Non Uniform Cache Architecture (NUCA) [15]. As an example, the
Intel CoreTM i7 processor introduces NUCA into its platform [22].
Another conventional practice referred to as the private scheme,
associates each L2 bank to a single core and provides no capacity
sharing among cores. Fig. 1 demonstrates the two designs. For

∗ Corresponding author.
E-mail address:mhh@cs.pitt.edu (M. Hammoud).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.11.009
simplicity we show only a dual-core tiled CMP architecture. In
addition, we assume a distributed directory protocol.

The private scheme replicates cache blocks at the L2 banks
of the requesting cores. Hence, an effective cache associativity
which equates the aggregate associativity of the L2 cache banks is
provided [5]. That is, a cache block canmap to any of the private L2
banks, and if shared amongst cores, can reside inmultiple L2 banks.
A high bandwidth on-chip directory protocol can be employed to
keep the multiple L2 banks coherent. The directory can be held
as a duplicate set of L2 tags distributed across tiles by the set
index [1,30]. We generally refer to a mapping process that exploits
the aggregate associativity of the L2 cache banks as an associative
mapping strategy. In particular, we designate themapping strategy
of the private scheme as one-to-many associative mapping because
a single block can be mapped to multiple L2 banks.

In contrast to the private design, the shared scheme maintains
the exclusiveness of cache blocks at the L2 level. A core maps
and locates a cache block, B, to and from a target L2 bank at a
tile referred to as the static home tile (SHT) of B. The SHT of B
is determined by a subset of bits denoted as home select bits (or
HS bits) from B’s physical address. As such, the shared strategy
requires maintaining coherence only at the L1 level. The SHT of B
can store B itself and a bit vector indicatingwhich cores had cached
copies of B in their L1 private caches. This on-chip coherence
practice is referred to as an in-cache coherence protocol [4,11,30].
In this work we refer to an entry that tracks copies (either at L1 or
L2) of a certain cache block as a tracking entry. We, furthermore,
identify a mapping process that maps an entry (block or tracking)

http://dx.doi.org/10.1016/j.jpdc.2010.11.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:mhh@cs.pitt.edu
http://dx.doi.org/10.1016/j.jpdc.2010.11.009


890 M. Hammoud et al. / J. Parallel Distrib. Comput. 71 (2011) 889–896
(a) Shared L2 design. (b) Private L2 design.

Fig. 1. Two traditional cache organizations. (a) The shared L2 design backs up all the L1 caches. (b) The private L2 design backs up only the private L1 cache on each tile.
(Dir stands for directory and R for router.)
to a fixed tile as a fixed mapping strategy (e.g., the shared design
employs fixed mapping).

Recent research work on CMP cache management has recog-
nized the importance of the shared scheme [24,11,10,13,26,14].
Besides, many of today’s multi-core processors, the Intel CoreTM2
Duo processor family [20], Sun Niagara [16], and IBM Power5 [23],
have featured shared caches. A shared design, however, suffers
fromagrowing on-chip delay problem.Access latencies to L2 banks
are non-uniform and proportional to the distances between re-
quester cores and target banks. This drawback is referred to as the
NUCA problem.

To mitigate the NUCA problem, many proposals have extended
the nominal basic shared design to allow associative mapping
(i.e., leveraging the aggregate associativity of the L2 cache
banks). For instance, block migration [2,10,13,14,29] exploits
associative mapping by moving frequently accessed blocks closer
to requesting cores. We denote such a strategy as one-to-one
associative mapping due to the fact that the exclusiveness of cache
blocks at the L2 level is still preserved (only a single copy of a block
is promoted along identical sets over different banks). In contrast
to migration, replication duplicates cache blocks at different L2
banks [7,5,30]. Accordingly, a replication scheme is said to adopt
one-to-many associativemapping.

A major shortcoming of using associative mapping for blocks in
any CMP cache management scheme is the location process. For
example, a migration scheme that promotes a cache block B to a
tile different than its home tile, denoted as the current host of B,
cannot use the HS bits of B’s physical address to locate B anymore.
Consequently, different strategies for the location process need
to be considered. A tracking entry can always be retained at a
centralized directory or at B’s home tile (if the underlying directory
protocol is distributed) to enable tracking B after promotion.
Hence, if a core requests B, the repository of the tracking entries is
reached first then the query is forwarded to B’s host tile to satisfy
the request. The disadvantage of this option is the arousal of 3-way
cache-to-cache transfers which can degrade the average L2 access
latency. An alternative location strategy could be to broadcast
queries to all the tiles assuming no tracking entry for B is kept at a
specific repository. Such a strategy can, however, burden the NoC
and potentially degrade the overall system performance.

This paper proposes Constrained Associative-Mapping-of-
Tracking-Entries (C-AMTE), a mechanism that flexibly accelerates
cache management in CMPs. In particular, C-AMTE presents con-
strained associative mapping that combines the effectiveness of
both, the associative and fixedmapping strategies and applies that
to tracking entries to resolve the challenge of locating cache blocks
without broadcasting and with minimal 3-way communications.

To summarize, the contributions of C-AMTE are as follows:
• It enables fast location of cache blocks without swamping the

NoC.
• It can be applied whenever associative mapping is used for

cache blocks, either in case of one-to-one (i.e., migration) or
one-to-many (i.e., replication).
• It can be generally applied to cache organizations that extend
the conventional private or shared schemes. Furthermore, it
opens opportunities for architects to propose more creative
cache management designs with no necessity to stick to either
private or shared traditional paradigms.

