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ABSTRACT
This paper proposes DCC (Dynamic Cache Clustering), a
novel distributed cache management scheme for large-scale
chip multiprocessors. Using DCC, a per-core cache cluster
is comprised of a number of L2 cache banks and cache clus-
ters are constructed, expanded, and contracted dynamically
to match each core’s cache demand. The basic trade-offs
of varying the on-chip cache clusters are average L2 access
latency and L2 miss rate. DCC uniquely and efficiently op-
timizes both metrics and continuously tracks a near-optimal
cache organization from many possible configurations. Sim-
ulation results using a full-system simulator demonstrate
that DCC outperforms alternative L2 cache designs.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: System archi-
tectures

General Terms
Design, Management, Experimentation, Performance

Keywords
Chip Multiprocessor (CMP), Non-Uniform Cache Architec-
ture (NUCA)

1. INTRODUCTION
As the industry continues to shrink the size of transistors,

chip multiprocessors (CMPs) are increasingly becoming the
trend of computing platforms. IBM recently introduced the
Power6 processor with dual high performance cores each
supporting 2-way multithreading [18]. Niagara2 has been
released by Sun Microsystems with 8 SPARC cores each
supporting 8 hardware threads all on a single die [9]. This
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shift towards CMPs, however, presents new key challenges
to computer architects. One of these challenges is the de-
sign of an efficient memory hierarchy especially in light of
some conflicting requirements: the reduction of the average
L2 access latency (AAL) and the L2 miss rate (MR) [1].

Tiled CMP architectures have recently been advocated
as a scalable design [17]. They replicate identical build-
ing blocks (tiles) connected over a switched network on-chip
(NoC). A tile typically incorporates a private L1 cache and
an L2 cache bank. Traditional practices of CMP cache or-
ganizations are either shared or private. The shared strat-
egy implies that the on-chip cores share the physically dis-
tributed L2 banks. On the other hand, the private scheme
entails that each core has its own L2 bank. The degree of
sharing, or the number of cores that share a given pool of
cache banks, could also be set somewhere between the shared
and the private designs. The work in [8] explores five static
sharing degrees (1, 2, 4, 8, and 16) for caches in a 16-core
CMP. For instance, a sharing degree of 2 means that every
two CMP cores share their L2 cache banks.

One of the main advantages of the private scheme is the
proximity of data to requester cores. Each core maps and
locates the requested cache blocks to and from its corre-
sponding L2 cache bank. As such, cache blocks are typically
read very fast. However, if a per-core L2 bank is small rela-
tive to a working set size, many costly accesses could occur
either to the main memory or to some neighboring L2 banks.
Besides, shared data reduces the available on-chip cache ca-
pacity as each core replicates a copy at its L2 bank. This
could increase the L2 miss rate significantly, and if not offset
by replica hits, performance could potentially degrade.

Contrary to the private design, the shared scheme re-
sourcefully utilizes the available cache capacity by caching
only a single copy of a shared block at a tile, referred to
as the home tile of the block. However, the shared strategy
offers non-uniformity in L2 access latency. The latency to
access B at L2 essentially depends on the distance between
the requester core and B’s home tile. This model is referred
to as a Non Uniform Cache Architecture (NUCA) [8]. In
NUCA, cache blocks of a small working set running on a
core, may map far away from the core thereby deteriorating
the average L2 access latency and possibly degrading the
system performance.

In reality, computer applications exhibit different cache
demands. Furthermore, a single application may demon-
strate different phases corresponding to distinct code regions
invoked during its execution [15]. A program phase can be
characterized by different L2 cache misses and durations.



Figure 1: Cache demands are irregular among different applications and within the same application.

Fig. 1 illustrates the L2 misses per 1 million instructions
experienced by SPECJBB and BZIP2 from the SPEC2006
benchmark suite [20]. The two workloads were run sepa-
rately on a 16-tile CMP platform (details about the platform
and the utilized experimental parameters are described in
Sections 2 and 5). The behaviors of the two programs are
clearly different and demonstrate characteristically different
working set sizes and irregular execution phases.

The traditional private and shared designs are subject to
a principal deficiency. They both entail static partitioning
of the available cache capacity and don’t tolerate the vari-
ability among different working sets and phases of a working
set. For instance, a program phase with high cache demand
would require enough cache capacity to mitigate the effect
of high cache misses. On the other hand, a phase with less
cache demand would require smaller capacity to mitigate
the NoC communications. Static designs provide either fast
accesses or capacity but not both. A crucial step towards
designing an efficient memory hierarchy is to offer both fast
accesses and capacity.

This paper sheds light on the irregularity of working sets
and presents a novel dynamic cache clustering (DCC) scheme
that can synergistically react to programs’ behaviors and ju-
diciously adapt to their different working sets and varying
phases. DCC suggests a mechanism to monitor the behavior
of an executing program, and based upon its runtime cache
demand makes related architecture-adaptive decisions. The
tension between higher or lower cache demands is driven by
optimizing MR versus AAL metrics. Each core is initially
started up with an allotted cache resource, referred to as its
cache cluster. Subsequently, after every re-clustering point
on a time interval, the cache cluster is dynamically con-
tracted, expanded, or kept intact, depending on the cache
demand. The CMP cores cooperate to attain fast accesses
(i.e, better AAL) and efficient capacity usage (i.e, better
MR).

The paper makes the following contributions:

• We propose DCC, a hardware mechanism that detects
non-uniformity amongst working sets, or phases of a
working set, and provides a flexible and efficient cache
organization for CMPs.

• We introduce novel mapping and location strategies to
manage dynamically resizable cache configurations on
tiled CMPs.

• We demonstrate that DCC improves the average L1

Figure 2: The adopted CMP model (figure not to

scale). (a) 16-Core tiled CMP model. (b) The microar-

chitecture of a single tile. (c) Components of a cache

block physical address (HS = Home Select).

miss time by as much as 21.3% (10% execution time)
versus previous static designs.

