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ABSTRACT
Characterizing the dynamic behavior of a program’s exe-
cution is essential for optimizing the program on a given
system. Once the program’s repetitive execution phases
(and their boundaries) have been correctly identified, var-
ious phase-aware optimization techniques can be applied.
Multithreaded workloads exhibit dynamic behavior that is
further affected by the sharing of data and platform re-
sources. As computer systems and workloads become denser
and more parallel, this effect is expected to intensify the dy-
namicity of the executed workload.

In this work, we introduce a new relaxed concept for a
parallel program phase, called epoch. Epochs are defined as
time intervals between global synchronization points that
programmers insert into their program codes for correct
parallel execution. We characterize the behavior of multi-
threaded workloads across and within epochs and show that
epochs have consistent and repetitive behaviors while their
boundaries naturally indicate a shift in program behavior.
We show that epoch changes can be easily captured at run
time without complex monitoring and decision mechanisms
and we employ simple run-time techniques to enable epoch-
based adaptation. To highlight the efficacy of our approach,
we present a case study of an epoch-based adaptive chip mul-
tiprocessor (CMP) architecture. We conclude that our ap-
proach provides an attractive new framework for lightweight
phase-based resource management for future CMPs.

1. INTRODUCTION
Characterizing and understanding the behavior of programs
is of vital importance to ensure next-generation chip multi-
processors (CMPs) perform well on their anticipated work-
loads. In the past, evidences of strong behavioral similarities
between programs have driven computer architects to build
systems that, on average, work well for a large range of ap-
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plications [1]. Today, the switch to massively parallel CMP
along with the necessity for higher resource utilization at
low power calls for a more systematic study of particular
workload characteristics and their time-varying behavior.

Shared-memory multithreaded workloads exhibit dynamic
behavior that is further affected by the sharing of data and
platform resources [2]. In future CMPs, the dominance of
shared resources like on-chip network (NoC), cache capacity
and memory bandwidth is expected to magnify the impact
of a workload’s time-varying behavior (potentially produc-
ing high oscillations) on performance and power. Hence,
knowledge of particular behavior similarities and behavioral
shifts during multithreaded execution will offer previously
unexploited opportunities for more efficient resource man-
agement. For example, if we had a good prediction of global
traffic volume changes, we could make the right speed-power
trade-off and bandwidth allocation on a given NoC. In an-
other example, if the varying sharing and communication
patterns could be predicted a priori, new thread scheduling
policies could be triggered.

The behavioral differences across different time intervals
and the repetitive behavioral stability within them have mo-
tivated prior work to study techniques and mechanisms that
can detect and exploit them by monitoring simple metrics
such as IPC or last level cache miss rate [3–5]. Depending on
the metric being monitored, however, the detected changes
in program behavior are limited to what the chosen metric
can sense. To overcome this limitation and create a more
fundamental representation of program phases, researchers
have proposed architecture-independent metrics that cap-
ture inherent characteristics of a program by tracking the
executed code itself [6–15].

While the architecture-independent phase detection and
classification methods work well for single-threaded work-
loads, they do not directly apply to multithreaded work-
loads [14, 17]. In particular, the inter-thread interference
and data distribution can affect threads’ individual behav-
ior, making their phase tracking harder. Also, if phase track-
ing is done by monitoring the executing code, the relative
progresses of co-scheduled threads (and other events that
can“un-synchronize”them) will result in an inconsistent pro-
gram phase representation and thereby hamper phase detec-
tion. Lastly, most existing methods are complex and require
heavy monitoring mechanisms, hence, their adoption is nar-
rowed mostly to simulation practices [9, 11,12,14,16,17].