The rest of the paper is organized as follows. Section 2 presents
some recent CMP cachemanagement schemes. The C-AMTEmech-
anism is detailed in Section 3. In Section 4we evaluate C-AMTE, and
we conclude in Section 5.

2. Related work

Much work has been done to effectively manage CMP caches.
Many proposals advocate CMP cache management at either fine
(block) or coarse (page) granularities and base their work on either
the nominal shared or private schemes. We briefly discuss below
some of the prior work and describe the location process that each
proposal employs. We note that C-AMTE is not an independent CMP
scheme that can be run by itself, but yet a locationmechanism that can
be applied to CMP designs that employ one-to-one or one-to-many
associative mapping.

Beckmann and Wood [2] and Huh et al. [13] studied genera-
tional promotion and suggested Dynamic NUCA (DNUCA) that mi-
grates blocks towards banks close to requesting processors. To
locate migratory blocks, [13] adopts sending concurrent queries to
L2 banks. To reduce the number of queries sent over the NoC, [2]
staggers the location process by searching L2 banks sequentially in
an increasing order of their distances from the requester cores.

Guz et al. [10] presented a new architecture that utilizes
migration to divert only shared data to cache banks at the
center of the chip close to all the cores. To locate migratory
blocks, sequential, hybrid (between sequential and broadcast), and
sequentialwith predictor policies have been scrutinized. Kandemir
et al. [14] proposed a mechanism that determines a suitable
location for a data block, B, within the shared L2 space at any given
point during execution and then migrates B to that suitable place.
To locate B, a multistep checking scheme was employed.

Zhang and Asanović [29] examined direct promotion (upon
first touch) and proposed Victim Migration that migrates a cache
block, B, from its home tile to the initial requester tile. A victim
migration (VM) table per tile was suggested to keep track of the
locations of migratory blocks. Specifically, a migration tag for B
is kept in the VM table at B’s home tile to point to the current
host of B. Later if a sharer core S reaches the home tile of B and
fails to find a matching tag in the regular L2 tag array but hits in
the associated VM table, the current host of B, pointed out by the
matched migration tag, satisfies the request using a 3-way cache-
to-cache transfer. Clearly, VictimMigration fails to exploit distance
locality. That is, the request of a sharer core Smight incur significant
latency to locate B (due to approaching B’s home tile), though B
might reside in close proximity to S.



M. Hammoud et al. / J. Parallel Distrib. Comput. 71 (2011) 889–896 891
Table 1
Mapping strategies of private and shared CMP caches and the hybrid mapping approach of C-AMTE.

Block mapping Tracking entries mapping

Private scheme (P) Associative (at requesting tiles) Fixed (at home tiles)
Shared scheme (S) Fixed (at home tiles) Fixed (at home tiles)
Scheme with
C-AMTE

Associative (one-to-one or one-to-many depending on the
underlying cache scheme)

Constrained = Fixed (at home tiles) + Associative (at requesting tiles)
Marty and Hill [18] proposed imposing a two-level virtual
coherence hierarchy on a physically flat CMP that harmonizes
with virtual machines (VMs) assignments. A key challenge for an
intra-VM protocol is to find the home tile of a requested block.
For an intra-VM, the home tile is a function of two properties:
which tiles belong to a VM and how many tiles belong to a VM.
Awkwardly, a dynamic VM reassignment can change both. As such,
they suggest co-locating caches with tables within tiles. A table
must be looked up before amiss leaves a tile. Each table includes 64
six-bit entries indexed by the six least-significant bits of the block
number. Tables would be set by a hypervisor (or OS) at a VM (or
process) reassignment.

Hammoud et al. [11] proposed an adaptive controlledmigration
(ACM) scheme that relies on prediction to collect accessibility
information regarding cores that accessed a block B in the past,
and then assuming that each of these cores will access B again in
the future, dynamically migrates B to a bank that minimizes the
overall network hops needed. To locate cache blocks, the cache-
the-cache-tag (CTCT) location policy has been suggested. CTCT is a
specific version of the C-AMTEmechanism and had been presented
in [11] specifically to perform blocks’ locations for ACM. This
paper generalizes CTCT (now C-AMTE) to enable fast locating of
cache blocks in CMP cache schemes that adopt one-to-one (i.e.,
migration) or one-to-many (i.e., replication) associative mappings.

Cho and Jin [8] proposed an OS-based page allocation algorithm
applicable to NUCA architectures. Cache blocks are mapped and
located to L2 banks using interleaving on page frame numbers.
Chaudhuri [6] suggested PageNUCAwhich employs datamigration
at page granularity. Hardvellas et al. [12] presented R-NUCA that
relies on the OS to classify cache accesses into either private,
shared, or instructions and then places and locates each differently
at the L2 cache space. Both, PageNUCA and R-NUCA adopt direct
location strategies similar to C-AMTE. In Section 3.5 we detail the
two schemes and compare and contrast them versus C-AMTE.

Lastly, many researchers explored data replication instead of
migration to mitigate the NUCA latency problem. Zhang and
Asanović [30] proposed a victim replication (VR) scheme based on
the nominal shareddesign. VR keeps replicas of local primary cache
victims within only the local L2 cache banks. As such, the location
process becomes straightforward: local L2 banks are looked up
(seeking replica hits) before potentially checking with blocks’
home tiles. However, many other cache schemes do not limit
themselves to replicating blocks at only local L2 banks. Chang and
Sohi [5] proposed cooperative caching based on the private scheme,
and created a globally managed shared aggregate on-chip cache.
Chisti et al. [7] proposed CMP-NuRAPID that controls replication
based on usage patterns. Both, [5,7] utilize 3-way cache-to-cache
transfers to satisfy L2 requests upon misses at local L2 banks.