The rest of the paper is organized as follows. Section 2
presents the baseline architecture. A brief background on
some of the fixed cache designs is given in Section 3. Sec-
tion 4 delves into the proposed DCC scheme. We evaluate
DCC in Section 5. Section 6 recapitulates some related work,
and conclusions and future directions are given in Section 7.

2. BASELINE ARCHITECTURE
This paper assumes a 2D 16-tile CMP model as portrayed

in Fig. 2(a). There are two main advantages to the tiled
CMP architecture: They scale well to larger processor counts
and can easily support families of products with varying
number of tiles, including the option of connecting multi-
ple separately tested and speed-binned dies within a single
package [24]. The CMP model employs a 2D mesh switched
network, and replicated tiles are connected to one another
via the network and per-tile routers. Each tile includes a
core, a private L1 cache, and an L2 cache bank as shown in
Fig. 2(b). Besides, a directory table (Dir) is used to main-
tain the L1 coherence in case of shared L2, and to keep the
coherence of both L1 and L2 in case of private L2. The
model introduces a NUCA design. An access to an L2 bank
on another tile traverses the NoC fabric and experiences
varying latencies depending on the NoC congestion and the



Manhattan distance between the requester and the target
tiles. The dimension-ordered (XY) routing algorithm [13] is
employed where packets are first routed in the X and then
the Y directions.

3. BACKGROUND

3.1 Fixed Cache Schemes
The physically distributed L2 cache banks of a tiled CMP

can be organized in different ways. At one extreme, each
L2 bank can be made private to its associated core. This
corresponds to contracting a traditional multi-chip multi-
processor onto a single die. At the other extreme, all the
L2 banks can be aggregated to form one logically shared L2
cache (shared scheme). Alternatively, the L2 cache banks
can be organized at any point in between private and shared.
More precisely, [8] defines the concept of sharing degree (SD)
as the number of processors that share a pool of L2 cache
banks. In this terminology, an SD of 1 means that each core
maps and locates the requested cache blocks to and from
its corresponding L2 bank (private scheme). An SD of 16,
on the other hand, means that each of the 16 cores shares
with all other cores the 16 L2 banks (shared scheme). Sim-
ilarly, an SD of 2 means that 2 of the cores share their L2
banks. Fig. 3 demonstrates five sharing schemes with differ-
ent sharing degrees (SD= 1, 2, 4, 8, and 16) as implied by
our 16-tile CMP model. We refer to these sharing schemes as
Fixed Schemes (FS) to distinguish them from our proposed
dynamic cache clustering (DCC) scheme.

3.2 Fixed Mapping and Location Strategies
At an L2 miss, a cache block, B, is fetched from main

memory and mapped to an L2 cache bank. A subset of bits
from the physical address of B, denoted as the home select
(HS) bits (see Fig. 2(c)), can be utilized and adjusted to
map B as required to any of the shared regions of the afore-
mentioned fixed schemes. If B is a shared block, it might be
mapped to multiple shared regions. However, as the shar-
ing degree (SD) increases, the likelihood that a shared block
maps within the same shared cache region increases. As
such, FS16 maps each shared block to only one L2 bank.
We identify the tile at which B is mapped to, as a dynamic
home tile (DHT) of B. For any of the above defined fixed
schemes, the utilized HS bits depend on SD. Furthermore,
the function that uses the HS bits of B’s physical address to
designate the DHT of B can be used to subsequently locate
B.

3.3 Coherence Maintenance
The fixed scheme FS16 maintains the exclusiveness of

shared cache blocks at the L2 level. Thus, FS16 requires
maintaining coherence only at the L1 level. However, for the
other fixed schemes with lower SDs, each L2 shared region
might include a copy of a shared block. This, consequently,
requires maintaining coherence at both, the L1 and the L2
levels. To achieve such an objective, two options can be em-
ployed: a centralized and a distributed directory protocols.
The work in [8] suggests maintaining the L1 cache coherence
by augmenting directory status vectors in the L2 tag arrays.
A directory status vector associated with a cache block, B,
designates the copies of B at the private L1 caches. For
the L2 cache coherence, [8] utilizes a centralized engine. A

centralized coherence protocol is deemed non-scalable espe-
cially with the advent of medium-to-large scale CMPs and
the projected industrial plans [17]. A high-bandwidth dis-
tributed on-chip directory can be adopted to accomplish the
task [17, 25].

By employing a distributed directory protocol, directory
information can be decoupled from cache blocks. A cache
block B can be mapped to its DHT, specified by the un-
derlying cache organization. On the other hand, directory
information that corresponds to B can be mapped indepen-
dently to a potentially different tile, referred to as the static
home tile (SHT) of B. The SHT of B is typically determined
by the home select (HS) bits of B’s physical address (see Fig.
2(c))1. For the adopted 16-tile mesh-based CMP model, a
duplicate tag embedded with a 32-bit directory status vector
can represent the directory information of B. For each tile,
one bit in the status vector indicates a copy of B at its L1,
and another bit indicates a copy at its L2 bank. To reduce
off-chip accesses, Dir (see Fig. 2(b)) can always be checked
by any requester core to locate B at its current DHT, using
3-way cache-to-cache transfers.

4. DYNAMIC CACHE CLUSTERING (DCC)
This section begins by analytically analyzing the major

metrics that are involved in managing caches in CMPs, then
moves to define the problem on-hand, and finally describes
the proposed DCC scheme.

4.1 Average Memory Access Time (AMAT)
Given the 2D mesh topology and the dimension-ordered

XY routing algorithm being employed by our CMP model,
upon an L1 miss, the L2 access latency can be defined in
terms of the congestion delay, the number of network hops
traversed to satisfy the request, and the L2 bank access time.
The basic trade-offs of varying the sharing degree of a cache
configuration are the average L2 access latency (AAL) and
the L2 miss rate (MR). The average L2 access latency in-
creases strictly with the sharing degree. That is, as the
sharing degree increases, the Manhattan distance between a
requester core and a DHT tile also increases. The L2 miss
rate, on the other hand, is inversely proportional to the shar-
ing degree. As the sharing degree decreases, shared cache
blocks occupy more cache capacity and potentially cause the
L2 miss rate to increase. Thus AAL and MR are in fact two
conflicting metrics.