In this work, we explore a new simple parallel program
characterization approach using the concept of epoch in or-
der to enable lightweight run-time detection and prediction
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Figure 1: Key performance metrics of bodytrack: Measurements were averaged for each sampling interval in time. The

sampling interval size is 250K cycles. ‘A,’ ‘B,’ ‘C’ and ‘D’ are repeating global synchronization points in the program.

of the repetitive and varying program behavior. Epochs are
defined as program intervals between global barrier synchro-
nization points that programmers have inserted into pro-
gram codes to ensure the correct parallel execution of the
program. The rationale behind our approach is that these
synchronization points are likely to define sections of code
that perform a unified, logically distinct task while naturally
indicating a shift from a certain program phase to another.

Figure 1 illustrates the time-varying behavior of body-
track, a common parallel application for tracking human
body movements [18], on a 16-core shared memory CMP
model (details of the system are in Section 3). The top
graph shows the average system throughout (in IPC), the
middle shows the overall L2 cache miss ratio of the 16 par-
allel threads, and the bottom the NoC traffic volume (in
number of flits) as measured over the course of their en-
tire execution. The graphs capture the natural relation of
epochs to the repetitive and varying behavior of the pro-
gram. The vertical dotted lines indicate the global syn-
chronization points (barriers). As shown, there is a natural
alignment of the synchronization points with the changes
in program behavior, independent of the observed metric.
Also, the barrier-bounded intervals (epochs) have a consis-
tent and repetitive behavior across the program execution.
Motivated by these observations, we propose watching the
barriers (“BarrierWatch”) to sense behavioral transitions.

For program behavior analysis, barriers carry four attrac-
tive properties: (1) They are tightly program code related
and therefore can be watched and identified independently
of the underlying architecture; (2) They indicate points that
characterize a parallel program in a “global” sense as well as
at individual thread level. In other words, they are the only
points of execution that can stably define a global program
state; (3) They appear in a majority of multithreaded work-
loads we examined and are easily “watchable”at run time by
simple architectural support; and (4) Barriers are relatively
rare events and associating information with barriers will
lead to smaller overheads than with other finer granularity.

To the best of our knowledge, our work is the first to

explore in detail the program-defined epochs and correlate
them with the the varying behavior of the parallel multi-
threaded workloads. In summary, we make the following
contributions in this paper:

• We examine the epoch-related properties of a num-
ber of parallel applications and we characterize their
epoch-level behavior on an elaborate CMP model (Sec-
tions 2 and 4). Our characterization confirms the cor-
relation between epochs and varying program behavior
by identifying prominent behavioral similarities across
repetitive instances of each epoch while pointing out
significant changes that occur across their boundaries.

• We propose BarrierWatch, a lightweight technique for
supporting epoch-based adaptation (Section 5). The
proposed technique watches for barriers to detect the
beginning and end of each epoch and associates them
with appropriate adaptation decisions; and

• We highlight the efficacy of our proposed technique
with an elaborate case study of an epoch-based adap-
tive CMP architecture (Section 6).

We anticipate that our approach will provide an attractive
new framework for lightweight phase-based resource man-
agement for future large-scale CMPs.

2. PROGRAM EPOCHS
In this section, we first define program epochs and quali-
tatively discuss what benefits our definition brings. Next,
we introduce a set of multithreaded benchmarks used in our
study. Finally we present a high-level epoch profiling result
of the benchmarks.

Programmers insert synchronization points (e.g., barriers
and locks) into the code to avoid race conditions and en-
sure the validity of the data values during a parallel execu-
tion. This work focuses on the global synchronization points
(barriers) that synchronize all running threads in a program
globally. Global barrier points can be found within parallel
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Figure 2: Static (left) vs. dynamic epoch (right).

sections as well as at the end of parallel sections (joins). In
any case, barriers can be seen as points that split the pro-
gram into subsections that perform boundary-synchronized
parallel tasks. We will refer to each of those tasks as an
epoch. Therefore, an epoch starts when a barrier is released
and ends when the next barrier is reached. Each static epoch
is uniquely identified with a tuple containing the IDs (e.g.,
PC or a compiler-generated number) of the two enclosing
barriers. During execution, a static epoch could be exer-
cised multiple times, creating multiple dynamic instances.
A dynamic epoch can be identified with the corresponding
static epoch ID and how many times the static epoch has
been executed so far. Figure 2 depicts the notion of static
and dynamic epoch.