3. The proposed mechanism

3.1. Description of the mechanism

Constrained Associative-Mapping-of-Tracking-Entries (C-
AMTE) is not an autonomous CMP cache organization that can run
by itself but rather a mechanism that can be applied to CMP cache
designs that employ one-to-one (i.e., migration) or one-to-many
(i.e., replication) associativemappings. A sharedNUCAarchitecture
maps and locates a cache block, B, to and from a home tile deter-
mined by a subset of bits (home select or HS bits) from B’s physical
address. Accordingly, B might be mapped to a bank far away from
the requester core, causing the core significant latency to locate
B. Such a problem is referred to as the NUCA problem. Migration
and replication have been suggested as techniques to alleviate the
NUCA problem. To save latency on subsequent requests to B, mi-
gration and replication relocate and replicate, respectively B at a
tile different than its home tile, denoted as the host tile of B, closer
to requesting cores. Consequently, B can have, in addition to the
home tile, one or more host tiles. To locate B at a host tile, the HS
bits of B’s physical address cannot be used anymore. C-AMTE offers
a robust and versatile location strategy to locate B at host tiles.

Assuming a distributed directory protocol, C-AMTE supports
storing one tracking entry corresponding to a block B at the home
tile of B. We refer to this tracking entry as the principal tracking
entry. The principal tracking entry points to B and can always be
checked by any requester core to locate B at its current host. The
principal tracking entry is stored using a fixed mapping strategy
because the home tile of B is designated by the HS bits of B’s
physical address. C-AMTE also supports storing another type of
tracking entry for B at requester tiles. We refer to these type of
tracking entries as replicated tracking entries. A replicated tracking
entry at a requester tile also points to the current host of B but
can be rapidly checked by a requester core to directly locate B
(instead of checking with B’s home tile to achieve that). The idea
of replicating tracking entries at requester tiles capitalizes on the
one-to-many associative mapping strategy traditionally applied
for cache blocks. C-AMTE combines associative and fixed mapping
strategies and applies that to tracking entries in order to efficiently
solve the location problem. Table 1 illustrates the hybrid approach
adopted by the C-AMTE mechanism. We refer to such a hybrid
mapping process as a constrained associative mapping strategy.

Based on the above discussion, per tile, T, a principal tracking
entry is kept for each cache block B whose home tile is T but
has been mapped/promoted to another tile. Besides, replicated
tracking entries are retained at T to track the locations of other
corresponding cache blocks that have been recently accessed by
T but whose home tile is not T. Though both, principal and
tracking entries essentially act as pointers to the current hosts of
cache blocks, we differentiate between them for consistency and
replacement purposes (more on this shortly). We can add two
distinct data structures per each tile to store the two types of
the tracking entries. A data structure, referred to as the principal
tracking entries (PTR) table, can hold principal tracking entries, and
a data structure, referred to as the replicated tracking entries (RTR)
table, can hold replicated ones. Alternatively, a single table, could
be referred to as the tracking entries (TR) table, can be added to
hold both classes of tracking entries pertaining that a hardware
extension (i.e., an indicative bit) is engaged to distinguish between
the two entries.

Assume a CMP organizationwith PTR and RTR tables.Whenever
a core issues a request to a block B, its RTR table is checked first
for a matching replicated tracking entry. C-AMTE then proceeds as
follows:
• On a miss at the RTR table, the home tile of B is reached and its

PTR table is looked up.
– If a miss occurs at the PTR table, B is fetched from the main

memory and mapped to a tile T specified by the underlying



892 M. Hammoud et al. / J. Parallel Distrib. Comput. 71 (2011) 889–896
a b

Fig. 2. A first example on locating a migratory block B using the C-AMTE mechanism.
cache scheme protocol. If T is not B’s home tile, principal
and replicated tracking entries are stored at the PTR table
of B’s home tile and the RTR table of the requester core,
respectively. If, on the contrary, T is B’s home tile, no tracking
entries are kept at either the PTR or RTR tables (B can be
located directly using the HS bits of B’s physical address).

– If, on the other hand, a hit occurs at the PTR table, B is located
at its current host tile and a replicated tracking entry is stored
at the requesters RTR table.

• On a hit at the RTR table, B is located directly at its current host
designated by the matched replicated tracking entry.

Therefore, upon a hit to the requesters RTR table, a 3-way cache-
to-cache transfer, which would have been incurred if we had to
approach B’s home tile to locate B, is avoided. A similar logic applies
if C-AMTE assumes a single TR table instead of two distinct PTR and
RTR ones.

3.2. Illustrative examples

Fig. 2 demonstrates an example of the C-AMTE mechanism on
a tiled CMP platform, assuming an underlying shared scheme and
a migration policy that promotes cache blocks towards requesting
cores. Fig. 2(a) shows a request made by core 3 to a cache block, B.
Core 3 looks up its local RTR table.We assume amiss occurs and the
request is subsequently forwarded to B’s home tile, T12. The PTR
table and the regular L2 bank at T12 are looked up concurrently.
We assume misses occur at both. Consequently, B is fetched from
the main memory and mapped to B’s home tile, T12 (following
the mapping strategy of the nominal shared scheme). As such, no
tracking entries are retained at either PTR or RTR tables. Fig. 2(b)
shows a subsequent request made by core 3 to B. B is located at its
home tile, T12. Assume after that hit, B ismigrated to T11 (closer to
T3). Thus, corresponding principal and replicated tracking entries
are stored at T12 and T3, respectively. If at any later time core 3
requests B again, a hitwill occur at its RTR table (as long as the entry
has not been replaced yet) and B can be located straightforwardly
at T11 avoiding thereby 3-way cache-to-cache transfers. Lastly,
note that if any other core requests B, T12 can always indirectly
satisfy the request and a corresponding tracking entry can be
stored at the new requesters RTR table.