Besides, an improvement in AAL doesn’t necessarily cor-
relate to an improvement in the overall system performance.
If the sharing degree, for instance, is decreased to a level
that doesn’t satisfy the cache demand of a running process,
then MR can significantly increase. This would cause per-
formance degradation if the cache configuration fails to off-
set the incurred latency of the larger MR from the saved
latency of the smaller AAL. Equation (1) defines a met-
ric, referred to as the average L1 miss time (AMTL1), that
combines both AAL and MR. The Average Memory Access
Time (AMAT) metric defined in equation (2) combines all
the main factors of system performance. An improvement in
AMAT typically translates into an improvement in system
performance. However, as L1 caches are kept private and
have fixed access time, an improvement in the AMTL1 met-

1The SHT and the DHT of a cache block are identical for the
maximum sharing degree (Max SD = 16 for 16-tile CMP)



Figure 3: Fixed Schemes (FS) with different sharing degrees (SD). (a) FS1 (b) FS2 (c) FS4 (d) FS8 (e) FS16

Figure 4: A possible cache clustering configuration

that the DCC scheme can select dynamically at run-

time.

ric also typically translates into an improvement in system
performance.

AMTL1 = AALL2 + MissRateL2 × MissPenaltyL2 (1)

AMAT = (1 − MissRateL1) × HitTimeL1 + MissRateL1 ×

AMTL1 (2)

4.2 The proposed Scheme
This paper suggests a cache design that can dynamically

tune the AAL and MR metrics with the objective of provid-
ing a good system performance. Let us denote the L2 cache
banks that a specific CMP core, i, can map cache blocks to,
and consequently locate them from, as the cache cluster of
core i. Let us further denote the number of banks that the
cache cluster of core i consists of as cache cluster dimension
of core i (CDi). In a 16-tile CMP, the value of CDi can be 1,
2, 4, 8, and 16, thus generating cache clusters encompassing
1, 2, 4, 8, or 16 L2 banks, respectively. We seek to improve
system performance by allowing cache clusters to indepen-
dently expand or contract depending on cache demands of
the working sets. We note that, for a certain working set,
even the best performing of the 5 static cache designs (FS1,
FS2, FS4, FS8, and FS16) could fail to hit optimal system
performance. This is due to the fact that all CMP cores in
these designs have the same sharing degree SDi equal to ei-
ther 1, 2, 4, 8, or 16. That is, two cores can’t have different
cluster dimensions. A possible optimal configuration (cache
clustering) at a certain runtime point could be similar to
the one shown in Fig. 4 or to any other eligible cache clus-

tering configuration. A key feature of our DCC scheme is
that it synergistically selects at run time a cache cluster for
a core i that appears optimal to the currently undergoing
cache demand of a program running on top of i. As such,
DCC keeps seeking a just-in-time (JIT) near optimal cache
clustering organization from amongst all the possible con-
figurations. To the best of our knowledge, this is the first
proposal to suggest such a fine-grained caching solution for
the CMP cache management problem.

Given N executing processes (threads) on a CMP plat-
form, we define the problem on-hand as the one of deciding
the best cache cluster for each single core to minimize the
overall AMAT of the N running processes. Let CCi de-
note the current cache cluster of the i-th core, and AMATi

denote the Average Memory Access Time produced by a
thread running on the i-th core. CCi is allowed to be dy-
namically resized. Let the time at which CCi is checked for
an eligibility to be resized be referred to as a potential re-
clustering point of CCi. A potential re-clustering point oc-
curs every fixed period of time, T. Although we use a 16-tile
CMP model in this paper, in general, the cache clustering of
n CMP cores over a period time T can be represented by the
set {CC0, . . . CCi, . . . CCn−1}. An optimal cache clustering
for a CMP platform would minimize the following expres-
sion:

Total AMAT over time period T = Σn−1

i=0
AMATi

4.3 DCC Mapping Strategy
Varying the cache cluster dimension (CD) of each core

over time, via expansions and contractions, would require a
function to map cache blocks to cache clusters exactly as re-
quired. We propose a function that can efficiently fulfill this
objective for n = 16, however, that function can be easily
extended to any n that is a power of 2. Furthermore, appro-
priate functions can be obtained for any n value. Assume
that a core i requests a cache block B. If CDi is smaller
than 16, B is mapped to a dynamic home tile (DHT) dif-
ferent than the static home tile (SHT) of B. As described
earlier, the SHT of B is simply determined by the home se-
lect (HS) bits of B’s physical address (4 bits for our 16-tile
CMP model). On the other hand, the DHT of B is selected
depending on the cluster dimension, CDi, of the requester
core i. Thus, with CDi smaller than 16 only a subset of bits
from the HS field of B’s physical address need to be utilized
to determine B’s DHT. Specifically, 3 bits from HS are used
if CDi = 8, 2 bits if CDi = 4, 1 bit if CDi = 2, and no bits



Figure 5: An example of how the DCC mapping strategy works. Each case depicts a possible DHT of the requested

cache block B with HS = 1111 upon varying the cache cluster dimension (CD) of the requester core 5 (ID = 0101).

Cache Cluster Dimension (CD) Masking Bits (MB)

1 0000
2 0001
4 0101
8 0111
16 1111

Table 1: Masking Bits (MB) for a 16-tile CMP Model.

are used if CDi = 1. More formally, the following function
determines the DHT of B:

DHT = (HS&MB) + (ID&MB) (3)

where ID is the binary representation of i, MB is a mask
specified by the value of CDi as illustrated in Table 1, MB
is the complement of MB, and & and + are the bit-wise
AND and OR operations, respectively. Fig. 5 illustrates an
example for a cache block B with HS = 1111 requested by
core 5. The figure depicts the 5 cases of the 5 possible CDs
of core 5 (1, 2, 4, 8, and 16). The DHT of B for each of the
possible CDs is determined using equation (3). For instance,
with CD = 16, core 5 maps B to DHT 15. Again, note that
when CD = 16, the SHT and the DHT of B are the same.
Similarly, with CDs of 8, 4, 2, and 1, core 5 maps B to DHTs
7, 5, 5, and 5 respectively.