In a fork-join model of parallel execution such as the one
heavily used in OpenMP programs, execution alternates be-
tween parallel and sequential sections repetitively, creating
oftentimes epochs with both sequential and parallel regions.
To further distinguish those regions, epoch definition can
be extended to consdier all fork and join points as epoch
boundaries.

It is well known that program codes repeat (e.g., loops).
Since the program behavior is strongly related to the code
that is executing, the repeated execution of the same code
can yield very similar behavior. In general, this repetition
has been the basis for predicting a program’s future behav-
ior. We find that epochs repeat and that their instances ex-
hibit similar behavior, while their boundaries indicate shifts
in program behavior. In the examples of Figures 1 and 2,
epochs such as epoch(B,C) are likely to perform a single,
logically distinct operation that is repeated throughout the
program execution. Consequently, epoch boundaries indi-
cate a transition of the program execution into a different
code section that could stress the architecture in a com-
pletely different way.

We note here that epochs are not related with the con-
ventional definition of program phase, where program is an-
alyzed/monitored and program phases are formed from in-
tervals having strong behavioral similarity [16]. Epochs nat-
urally partition the program code into unique, contiguous,
variable-length intervals. At run time, the execution of a
program can be viewed as a sequence of dynamic instances
of these epochs. Marking epoch boundaries is done auto-
matically, without a need for run-time monitoring, profile-
or compiler-based analysis. Nevertheless, program behav-
ior within an epoch may not necessarily be constant (e.g.,
epoch(C,D) in Figure 1).

The relation of the epochs with the code itself has impor-
tant advantages. First, analyzing the behavioral repetition

Benchmark Num. static
epochs

Repeatable
epochs

Program input
size

Num. dyn.
epochs

bodytrack 4 4/4 simlarge 19
fluidanimate 8 8/8 simlarge 39
streamcluster 21 16/21 simmedium 7,569

barnes 3 2/3 64K (particles) 8
fmm 10 6/10 64K (particles) 33
lu 5 2/5 2,048 (matrix) 258

ocean 24 18/24 1,026 (grid) 707
radiosity 5 2/5 largeroom 17
water-ns 11 5/11 1,000 (molecules) 19

Table 1: Epoch statistics of benchmarks.

across instances of the same static code provides reassur-
ance that observed similarity is an inherent characteristic of
the program and not an architecture-dependent coincidence.
Second, unlike an arbitrarily chosen fixed-size instruction in-
terval, epoch boundaries can naturally and more precisely
align with the phase transitions. Third, barriers, as points
in the code, can be easily captured at run time with simple
architectural support. Finally, many parallel programs are
structured with barriers.

In Table 1 we list a selection of commercial and scien-
tific multithreaded programs that we evaluate in this work.
These programs use pthread, a standard shared memory pro-
gramming library that supports a barrier interface. The first
three programs are taken from the PARSEC 2.0 benchmark
suite [18] and the rest from SPLASH-2 [19]. Other programs
from those suites either do not use barrier synchronization,
or their barriers do not reside inside repeatable sections. Our
proposed approach applies only to shared-memory parallel
programs that use barriers.

The table shows each program’s basic epoch statistics: the
number of distinct static epochs, the fraction of the static
epochs that have dynamic instances, and the total number
of dynamic epoch instances for the referred input size. The
table shows that static epochs, if not all, repeat. Some pro-
grams have a large number of dynamic epochs generated
from a few epochs, such as ocean, lu, and streamcluster,
because these epochs reside inside heavily repetitive loops.