Fig. 3 demonstrates C-AMTE in operation assuming a cache
scheme that might map cache blocks to tiles different than their
home tiles. Fig. 3(a) shows a requestmadeby core 3 to a cache block
B. Core 3 looks up its local RTR table. We assume a miss occurs and
the request is subsequently forwarded to B’s home tile, T12. The
PTR table and the regular L2 bank at T12 are looked up concurrently
and misses are then incurred. Consequently, B is fetched from the
main memory and mapped to T15 (determined by the mapping
strategy of the cache scheme). As such, principal and replicated
tracking entries are kept at T12 and T3, respectively. Fig. 3(b) shows
a request made again by core 3 to B. A hit occurs at T3’s RTR
table. Consequently, B is directly located at T15. Clearly, the two
examples shown in Figs. 2 and3 reveal the efficiency and versatility
of C-AMTE as a strategy that exploits distance locality. C-AMTE, in
fact, opens opportunities for architects to propose creative block
migration, replication, and placement CMP strategies with the
required location process being on-hand.

3.3. Maintenance and coherence of the tracking entries

The principal and replicated tracking entries need to be kept
coherent. We accomplish this by embedding a bit vector with
each principal tracking entry at the PTR tables to indicate which
cores had cached related replicated tracking entries at their RTR
tables (much similar to the in-cache coherence protocol in [4]).
For instance, given the example depicted in Fig. 2, each time B
is migrated to a different tile, the principal and the replicated
tracking entries that correspond to B are updated to point to the
new host of B. Besides, C-AMTE can easily preclude potential false
misses that can occur when L2 requests fail to hit on cache blocks
because they are in transit between L2 banks.Whenmigration is to
be performed, a copy, B’, of the cache block B is kept at the current
bank so as if an L2 request arriveswhile B is in transit, the request is
immediately satisfiedwithout incurring any delay.WhenB reaches
the new host, an acknowledgement message is sent back to the
old host to discard B’. The old host keeps track of any tile that
accesses B’, and when receiving the acknowledgment message,
sends an update message to the new host to indicate the new
sharers that requested B while it was in transit. The directory state
entry of B is consecutively updated. Clearly, enforcing coherence
among tracking entries and precluding false misses impose traffic
overhead on the network on-chip. Section 4.2 demonstrates the
increase in message hops per 1 K instructions incurred by the C-
AMTE mechanism.

Finally, PTR and RTR tables can employ the LRU replacement
policy. However, in case of a single TR table, it is wise to never
evict a principal tracking entry in favor of a replicated one (this
is the reason of why we suggested distinguishing between the two
entries). An eviction of a principal tracking entry causes evictions
to the corresponding cache block and all the related replicated
tracking entries. Therefore, the TR replacement policy should
replace the following three classes of entries in an ascending
order: (1) an invalid entry, (2) an LRU replicated tracking entry,
and (3) an LRU principal tracking entry. Besides, upon storing a



M. Hammoud et al. / J. Parallel Distrib. Comput. 71 (2011) 889–896 893
a b

Fig. 3. A second example on locating a block B using the C-AMTE mechanism.
Fig. 4. Storage requirements of C-AMTE with a full-map bit vector (C-AMTE(Full)),
a compact vector with 1 bit for every 4 cores (C-AMTE(Comp4)), and a compact
vector with 1 bit for every 8 cores (C-AMTE(Comp8)).

replicated tracking entry, only the first two classes are considered
for replacement. If no entry belonging to one of these two classes
is detected, a replicated tracking entry is not retained.

3.4. Hardware cost and scalability

The storage overhead incurred by C-AMTE pertains to the usage
of principal and replicated tracking entries. As described earlier,
C-AMTE incurs at least one principal and one replicated tracking
entry per cache block, B, when placed at a tile different than its
static home tile. On the other hand, C-AMTE incurs at most N − 1
tracking entries (one principal and the rest are replicated) per B
with N being the number of tiles on the CMP platform. The worst
case scenario occurs only when B exhibits a sharing degree of N .
Assuming split tracking entry tables, each principal tracking entry
would include: (1) the tag of B (typically 22 bits), (2) a bit vector
that acts as a directory to keep the principal and the replicated
tracking entries coherent (e.g., 16 bits for a 16-tile CMP model),
and (3) an ID that points to the tile that is currently hosting B (e.g.,
4 bits for a 16-tile CMP model). On the other hand, a replicated
tracking entry includes only B’s tag and the ID to B’s current host
tile. In contrast, in case of a single TR table, both the principal
and the replicated tracking entries would each encompass a tag,
a bit vector, an ID, and an indicative bit to distinguish between the
two types of entries (required for replacement purposes). Clearly,
the bit vector added to each replicated entry becomes in this case
redundant. Thus, splitting the TR table into RTR and PTR might be
preferable for reducing storage overhead.