4.4 DCC Algorithm
The AMAT metric defined in equation (2) could be uti-

lized to judiciously gauge the benefit of varying the cache
cluster dimension of a certain core, i. We suggest a run-
time monitoring mechanism that can infer enough about a
running process behavior and feed the collected information
to an algorithm that can make related architecture-adaptive
decisions. In particular, a process P starts running on core
i with an initial cache cluster (i.e., CDi = 16). After a pe-
riod time T, the AMATi experienced by P is evaluated and
stored, and the cache cluster of core i is contracted (or ex-
panded if chosen so and CDi has started from a value smaller
than 16). This is the initial AMATi of P. At every poten-
tial re-clustering point a new AMATi (AMATi current) is
evaluated and deducted from the previously stored AMATi

(AMATi previous). Suppose, for instance, that a contrac-
tion action has been initially taken. Accordingly, a resultant
positive value of the difference means that AMATi has de-
graded after contracting the cache cluster of core i. As such,
we infer that P didn’t actually benefit from the contraction
process. On the other hand, a negative outcome means that
AMATi has improved after contracting the cache cluster of
core i and we infer that P benefited in fact from the con-

Figure 6: The dynamic cache clustering algorithm.

traction process. Let △ be defined as follows:

△i = AMATi,current − AMATi,previous (4)

Therefore, a positive △i indicates a loss while a negative
one indicates a gain. At every re-clustering point, the value
of △i is fed to the DCC algorithm executing on core i (the
DCC algorithm is local to each CMP core). The DCC algo-
rithm makes in return some architecture-adaptive decisions.
Specifically, if the gain is less than a certain threshold, Tg ,
the DCC algorithm decides to keep the cache cluster as it
is for the next period time T. However, if the gain is above
Tg , the DCC algorithm decides to contract the cache clus-
ter a step further, predicting that P is likely to gain more
by the contraction process. On the other hand, if the loss
is less than a certain threshold, Tl, the DCC algorithm de-
cides to keep the cache cluster as it is for the next period
time T. If the loss is above Tl, the DCC algorithm decides
to expand the cache cluster to its previous value (one step
backward) assuming that P is currently experiencing a high
cache demand. Fig. 6 shows the suggested algorithm.

4.5 DCC Location Strategy
A core i can contract or expand its cache cluster at every

re-clustering point. Hence, the generic mapping function de-
fined in equation (3) can’t be utilized straightforwardly to
locate blocks that have been previously mapped by core i to
the L2 cache space. Fig. 7(a) illustrates an example of core
0 (with CD = 8) fetched and mapped a cache block B (with
HS=1111) to DHT 7 determined by equation (3). Fig. 7(b)
demonstrates a scenario with core 0 contracting its CD from
8 to 4 and subsequently requesting B from L2. With cur-
rent CD = 4, equation (3) designates tile 5 to be the current



Figure 7: An example of the DCC location strategy

using equation (3). (a) Core 0 with current CD = 8

requesting and mapping a block B to DHT 7. (b) Core

0 missed B after contracting its CD from 8 to 4 banks.

DHT of B. However, if core 0 simply sends its request to
tile 5, a false L2 miss will occur. After a miss to tile 5, B’s
SHT (tile 15), which keeps B’s directory information, can be
accessed to locate B at tile 7 (assuming this is the only tile
currently hosting B). This is a quite expensive process as
it requires multiple inter-tile communications between tiles
0, 5, 15, 7 again, and eventually 0 to fulfill the request. A
better solution could be to straightforwardly send the L2
request to B’s SHT instead of sending it first to B’s current
DHT and then possibly to B’s SHT. This still might not be
acceptable because it entails 3-way cache-to-cache commu-
nications between tiles 0, 15, and a prospective host of B.
Such a strategy fails to exploit distance locality. That is, it
incurs significant latency to reach the SHT of B though B
resides in close proximity. A third possible solution could be
to re-copy all the blocks that correlate to core 0 to its up-
dated cache cluster upon every re-clustering action. Clearly,
this is a costly and complex process because it will heavily
burden the NoC with superfluous data messages.

A better solution to the location problem is to send simul-
taneous requests to only the tiles that are potential DHTs
of B. The possible DHTs of B can be easily determined by
varying MB and MB of equation (3) for the range of CDs,
1, 2, 4, 8, and 16. As such, the maximum number of possible
DHTs, or the upper bound, would be 5, manifested when HS
of B equals to 1111. On the other hand, the lower bound on
the number of L2 accesses required to locate B at a DHT is
1. This would be accomplished when both, the HS of B and
ID are equal to 0000 (If ID 6= 0, number of L2 accesses 6= 1).
In general, the lower and upper bounds on the number of
accesses that our proposed DCC location strategy requires
to satisfy an L2 request from a possible DHT are Ω(1) and
O(log2(NumberofTiles)) + 1, respectively.

Given that the number of possible DHTs for a given block,
B, depends on the HS bits of B’s physical address, it would
be interesting to determine the average number of possible
DHTs for all the blocks in the address space. To derive this
number, let AV (d) denote the average number of possible
DHTs for all the blocks in the address space corresponding
to cluster sizes 20, 21, . . ., 2d. If we add 2d+1, half of the
blocks in the address space will have a new DHT, while the
new DHT of the other half of the blocks will coincide with
the DHT of these blocks in the cluster of size 2d. In other
words,

AV (d + 1) = 1

2
AV (d) + 1

2
(AV (d) + 1) = AV (d) + 1

2
(5)

Figure 8: The average behavior of the DCC location

strategy.