Figure 3 shows the relative size of static epochs and their
importance. Epoch size intuitively shows how small or large
a static epoch is and corresponds to the average dynamic
instruction count of the epoch. A large size does not neces-
sarily reflects a time-dominant epoch, since its contribution
to the total execution time depends not only on its size, but
also on the number of times it is executed. To better illus-
trate this relation, we order them from bottom to top, with
the most time-dominant epoch being at the bottom. Also, in
Figure 4, we show their total contribution to the execution
time in a cumulative graph, using the same order.
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Figure 3: Relative static epoch sizes (normalized to the

program size): Epochs are ordered from bottom to top

based on their execution time contribution. The bars

show the fraction of epochs that contribute more than

5% of the total execution (most important epochs).
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Figure 4: Execution time breakdown: Time spent by each

static epoch. Epochs are sorted based on their execution

time contribution.

Based on the profile results, we separate the benchmarks
into three categories. In the first category, programs such
as ocean and streamcluster spend most of their execution in
a number of small epochs that are highly repetitive. In the
second category (fmm, bodytrack, fluidanimate and water-
ns), a large part of the execution time is consumed by a sin-
gle epoch while the remaining execution time is split rather
equally to the rest of the epochs. Finally, barnes, lu and
radiosity belong to a different category where a single static
epoch monopolizes the execution time. The large range of
epoch granularity reflects the structural heterogeneity across
and within different programs. At the two extremes, very
fine or very coarse epochs may exhibit unstable or multi-
phase behavior, respectively. Nonetheless, the epoch-level
characterization in the following sections shows the promis-
ing aspects of our approach.

3. METHODOLOGY
Experimental Setup. For various measurements we em-
ploy an elaborate CMP simulator built on Simics [20]. Our
simulator is a detailed timing simulator that models a 16-
core tiled CMP with a 4×4 2D mesh network-on-chip (NoC),
similar to the machine models used in recent studies and
commercial developments [21–24]. Each tile of the processor
incorporates a compute core, an L2 cache bank, coherence
support and a NoC router. A compute core is a two-issue
in-order processor and has private L1 caches. Per-tile L2
caches form a globally shared logical L2 cache. Cache coher-
ence is maintained by a distributed directory-based coher-
ence protocol with MESI states, modeled after [25]. Table 2
summarizes our architecture configuration parameters.

We collect information for the programs listed in Table 1.
For compilation, we use gcc version 4.2.0 with the -O3 opti-
mization level and the SunOS pthread library version 5.10.
All programs were executed from start to finish with the
listed problem size, referenced by [18, 19]. Statistics were
collected starting from the beginning of the parallel section
till the end. We use all available processor cores by spawn-
ing 16 threads in all experiments. Each thread was bound
to a specific core for stable and repeatable measurements.
Performance Metrics. To characterize the program be-
havior across epochs, we use system-wide global metrics that
measure overall system throughput (sum of IPCs), L2 cache
miss ratio, NoC network traffic volume and cache-to-cache
transfer hit ratio (denoted as “C2C-transfer hit ratio”). NoC
traffic includes memory controller requests, remote L2 re-
quests, cache-to-cache requests and all control and coherence

Parameter Value

Processor model in-order
Issue width 2
L2 Cache
Line size 64 B
Size/Associativity 128 KB, 8-way
Tag latency 2 cycles
Data latency 6 cycles
Replacement policy LRU

Parameter Value

L1 I/D Cache
Line size 64 B
Size/Associativity 8 KB, direct-map
Load-to-Use latency 2 cycles
Network on Chip
Topology 4×4 2D mesh
Hop latency 3 cycles
Main mem. latency 300 cycles

Table 2: Machine architecture configuration.