Assuming a 16-tile CMP where each tile encompasses 32 KB
I/D L1 caches and a 512 KB L2 cache bank and assume PTR and
RTR tables each with 8 K entries per tile, C-AMTE demonstrates a
12% increase of on-chip cache capacity. To illustrate how the area
overhead of C-AMTE scales, Fig. 4 shows the storage requirements
of C-AMTEunder 16-tile, 32-tile, 64-tile, 128-tile, 256-tile, 512-tile,
and 1024-tile platforms. The figure shows that C-AMTE with full-
map bit vector (one bit for every core) for each principal tracking
entry (C-AMTE(Full)) scales poorly especially after involving more
than 64 cores on a single chip. Clearly, what makes C-AMTE non-
scalable to a large number of tiles is the bit vector associated
with each principal tracking entry. C-AMTE, however, need not
incorporate full-map vectors. Similar to sparse directories [9] and
SGI Origin style design [17], C-AMTE can involve more compact
(coarse) vectors to improve upon the poor scalability at amoderate
bandwidth increase. For instance, a bit vector can contain one bit
for every four cores (C-AMTE(Comp4)), or one bit for every eight
cores (PDA(Comp8)) and rely on a broadcast or multicast protocol
to track replicated tracking entries.

3.5. Qualitative comparison with closely related designs

Twoof the closely related location strategies are those proposed
and utilized by PageNUCA [6] and R-NUCA [12]. Chaudhuri [6]
suggested PageNUCA which employs data migration at page
granularity. Access patterns of cores are dynamically monitored
and pages are migrated to banks that minimize the access time
for the sharing cores. To locate the migratory pages at the L2
space, each core maintains at the L1 level two tables (organized
exactly as TLBs) that map the original physical frame number
of an instruction or data page to the migrated frame number.
These tables are referred to as iL1Map and dL1Map, respectively.
Upon each L2 request, the appropriate table is looked up before
routing the request to the correct L2 bank. An entry in the
appropriate L1Map is loaded from another unified map table
(L2Map) maintained at the L2 level when the corresponding page
table entry is loaded in the TLB at the time of a TLB miss. On a
migration, the new physical frame number of a page is sent to the
sharing cores (with the help of a sharing vector maintained at a
table referred to as PACT) so that they can update their L1Map
tables appropriately.

Hardavellas et al. [12] proposed R-NUCA that also relies on
OS. R-NUCA classifies cache accesses to either private, shared,
or instructions. Private pages are placed at the local L2 banks
of the requesting cores, shared at fixed address-interleaved on-
chip locations, and instructions at non-overlapping fixed-center
clusters of L2 banks. R-NUCA extends page table and TLB entries
to distinguish between private and shared pages. A request to
L2 after a miss at the L1-I cache is immediately classified as an
instruction and a direct location is simply performed assuming a
fixed-center cluster centered at the requesting core. On the other
hand, a request to L2 after amiss at an L1-D cache is resolvedduring
the virtual-to-physical translation. The corresponding TLB (or page
table in case of a TLB miss) entry is examined to decide upon



894 M. Hammoud et al. / J. Parallel Distrib. Comput. 71 (2011) 889–896
Table 2
System parameters.

Component Parameter

Cache line size 64 B
L1 I/D-cache size/Associativity 16 KB each/2way
L1 read penalty (on hit per tile) 1 cycle
L1 replacement policy LRU

L2 cache size/Associativity 512 KB per L2 bank or 8 MB aggregate/16way
L2 bank access penalty 12 cycles
L2 replacement policy LRU

Latency per NoC hop 3 cycles
Memory latency 300 cycles
whether the requested page is private or shared. Subsequently, the
request is routed to either the local (if the page is private) or home
(if the page is shared) L2 bank.

Clearly, both R-NUCA and PageNUCA employ direct location
strategies similar to C-AMTE. However, two main things differen-
tiate C-AMTE from them. First, R-NUCA and PageNUCA are page-
granular schemes that involveOSwhile C-AMTE is a block-granular
strategy that is fully transparent and does not involve OS. Second,
R-NUCA and PageNUCA are not pure location strategies but rather
placement and migration designs, respectively. R-NUCA changes
the original mappings of blocks and PageNUCA migrates blocks
from their original home banks. As such, they both require ways
to locate the L2 cache blocks that do not reside anymore at their
home banks. Their suggested location strategies are specific to their
proposedmechanisms. In contrast, C-AMTE is a pure location strat-
egy that is general (i.e., not specific to any cache scheme). C-AMTE
enables any block-granular placement and migration schemes.

4. Quantitative evaluation

In this work we assume a baseline block-interleaved shared
CMP cache organization. We study C-AMTE with an implementa-
tion of the DNUCA scheme [13,2]. We employ DNUCA on our tiled
CMP architecture via allowing migration in vertical and horizontal
directions seeking to reduce hit latencies. Each cache block is aug-
mented by four 2-bit saturation counters in correspondence to the
four plausible ways: north, south, west, and east. Once a counter
saturates, its value is cleared and the block is migrated towards
the indicated direction (i.e., promoted up, down, left, or right one
tile upon the saturation of the north, south, west, or east counter,
respectively). To locate cache blocks aftermigration, C-AMTE is uti-
lized. We refer to this DNUCA implementation with C-AMTE being
incorporated as DNUCA(C-AMTE).