If CD = 1, each block has only one DHT, that is,

AV (1) = 1 (6)

Solving the recursive equations (5) and (6) yields,

AV (d) = 1 + 1

2
d (7)

For a CMP with n tiles, the number of possible cluster
dimensions is ln(n). Hence, the average number of possible
DHTs is 1 + 1

2
ln(n). Specifically, for n = 16, the average

number of possible DHTs is 1 + 1

2
ln(16) = 3. Fig. 8 shows

simulation results for the average number of L2 accesses ex-
perienced by the DCC location strategy using 9 benchmarks
(details about the benchmarks and the utilized experimental
parameters are described in Section 5). Clearly, the results
confirm our theoretical analysis.

Multiple copies of a cache block B can map to multiple
cache clusters of multiple cores. As such, a request from
a core C to a block B can hit at multiple possible DHTs.
However, if a miss occurs at the DHT of B that corresponds
to the current cache cluster dimension of C (current DHT),
though a hit occurs at some other possible DHT, a decision
is to be made of whether to copy B to B’s current DHT or
not. If none of the possible DHTs that host B resides cur-
rently inside the cache cluster of C, we copy B to its current
DHT, otherwise we do not. The rationale behind this policy
is to minimize the average L2 access latency. Specifically, a
possible DHT hosting B and contained inside C’s cache clus-
ter is always closer to C than is the current DHT. Thus, we
don’t copy B from that possible DHT to its current DHT.
The decision of whether to copy B to its current DHT can
be made by B’s SHT. The SHT of B retains B’s directory
information and is always accessed by our location strategy
(B’s SHT is a possible DHT).

Finally, after inspecting B’s SHT, if a copy of B is located
on-chip (i.e, mapped by a different core with different CD)
and none of the possible DHTs is found to host B, the SHT
satisfies the request from the host that is closest to C (in
case many hosts are located). Fig. 9(a) illustrates a scenario
where core 0 with CD = 4 issues a request to cache block
B with HS= 1111. Simultaneous L2 requests are sent to all
the possible DHTs of B (tiles 0, 1, 5, 7, and 15). Misses
occur at all of them. The directory table at B’s SHT (tile
15) is inspected. A copy of B is located at tile 3 indicated by
the corresponding bit within the directory status vector of



Figure 9: A demonstration of an L2 request satisfied by a neighboring cache cluster. (a) Core 0 issued an L2 request

to block B. (b) Core 3 satisfied the L2 request of Core 0 after re-transmitted to it by B’s SHT (tile 15).

Component Parameter

Cache Line Size 64 B
L1 I-Cache Size/Associativity 16KB/2way
L1 D-Cache Size/Associativity 16KB/2way

L1 Read Penalty (on hit per tile) 1 cycle
L1 Replacement Policy LRU

L2 Cache Size/Associativity 512KB per L2 bank/16way
L2 Bank Access Penalty 12 cycles
L2 Replacement Policy LRU

Latency Per Hop 3 cycles
Memory Latency 300 cycles

Table 2: System parameters

B. Fig. 9(b) depicts B’s directory state and residences after
it has been forwarded from tile 3 to its current DHT (tile
5) and to the L1 cache of the requester core 0. The figure
depicts only copies at the L2 banks within tiles. However,
the shown directory status vector reflects the presence of B
at the L1 cache of core 0.

5. QUANTITATIVE EVALUATION

5.1 Methodology
Evaluations presented in this paper are based on detailed

full-system simulation using Simics 3.0.29 [22]. We sim-
ulate a tiled CMP machine model similar to the one de-
scribed in Section 2 (see Fig. 2(a)). The platform comprises
16 UltraSPARC-III Cu processors and runs under the So-
laris 10 OS. Each processor uses in-order issue, and has
a 16KB I/D L1 cache and a 512KB L2 cache bank. Ta-
ble 2 shows a synopsis of the main architectural parameters.
We compare the effectiveness of the DCC scheme against
the 5 alternative static designs, FS1, FS2, FS4, FS8, and
FS16, detailed in Section 3, and the cooperative caching
scheme [3]. Cache modules with a distributed MESI-based
directory protocol for all the evaluated schemes have been
developed and plugged into Simics. We faithfully verified
and tested the employed distributed protocol. Finally, we
implemented the XY-routing algorithm and modeled con-
gestion (coherence and data) over the adopted mesh-based
NoC.

We use a mixture of multithreaded and multiprogram-

Name Input

SPECjbb Java HotSpot (TM) server VM v 1.5, 4 warehouses
Ocean 514×514 grid (16 threads)
Barnes 64K particles (16 threads)

Lu 2048×2048 matrix (16 threads)
Radix 3M integers (16 threads)
FFT 4M complex numbers (16 threads)

MIX1 Hmmer (reference) (16 copies)
MIX2 Sphinx (reference) (16 copies)
MIX3 Barnes, Lu, 2 Milc, 2 Mcf, 2 Bzip2, and 2 Hmmer

Table 3: Benchmark programs

ming workloads to study the compared schemes. For multi-
threaded workloads we use the commercial benchmark SPECjbb,
and 5 other shared memory benchmarks from the SPLASH2
suite [23] (Ocean, Barnes, Lu, Radix, and FFT). Three mul-
tiprogramming workloads have been composed from 5 rep-
resentative SPEC2006 [20] applications (Hmmer, Sphinx,
Milc, Mcf, and Bzip2). Table 3 shows the data set and
other important features of each of the 9 simulated work-
loads. Lastly, we ran Ocean, Barnes, Radix, and FFT in
full and stopped the remaining benchmarks after a detailed
simulation of 20 Billion Instructions.