messages. C2C-transfer hit ratio is defined as the fraction of
L2 misses that were satisfied on chip, by the cache-to-cache
transfer protocol. Although further architecture-dependent
and independent metrics can be used, we limit our study to
the above metrics as they are sufficient to prove the concept
of this work.
Variation Metrics. To demonstrate the relation between
epochs and time-varying behavior of the program we need
statistical methods that can characterize the variation across
different epoch instances. All our measurements on varia-
tion are based on standard deviation.1 Because most of our
metrics are on a ratio scale, standard deviation indicates
the variation in terms of percentage. Thus, different varia-
tion around different means can be directly compared. To
meaningfully include in our displays deviations of non-ratio
metrics (global IPC and traffic volume) together with ratio
metrics, we apply to them a rescaling factor based on the
variation of their values.2 For the epoch-level analysis, we
exclude any small epoch instances that appear as “noise”be-
tween longer epochs during execution. Such very short time
intervals cannot reach a stable and unbiased microarchitec-
tural state (i.e., they experience only the warm-up period),
and therefore performance metrics cannot precisely capture
their actual characteristics. We consider 50K dynamic in-
structions as an acceptable size for an epoch instance to be
included in our analysis. As an exception, we include the
small epochs that are repeated multiple times back-to-back.
These epochs can be reliably measured because their rep-
etition creates a robust microarchitectural state. All other
static epochs and their dynamic instances are included, in-
dependently of their granularity.

4. EPOCH LEVEL CHARACTERIZATION

4.1 Variation across an epoch’s instances
To characterize an epoch’s behavior as a reoccurring pat-
tern, we measure the variation of four different architecture
metrics across the dynamic instances of each epoch. Figure 5
plots this variation for all four epochs of bodytrack.

The results show low variability for all the metrics across
the instances of each static epoch. The percentages can di-
rectly evaluate the similarity or stability across an epoch’s
dynamic instances for the specific metric. For example, IPC
varies around 2% across the instances of epoch-4. Assuming
that 2% is a negligible variation, those instances can be con-
sidered similar to each other. Epochs with low variation for
all the metrics reflect an epoch with a stable dynamic be-

1Since our samples are relatively few, we use an unbiased estima-
tor for the standard deviation with a degree of freedom N − 1.
2We prefer this method rather than using Coefficient of Variation
(CoV) since CoV can only be used to compare the amount of
variance between populations with means that are close together.
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havior. Comparing the variation between different epochs
gives their relative stability. For example, the performance
variation across the instances of epoch-3 is larger than that
of epoch-1. Relatively higher variation is observed for C2C-
transfer hit ratios, mainly because this metric is strongly
affected by the prior behavior to the barrier, e.g., the cache
state the previous epoch leaves. This preceding state could
be different for each instance of an epoch. The best per-
formance stability is demonstrated in epoch-1, which is the
most time-dominant epoch in bodytrack.

To extend our observations to other programs as well, we
summarize in Figure 6 the average variation that is observed
among the dynamic instances of each epoch, for each pro-
gram. The average variation is weighted by the number of
the dynamic instances of each epoch.3 As the figure shows,
most programs have very limited variation for all the met-
rics, highlighting the effectiveness of epochs defining periodic
execution intervals that exhibit similar program behavior.

4.2 Variation across different epochs
Figure 7 shows the variability in behavior among different
epochs of bodytrack, as measured by each metric. In this
example, each point reports the mean behavior of each epoch
across its different instances. The error bars indicate the
variation among the instances of the epoch, based on the
variation analysis in the previous subsection.

The existence of high behavioral variability across differ-
ent epochs (compared with low variability across instances

3Valuable only from a statistical point of view; epochs with many
instances are more unbiased estimators of the variation than
epochs with fewer instances.
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Figure 8: Ratio between the average variation across
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epochs: The smaller the ratio, the sharper the behavioral

shifts on epoch boundaries.

of an epoch) indicates a fundamental correlation between
epoch boundaries and changes in program behavior. A sin-
gle metric that can capture this property (e.g., global IPC
in the example of Figure 7) is adequate to show that there is
such correlation. However, showing more than one metrics
is desirable since the same single metric may not be suitable
for capturing the behavior changes in every application, even
if such a metric exists (e.g., L2 miss ratio is fairly insensitive
in the same example). In addition, the sensitivity analysis
over a number of metrics against different epochs provides
useful insights into how possible epoch-based optimizations
can be directed and implemented on a target architecture.
For example, an adaptive system can exploit the large vari-
ability of a metric across different epochs to improve the
performance or power consumption of individual epochs.