To demonstrate the potential performance gain from C-AMTE
we compare DNUCA(C-AMTE) against the baseline shared (S)
scheme and three other DNUCA implementations that are only
different in their location processes. First, we consider DNUCAwith
a broadcast location strategy. That is, queries to all tiles are sent
upon every L2 request to locate the required block. We denote
this implementation asDNUCA(B). Second, a 3-way cache-to-cache
transfer strategy is employed similar to the one in [29]. This
implementation is designated as DNUCA(3W). Lastly, we consider
DNUCAwith an ideal location strategy to set an upper bound for C-
AMTE and see how close it draws to a perfect approach. The ideal
strategy assumes that cores have oracle knowledge about the on-
chip residences of blocks. Hence, every L2 request is routed directly
to the correct L2 bank. We refer to such an implementation as
DNUCA(Ideal).

4.1. Methodology

We present our results based on a detailed full system
simulation using Virtutech’s Simics 3.0.29 [27]. We use our own
CMP cache modules fully developed in-house. We implement the
XY-routing algorithmandaccuratelymodel congestion for all types
ofmessages. A tiled CMP architecture comprised of 16 UltraSPARC-
III Cu processors is simulated running with Solaris 10 OS. Each
processor uses an in-order core model. The tiles are organized as
a 4 × 4 grid connected by a 2D mesh network on-chip (NoC). A 3-
cycle latency (in addition to the NoC congestion delay) per hop is
incurred when a datum traverses through the mesh network [30,
29]. Each tile encompasses a switch, an aggregate 32 KB I/D L1
cache, a 512 KB L2 cache bank, and a tracking table (TR) with
16 K entries. The latency to lookup a TR table is hidden under the
delay to enqueue the request in the port scheduler of the local
switch [6]. Lastly, for coherence enforcement at the L1 cache level,
a distributed in-cache MESI-based directory protocol is employed
(fully verified and tested). Table 2 details our configuration’s
experimental parameters.

We use a mixture of multithreaded and multiprogramming
workloads to study the five designs, S, DNUCA(B), DNUCA(3W),
DNUCA(C-AMTE), and DNUCA(Ideal). For multithreaded work-
loads we use the commercial benchmark SpecJBB [25], five shared
memory programs from the SPLASH-2 suite [28] (Ocean, Barnes,
Lu, Radix, and FFT), and three applications from the PARSEC
suite [3] (Bodytrack, Fluidanimate, and Swaptions). We com-
posed multiprogramming workloads using the above consid-
ered SPLASH-2 benchmarks and five other applications from
SPEC2006 [25] (Hmmer, Sphinx, Milc, Mcf, and Bzip2). Table 3
shows the data sets and other important features of the simulated
workloads. Lastly, the programs are fast forwarded to get past of
their initialization phases. After various warm-up periods, each
SPLASH-2 and PARSEC benchmark is run until the completion of
its main loop, and each of SpecJBB, MIX1, MIX2, MIX3, and MIX4 is
run for 20 billion user instructions.

4.2. Results

Fig. 5 demonstrates the average L2 access latency (AAL) of
S, DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal)
schemes normalized to S. The incurred latency per L2 access is
defined depending on three scenarios. First, it can involve only
the L2 access time. This happens when a hit occurs to a local L2
bank from a requesting core. Second, it can incorporate distance
latency (computed in terms of the number of hops traversed
between the requester and the target tiles and the observed NoC
congestion delay) and the L2 access time. This occurs upon a hit
to a remote L2 bank. Third, it can involve memory latency because
of a miss on L2. DNUCA(C-AMTE) achieves AAL improvement over
S by an average of 18.4%, and by as much as 34.4% for Radix. This
makes DNUCA(C-AMTE) significantly close to DNUCA(Ideal) which
accomplishes, in contrast, an average AAL improvement of 23%.
DNUCA(C-AMTE) does not draw nearer to DNUCA(Ideal) because
of two main reasons: (1) misses to TR tables by requester cores
and (2) overhead to keep the principal and the replicated tracking
entries coherent after blocks’migrations. Consequently, DNUCA(C-
AMTE) generates a higher NoC trafficwhich causesmoreNoC delay
and, subsequently, inferior AAL accomplishment. Table 4shows the



M. Hammoud et al. / J. Parallel Distrib. Comput. 71 (2011) 889–896 895
Table 3
Benchmark programs.

Name Input

SPECJbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Ocean 514 × 514 grid (16 threads)
Barnes 32 K particles (16 threads)
Lu 2048 × 2048 matrix (16 threads)
Radix 3M integers (16 threads)
Bodytrack 4 frames and 1 K particles (16 threads)
Fluidanimate 5 frames and 300 K particles (16 threads)
Swaptions 64 swaptions and 20 K simulations (16 threads)
MIX1 Hmmer (reference) (16 copies)
MIX2 Sphinx (reference) (16 copies)

MIX3 Barnes, Ocean, Radix, Lu, Milc (ref), Mcf (ref)
Bzip2 (ref), and Hmmer (2 threads/copies each)

MIX4 Barnes, FFT (4M complex numbers), Lu, and Radix (4 threads each)
Table 4
Message-hops per 1 K instructions.