5.2 Comparing With Fixed Schemes
This section presents the experimental evaluation of the

DCC scheme against the 5 alternative static designs, FS1,
FS2, FS4, FS8, and FS16. The set of parameters, the period
time T , the loss and gain thresholds Tl and Tg ({T, Tl, Tg})
utilized by the DCC algorithm are different for each sim-
ulated benchmark and selected from amongst 10 sets pre-
sented in the next subsection. The sensitivity analysis in
Section 5.3 shows that the results are not much dependent
on the value of parameters {T, Tl, Tg}. First of all, we study
the effect of the average L1 miss time (AMT), defined in
equation (1), across the compared schemes. Fig. 10(a) por-
trays the AMTs experienced by the 9 simulated workloads.
A main observation is that no single static scheme provides
the best AMT for all the benchmarks. For instance, Ocean
and MIX1 are best performing under FS16. On the other
hand, SPECjbb and Barnes perform superlative under FS1.
As such, a single static scheme fails to adapt to the vari-



Figure 10: Results for the simulated benchmarks. (a) Average L1 Miss Time (AMT) in cycles. (b) L2 Miss Rate.

eties across the working sets. The DCC scheme, however,
dynamically adapts to the irregularities exposed by different
working sets and always provides performance comparable
to the best static alternative. Besides, the DCC scheme
sometimes even surpasses the best static option due to the
fine-grained caching solution it offers (see Subsection 4.2).
This is clearly exhibited by SPECjbb, Ocean, Barnes, Radix,
and MIX2 benchmarks. Fig. 10(a) illustrates the outperfor-
mance of DCC over FS16, FS8, FS4, FS2, and FS1 by an
average of 6.5%, 8.6%, 10.1%, 10%, and 4.5% respectively
across all benchmarks, and to an extent of 21.3% for MIX3
over FS2. In fact, DCC surpasses FS1, FS2, FS4, FS8, and
FS16 for all the simulated benchmarks except one. That
is, MIX3 running under FS1. The current version of the
DCC algorithm doesn’t adaptively select an optimal set of
thresholds {T, Tl, Tg}. Thus, we expect that such a diminu-
tive superiority (1.1 %) of FS1 over DCC for MIX3 is simply
because of that reason. Nevertheless, DCC always favorably
converges to the best static option.

The DCC scheme manages to reduce the L2 miss rate
(MR) as it varies cache clusters per cores depending on their
L2 demands. Fig. 10(b) illustrates the MR produced by each
of the 6 compared schemes for the simulated benchmarks.
As described earlier, when the sharing degree (SD) amongst
the static designs decreases, MR increases. This is because
the likelihood that a shared cache block maps within the
same shared cache region decreases. For instance, the L2
miss rate of Ocean increases monotonically as SD decreases.
On the other hand, the L2 miss rate of Radix outshines with

FS1. This is due to the fact that additional cache resources
might not always correlate to better L2 miss rates [16]. A
workload might manifest poor locality, and cache accesses
could sometimes be ill-distributed over sets. We observed
that Radix has a great deal of L2 misses produced by heavy
interferences of cores on cache sets (inter-processor misses).
The DCC scheme, however, efficiently resolves this problem
and resourcefully exploits the available cache capacity. DCC
improves the Radix L2 miss rate by 4.2% and generates 7.3%
better AMT.

As the sharing degree (SD) of the static designs and the
cache cluster dimension (CD) of the DCC scheme change,
the hits to local L2 and to remote L2 banks also change.
The hits to local L2 banks monotonically increase as SD de-
creases. This is revealed in Fig. 11 that depicts the data
accesses breakdown of all the simulated benchmarks. In-
creases in hits to local L2 banks improves the average L2
access latency (AAL) as it decreases inter-tile communica-
tions, but, on the other hand, it might exacerbate MR thus
causing both, AAL and MR to race in conflicting directions.
For instance, though FS1 produces the best local L2 hits for
Ocean, Fig. 10(b) shows that Ocean has the worst MR. In-
creasingly mapping cache blocks to local L2 banks can boost
capacity misses, and if the gain acquired from higher local
hits doesn’t offset the loss incurred from higher memory ac-
cesses, performance will degrade. This explains the AMT
behavior of Ocean under FS1. DCC, however, increases hits
to local L2 banks but in a controlled and balanced fashion
that it doesn’t increase MR to an extent that ruins AMT.



Figure 11: Memory access breakdown. Moving from left to right, the 6 bars for each benchmark are for FS16, FS8,

FS4, FS2, FS1, and DCC schemes, respectively.

Figure 12: On-Chip network traffic comparison.

Thus, for instance, DCC degrades hits to local L2 banks of
Ocean by 62.3% over FS1 but improved in return its MR
by 4.9%. As a result, DCC generated 4.7% better AMT for
Ocean as compared to FS1. This reveals the robustness of
DCC as a mechanism that tunes up AAL and MR so as to
obtaining high performance from CMP platforms.

Fig. 12 depicts the number of message-hops (including
both data and coherence) per 1k instructions for all the sim-
ulated applications with the 6 compared schemes. FS16 of-
fers the preeminent on-chip network traffic savings (except
for MIX2) as compared to other schemes. For each L1 miss,
FS16 issues always one corresponding L2 request and that is
to the static home tile (SHT) of the requested cache block,
B. In contrary, the number of L2 requests issued by the re-
maining static designs depends on the access type. For a
write request, B’s SHT is accessed (in addition to access-
ing the shared region of the requester core) in order for the
requester core to obtain an exclusive ownership on B. Be-
sides, for a read request which misses at the shared region,
B’s SHT is also accessed to check if B resides on-chip (on
some other shared regions) before an L2 miss is reported.
However, for read requests that hit in the shared regions,
an L1 miss corresponds always to a single L2 request. As
such, if the message-hops gain (G) from read hits surpasses
the message-hops loss (L) from read misses and writes, the

interconnect traffic outcome of either FS1, FS2, FS4, or FS8
will improve over FS16. This explains the behavior of MIX2
with FS1. On the other hand, if L surpasses G, the inter-
connect traffic outcome of FS16 will improve over the 4 al-
ternative static schemes. This explains the behavior of the
remaining benchmarks. Finally, DCC results in increased
traffic due to multicast location requests (on average 3 per
request). On average, DCC increases interconnect traffic by
41.1%, 24.7%, 11.7%, 16.6%, and 21.5% over FS16, FS8,
FS4, FS2, and FS1, respectively. This increase in message-
hops doesn’t effectively hinder DCC from outperforming the
static designs as demonstrated in Fig. 10(a).

Lastly, Fig. 13 presents the execution time of the com-
pared schemes, all normalized to FS16. For Barnes, Radix,
MIX1, MIX2, and MIX3, the superiority of DCC in AMT
over the static designs translates to better overall perfor-
mance. However, diminutive AMT improvements of DCC
by 0.6% over FS1, 0.5% over FS16, 0.6% over FS16, and
0.9% over FS16 for SPECjbb, Ocean, Lu, and FFT, respec-
tively didn’t translate to an effectively better overall per-
formance. Nonetheless, the main objective of DCC is still
successfully met. DCC performs favorably comparable to
the best static alternative. DCC outperforms FS16, FS8,
FS4, FS2, FS1 by an average of 0.9%, 3.1%, 3.6%, 2.8%, and
1.4%, respectively across all benchmarks, and to an extent



Figure 13: Execution time (Normalized to FS16).

Figure 14: DCC sensitivity to different T, Tl, and Tg values.

of 10% for MIX3 over FS8. DCC is expected to way sur-
pass all static strategies had it adaptively selected {T, Tl, Tg}
parameters. As such, DCC could provide more accurate es-
timations regarding expansions and contractions. Having
established the effectiveness of DCC as a scheme that can
synergistically adapt to irregularities exposed by different
working sets and within a single working set, proposing an
adaptive mechanism for selecting the {T, Tl, Tg} thresholds
is an obvious next step.

5.3 Sensitivity Study
The DCC algorithm utilizes the set of parameters {T, Tl, Tg}

to controllably tune up cache clusters and avoid potential
noise that might hurt performance. As the current version
of the algorithm assumes a fixed set of these parameters,
we offer a study of DCC sensitivity to different {T, Tl, Tg}
values. Ten sets have been simulated, five with T = 10, 000
(T1), and another five with T = 300, 000 (T2) instructions.
Tl and Tg were assigned values 0, 0.01, 0.1, 0.15, and 0.2
and ran with both, T1 and T2. Fig. 14 portrays the study
outcome. A main conclusion is that no single fixed set of
parameters provides superlative AMT for all the simulated
benchmarks. For instance, SPECjbb performs best with T1
and Tl = Tg = 0. On the other hand, Barnes performs best
with T2 and Tl = Tg = 0.01.

Overall, the DCC results with T1 are better than those
with T2. Essentially, performance deteriorates when the

partition period is too short or too long. Short partitions
can hurt the accuracy of an estimation regarding a working
set phase change. Long partitions, in contrary, can delay a
detection of a phase change. The DCC algorithm doesn’t
expand or contract cache clusters upon every possible re-
clustering point. It just checks the eligibility of an expan-
sion or contraction step, and if found beneficial takes the
action. Thus, DCC takes re-clustering actions only safely.
Fig. 15 demonstrates a time varying graph that shows the
activity of Barnes for 100 consecutive re-clustering points
run under DCC with T2 and Tl = Tg = 0.01. A compu-
tation overhead of the DCC scheme at every re-clustering
point is mainly that of computing the △ metric, defined in
equation (4). A performance overhead, on the other hand,
can occur only if estimations about re-clustering actions fail.
This is assumed, however, to be relatively little because of
how the DCC algorithm inherently makes the architecture-
adaptive decisions. This essentially explains why T1 yielded
overall better DCC results than T2. The T1 moderate pe-
riod of time attempts safely to capture a potential change
in a program phase as soon as it emerges. We expect that
with a time period smaller than T1, the information to feed
to the DCC algorithm can be potentially skewed. As such,
the estimations concerning program phases might possibly
fail, and performance might, accordingly, degrade.



Figure 15: Time varying graph showing the activity of the DCC algorithm.

Figure 16: Execution time of FS1, cooperative caching (CC), and DCC (normalized to FS1).

5.4 Comparing With Cooperative Caching
This section presents a comparison between DCC and the

related work, cooperative caching (CC) [3]. CC dynamically
manages the aggregate on-chip L2 cache resources by com-
bining the benefits of the private and shared schemes, AAL
and MR, respectively. CC approaches the CMP cache man-
agement problem by basing its framework on the nominal
private design and seeks to alleviate its implied capacity de-
ficiency. If a block B is the only on-chip copy, CC refers
to it as a singlet, otherwise as a replicate (because repli-
cations exist). To improve cache capacity, CC prefers to
evict the following three classes of blocks in descending or-
der: (1) an invalid block, (2) a replicate block, (3) and a
singlet block. As such, CC refines cache capacity by reduc-
ing replicas as much as possible. Furthermore, CC employs
spilling a singlet block from an L2 bank into another L2 bank
for expected future usage. Fig. 16 demonstrates the execu-
tion time results of DCC and CC, both normalized to FS1.
The shown CC is the default cooperative caching scheme
that uses 100% cooperation probability (allows always the
collection of the CC mechanisms to be used to optimize ca-
pacity). DCC always performs competitively, if not better,
than the best static alternative. Thus DCC performs some-
times equivalently to FS1 and sometimes surpasses it (in
case it is not the best caching option). On the other hand,

across all the simulated benchmarks, CC outperforms only
SPECjbb by 1.7%. Surprisingly, CC degrades FS1 perfor-
mance by 0.16%, on average. The reason is that CC uses the
minimum replication level for each benchmark thus heavily
affecting the average L2 access latency (AAL). Replication
typically mitigates AAL if done controllably [1, 5].