S DNUCA(B) DNUCA(3W) DNUCA(C-AMTE) DNUCA(Ideal)

SPECjbb 5.3 87.5 5.7 4.8 2.4
Ocean 2.5 35.8 3 3.1 2.4
Barnes 3.6 55.1 4.4 4 2.9
Radix 6.9 136.4 9.8 13.5 9.4
Lu 70 905.4 78.3 76 70.5
Swaptions 4.8 64.3 6.6 7.2 3.2
Bodytrack 5.2 95 8.5 11.3 4.9
Fluidanimate 11.3 174.9 11.88 11.82 10.3
MIX1 35.5 573.8 37.3 37.6 27.4
MIX2 22.1 370.2 32.6 47 19
MIX3 11.6 168 16.4 14.9 10.3
MIX4 50.8 691.7 54.8 80 26
Fig. 5. Average L2 access latency of the baseline shared scheme (S), DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S (B = Broadcast, 3W = 3
Way).
number of message-hops per 1 K instructions experienced by all
the studied schemes for the examined benchmark programs. A
message-hop is defined as one message travelling one hop on a
router in the 2D mesh NoC.

As shown in Fig. 5, DNUCA(B) and DNUCA(3W) provide AAL
improvements over S by averages of 9.4% and 3.6%, respectively.
DNUCA(B) is similar to DNUCA(Ideal) in that it offers a direct
locations for cache blocks. However, DNUCA(B) profoundly out-
bursts the NoC with superfluous queries. This causes more NoC
delay which translates to a lower AAL improvement. Two fac-
tors determine the eligibility of an application to accomplish a
higher or a lower AAL under DNUCA(B): (1) the gain, G, out of
direct locations to cache blocks and (2) the loss, L, from conges-
tion delay. When L is offset by G, DNUCA(B) improves AAL (e.g.,
SpecJBB), otherwise, a degradation over S is observed (e.g., Ocean).
DNUCA(3W), on the other hand, fails to exploit distance locality
and is expected, accordingly, not to surpass S. Nonetheless, most of
the applications experience AAL improvement under DNUCA(3W)
(SpecJBB, Barnes, Radix, Lu, Fluidanimate, MIX1, MIX3, MIX4). This
improvement comes, in fact, from the fewer off-chip accesses at-
tained by DNUCA. Computer programs exhibit large asymmetry in
cache sets’ usages [21,19]. DNUCA inadvertently equalizes the non-
uniformity across cache sets via the employment of the one-to-one
associative mapping.

To that end, Fig. 6 presents the execution times of S, DNUCA(B),
DNUCA(3W), DNUCA(C-AMTE), andDNUCA(Ideal) normalized to S.
Across all benchmarks, DNUCA(B), DNUCA(3W), DNUCA(C-AMTE),
and DNUCA(Ideal) outperform S by averages of 1.4%, 2.6%, 6.7%,
and 8%, respectively. Though DNUCA(B) accomplished 9% and 9.2%
AAL reductions over S for Barnes and Radix respectively, this did
not effectively translate to an improvement in the overall system
performance.

5. Concluding remarks and remaining work

Cache management in CMP is crucial to fuel its performance
growth. This paper proposes C-AMTE, amechanism that effectively
simplifies the process of locating cache blocks in CMP caching
schemes that employ either one-to-one or one-to-many associa-
tive mappings. C-AMTE stores tracking entries that correspond to
cache blocks at per-core data structures for direct locations at sub-
sequent accesses. We demonstrated the effectiveness of C-AMTE



896 M. Hammoud et al. / J. Parallel Distrib. Comput. 71 (2011) 889–896
Fig. 6. Execution times of the baseline shared scheme (S), DNUCA(B), DNUCA(3W), DNUCA(C-AMTE), and DNUCA(Ideal) normalized to S (B = Broadcast, 3W = 3 Way).
by applying it to theDNUCA [2,13]migration scheme (i.e., a scheme
that adopts one-to-one associative mapping). A performance im-
provement of up to 25.2% has been achieved, close to that of a per-
fect location strategy.

Lastly, having established the effectiveness of C-AMTE, opti-
mizations to reduce hardware cost, a sensitivity study to different
RT table sizes (or alternatively RTR and PTR tables), alternatives on
evicting principal tracking entries, protocols on replacing blocks,
and applying C-AMTE tomore CMP caching schemes, specifically to
schemes that incorporate one-to-many associative mapping (e.g.,
replication schemes), are among the obvious future directions.

References

[1] L. Barroso, et al. Piranha: a scalable architecture based on single-chip
multiprocessing, in: ISCA, May 2000.

[2] B.M. Beckmann, D.A.Wood, Managingwire delay in large chip-multiprocessor
caches, Micro (2004).

[3] C.M. Bienia, S. Kumar, J.P. Singh, K. Li, The PARSEC benchmark suite:
characterization and architectural implications, PACT, October 2008.

[4] L. Censier, P. Feautrier, A new solution to coherence problems in multicache
systems, IEEE Trans. Comput. C-27 (12) (1978) 1112–1118.

[5] J. Chang, G.S. Sohi, Cooperative caching for chipmultiprocessors, in: ISCA, June
2006.

[6] M. Chaudhuri, PageNUCA: selected policies for page-grain locality man-
agement in large shared chip-multiprocessor caches, HPCA, February 2009,
pp. 227–238.

[7] Z. Chishti, M.D. Powell, T.N. Vijaykumar, Optimizing replication, communica-
tion, and capacity allocation in CMPs, in: ISCA, June 2005.

[8] S. Cho, L. Jin, Managing distributed shared L2 caches through OS-level page
allocation, Micro (2006).

[9] A. Gupta, W.D. Weber, T. Mowry, Reducing memory and traffic requirements
for scalable directory-based cache coherence schemes, in: Int’l Conference on
Parallel Processing, August 1990.

[10] Z. Guz, I. Keidar, A. Kolodny, U.C. Weiser, Utilizing shared data in chip
multiprocessors. With the Nahalal architecture, in: SPAA, June 2008.

[11] M. Hammoud, S. Cho, R. Melhem, ACM: an efficient approach for managing
shared caches in chipmultiprocessors, in: HiPEAC, January 2009, pp. 319–330.

[12] N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki, Reactive NUCA: near-
optimal block placement and replication in distributed caches, in: ISCA, June
2009.

[13] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, S.W. Keckler, A NUCA substrate for
flexible CMP cache sharing, in: ICS, June 2005.

[14] M. Kandemir, F. Li, M.J. Irwin, S.W. Son, A novel migration-based NUCA design
for chip multiprocessors, SC, November 2008.

[15] C. Kim, D. Burger, S.W. Keckler, An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches, in: ASPLOS, October 2002, pp. 211–222.

[16] P. Kongetira, K. Aingaran, K. Olukotun,Niagara: a 32-waymultithreaded SPARC
processor, IEEE Micro 25 (2) (2005) 21–29.

[17] J. Laudon, D. Lenoski, The SGI origin: a ccNUMAhighly scalable server, in: ISCA,
June 1997.

[18] M.R. Marty, M.D. Hill, Virtual hierarchies to support server consolidation,
in: ISCA, June 2007.

[19] M.K. Qureshi, D. Thompson, Y.N. Patt, The V-Way cache: demand-based
associativity via global replacement, in: ISCA, June 2005, pp. 544–555.

[20] Research at Intel, Introducing the 45 nm Next-Generation Intel Core r⃝

Microarchitecture, White Paper.
[21] D. Rolán, B.B. Fraguela, R. Doallo, Adaptive line placement with the set

balancing cache, Micro (2009) 529–540.
[22] K. Strandberg,Which OS? Considerations for performance-asymmetric, multi-

core platforms, Research at Intel, White Paper.
[23] B. Sinharoy, R.N. Kalla, J.M. Tendler, R.J. Eickemeyer, J.B. Joyner, POWER5
system microarchitecture, IBM J. Res. Dev. 49 (1) (2005) 25.

[24] S. Srikantaiah,M. Kandemir,M.J. Irwin, Adaptive set pinning:managing shared
caches in chip multiprocessors, in: ASPLOS, March 2008, pp. 135–144.

[25] Standard performance evaluation corporation. http://www.specbench.org.
[26] D. Tam, R. Azimi, L. Soares,M. Stumm,Managing shared L2 caches onmulticore

systems in software, in: WIOSCA, 2007.
[27] A.B. Virtutech, Simics full system simulator. http://www.simics.com/.
[28] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2 programs:

characterization and methodological considerations, in: ISCA, July 1995,
pp. 24–36.

[29] M. Zhang, K. Asanović, Victim migration: dynamically adapting between
private and shared CMP caches, TR-2005-064, MIT, October 2005.

[30] M. Zhang, K. Asanović, Victim replication: maximizing capacity while hiding
wire delay in tiled chip multiprocessors, in: ISCA, June 2005.

Mohammad Hammoud is a graduate student in the com-
puter science department at the University of Pittsburgh.
Currently he is working under the supervision of Profes-
sor Rami Melhem and Professor Sangyeun Cho. In June
2004 he received his bachelor degree in computer science
from the American University of Science and Technology
(AUST), Lebanon. After that he was enrolled as a full time
graduate student in the same school before transferring in
August 2005 to the University of Pittsburgh.

Sangyeun Cho received his B.S. in Computer Engineer-
ing from Seoul National University, Seoul, in 1994, and
his Ph.D. in Computer Science from the University of Min-
nesota, Minneapolis, in 2002.

From 1999 to 2004, he worked for Samsung Semi-
conductor, where he designed several generations of the
CalmRISC(TM) embedded processor core and their cache
memories. His research focus is in the area of computer ar-
chitecture, microprocessor design, and system-on-a-chip
(SOC).

Dr. Cho joined the Department of Computer Science at
the University of Pittsburgh in fall 2004.

Rami Melhem has received the following degrees: B.S.
(Electrical Engineering, 1976) from Cairo University; B.S.
(Mathematics, 1978) from Ein-Shams University, Cairo;
M.A. (Mathematics, 1981), M.S. (Computer Science, 1981),
and Ph.D. (Computer Science, 1983) from the University of
Pittsburgh.

He was Assistant Professor in the Department of Com-
puter Science at Purdue University 1984–87 (on leave
1985–87), and Visiting Professor in the Department of
Mathematics at the University of Pittsburgh 1985–86.

Since 1986 he has been on the faculty of the Depart-
ment of Computer Science at the University of Pittsburgh. He has published numer-
ous papers in the areas of systolic architectures, parallel computing, fault-tolerant
computing, and optical interconnection networks. He served on program commit-
tees for several conferences and is on the Editorial Board of IEEE Transactions on
Computers. He is a member of the IEEE Computer Society, the Association for Com-
puting Machinery, and the International Society for Optical Engineering.

His research interests include: parallel and distributed high-performance com-
puting, fault-tolerant computing, multiprocessor interconnection networks, real-
time systems and optical computing.

http://www.specbench.org
http://www.simics.com/

	C-AMTE: A location mechanism for flexible cache management in chip multiprocessors
	Introduction
	Related work
	The proposed mechanism
	Description of the mechanism
	Illustrative examples
	Maintenance and coherence of the tracking entries
	Hardware cost and scalability
	Qualitative comparison with closely related designs

	Quantitative evaluation
	Methodology
	Results

	Concluding remarks and remaining work
	References