6. RELATED WORK
As CMP has become the mainstream architecture of choice,
many proposals in the literature advocated managing the
last level of caches using hardware and software techniques.
Data migration and replication have been suggested as tech-
niques to manage CMP caches via tuning either the average
L2 access latency (AAL) or the L2 miss rate (MR) metrics.
Migration has the advantage of maintaining the uniqueness
of cache blocks on-chip offering, thereby, better L2 miss rate.
In contrary, replication generally results in reduced average
L2 access latency. Many of the proposals base their work
either on the shared or the private design with an aim to
mitigate the implied deficiency. Zhang and Asanović [25]
proposed victim replication based on the shared paradigm,
and seeks to mitigate AAL via keeping replicas of local pri-
mary cache victims within the local L2 cache banks. Chang
and Sohi [3] proposed cooperative caching based on the pri-
vate scheme, and seeks to create a globally managed shared



aggregate on-chip cache. Chishti et al. [5] proposed CMP-
NuRAPID based on the private design, and tries to con-
trol replication based on usage patterns. Beckmann and
Wood [2] examined block migration in CMPs and suggested
the CMP-DNUCA mechanism that allows data to migrate
towards the requester processors to alleviate AAL. Beck-
mann et al. [1] proposed a hardware-based mechanism that
dynamically monitors workload behaviors to control repli-
cation on the private cache organization. Huh et al. [8] pro-
posed a spectrum of degrees of sharing to manage NUCA
L2 caches in CMPs. Nayfeh et al. [14] examined the impact
static clustering can have in small-scale shared-memory mul-
tiprocessors. They assumed a spectrum of degrees of sharing
amongst processors (referred to as clusters) and evaluated
static clusters composed of 1, 2, 4, or 8 processors (connected
together using a shared global bus) sharing L2 caches. As
an outcome, they suggested that clustering can reduce the
bus traffic.

As all of the above studies essentially use hardware tech-
niques to manage caches in CMPs, some other works have
recognized the need for software to approach the CMP cache
management problem. Cho and Jin [6] proposed an OS-
level page allocation algorithm for shared NUCA caches to
mainly reduce AAL. Liu et al. [11] proposed an L2 cache
organization called Shared Processor-Based Split L2 that de-
pends upon a table-based mechanism maintained by the OS
to split the cache capacity amongst processors. Finally we
note that DCC is unique and general in the sense that it
does not limit itself to any of the two traditional schemes,
shared or private. Nonetheless, and as described in Section
4.2, it offers a novel fine-grained caching solution for the
CMP cache management problem.

7. CONCLUDING REMARKS
As the realm of CMP is continuously expanding, the pres-
sure on the memory system to sustain the memory require-
ments of the wide variety of applications also expands. This
paper investigates the main problem with the current fixed
CMP cache schemes as being unable to adapt to workloads
variations, and proposes a robust alternative, the dynamic
cache clustering (DCC) scheme. DCC suggests a mecha-
nism that monitors the behavior of an executing program,
and based upon its runtime cache demand makes related
architecture-adaptive decisions. A per-core cache cluster
comprised of a number of L2 banks can be constructed and
dynamically expanded or contracted so as to tune the aver-
age L2 access latency and the L2 miss rate. Compared to
static designs, the DCC scheme offered an average of 7.9%
cache access latency improvement.

As future work, the proposed DCC location strategy can
be improved by maintaining a small history about a specific
cluster expansions and contractions activity. For instance,
with an activity chain of 16-8-4-4-8, we might predict that
a requested block can’t exist at a DHT corresponding to
CD = 1 or 2 and has a high probability to exist at a DHT
that corresponds to CD = 4 and CD = 8.

8. REFERENCES
[1] B. M. Beckmann, M. R. Marty, and D. A. Wood. “ASR:

Adaptive Selective Replication for CMP Caches,” MICRO, Dec.
2006.

[2] B. M. Beckmann and D. A. Wood. “Managing Wire Delay in
Large Chip-Multiprocessor Caches,” MICRO, pp. 319–330, Dec.
2004.

[3] J. Chang and G. S. Sohi. “Cooperative Caching for Chip
Multiprocessors,” ISCA, June 2006.

[4] A. Chishti, M. D. Powell, and T. N. Vijaykumar. “Distance
Associativity for High-Performance Energy-Efficient
Non-Uniform Cache Architectures,” MICRO, Dec. 2003.

[5] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Optimizing
Replication, Communication, and Capacity Allocation in
CMPs,” ISCA, pp. 357–368, June 2005.

[6] S. Cho and L. Jin “Managing Distributed Shared L2 Caches
through OS-Level Page Allocation,” MICRO, Dec 2006.

[7] J. Held, J Bautista, and S. Koehl. “From a Few Cores to Many:
A Tera-scale Computing Research Overview,” White Paper.
Research at Intel, Jan. 2006.

[8] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. “A NUCA Substrate for Flexible CMP Cache Sharing,”
ICS, pp. 31–40, June 2005.

[9] T. Johnson and U. Nawathe. “An 8-core, 64-thread, 64-bit
Power Efficient SPARC SoC,” IEEE ISSCC, Feb. 2007.

[10] C. Kim, D. Burger, and S. W. Keckler. “An Adaptive,
Non-Uniform Cache Structure for Wire-Delay Dominated
On-Chip Caches,” ASPLOS, pp. 211–222, Oct. 2002.

[11] C. Liu, A. Sivasubramaniam, and M.Kandemir. “Organizing the
Last Line of Defense before Hitting the Memory Wall for
CMPs,” HPCA, pp. 176–185, Feb 2004.

[12] H. E. Mizrahi, J. L. Baer, E. D. Lazowska, and J. Zahorjan
“Introducing memory into the switch elements of multiprocessor
interconnection networks,” ISCA, pp. 158–166, 1989.

[13] R. Mullins, A. West, and S. Moore “Low-Latency
Virtual-Channel Routers for On-chip Networks,” ISCA, pp.
188–197, June 2004.

[14] B. A. Nayfeh, K. Olukotun, and J. P. Singh. “The Impact of
Shared-Cache Clustering In Small-Scale Shared-Memory
Multiprocessors,” HPCA, 1996.

[15] W. Qiang, M. Margaret, W. C. Douglas, V. J. Reddi, C. Dan,
W. Youfeng, L. Jin, and B. David “A Dynamic Compilation
Framework for Controlling Microprocessor Energy and
Performance,” MICRO, pp. 271–282, 2005.

[16] M. K. Qureshi and Y. N. Patt “Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches,” ISCA, pp. 423–432,
2006.

[17] A. Ros, M. E. Acacio, and J. M. Garćıa “Scalable Directory
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