To quantify how different epochs exhibit distinguishable
behavior, we need to meaningfully compare the heterogene-
ity that exists across different epochs with the homogeneity
that exists across instances of the same epoch. To measure
this quantity, we use the ratio between the weighted average
of the variation that is accounted for the instances of each
epoch (see error bars in Figure 7), and the variation that ex-
ists across the different epochs. The last part calculates the
variation between the mean values taken from each epoch,
compared with the grand mean of all the epochs’ instances
of the program. This ratio is related with a statistical met-
ric that is widely used in statistical analysis of variance
(ANOVA) and calculates the significance of the variation
between populations that appear to have similar variation
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Figure 9: Program Behavior within Epochs (breakdown): Epochs show stable, unstable, or multi-phase behavior.

within them [26]. Figure 8 shows the results for all the pro-
grams, and for each metric. If the behavior change across
different epochs is significantly more marked than across
their instances, we should see, at least for some metrics, a
small ratio between those standard deviations. The smaller
the ratio, the better the distinction is.

The results show that all the examined parallel programs
have at least some metrics with a very small ratio, indicating
the power of epochs to distinguish the program behavior
into well-defined intervals. The relatively high ratio in fmm,
radiosity and water-ns comes from the fact that their epochs
are generally more similar than in other programs and not
due to high variability among their epochs’ instances (which
is shown to be low in Figure 6).

4.3 Program behavior within epochs
A program may exhibit further repetitive and shifting be-
haviors within epochs. For example, while most epochs in
bodytrack have stable behavior, the L2 cache miss rate in
epoch(C,D) (recall Figure 1) oscillates rapidly and as a re-
sult produces a highly “unstable” epoch. To gain more in-
sight into the program behavior within epochs, we evaluate
the relative stability or instability within their boundaries.

To perform our analysis, first we sample the behavior of
each epoch using the four performance metrics. Sampling is
done using fixed-length time intervals (250K cycles). Then,
we split the epoch into phases4, formed from consecutive
intervals having stable behavior. To characterize the behav-
ioral stability within the epoch, we measure the length of
each phase as well as the average phase length of the epoch.
Based on those measurements, we classify each epoch as sta-
ble, unstable or multi-phase. A stable epoch has a single rela-
tively large phase (our criterion is >80% of the epoch length)
whereas unstable epochs have frequent changes of program
behavior, and therefore will have many short phases. Con-
sequently, we determine an unstable epoch if it has a short
average phase length (<5% of the total epoch length). The
rest are classified as multi-phase epochs, expected to have

4Here we follow the traditional notion of program phase, defined
as a collection of consecutive intervals with no significant perfor-
mance changes (set to <5%).

more than a single stable phase.
Figure 9 presents the result of our classification using the

above criteria. On average, more than 80% of all epoch in-
stances have stable behavior. Some epoch instances show
unstable C2C-transfer hit ratio, mainly because this metric
is more sensitive to thread interference and fine-grain com-
munication patterns.

Although the behavioral changes within an epoch are not
automatically inferred at the epoch granularity, the stability
or instability, as consistent repetitive behavioral patterns,
can be highly predictable. For example, consecutive in-
stances of epoch(C,D) in bodytrack can be correctly pre-
dicted as unstable. We have observed that most program
epochs have a strong tendency to repeat their internal pat-
tern in their dynamic instances. Few exceptions were ob-
served in epoch instances having initialization parts or other
relatively short epochs. Note that labeling an epoch as “un-
stable” in a courser sense could have a much higher benefit
than tracking rapid changes of very short regions. For ex-
ample, attempting to continuously adapt and reconfigure a
system within unstable regions can lead to unpredictable
and undesirable results. In contrast, associating unstable
epochs with appropriate system configurations will provide
more effective overall impact.

4.4 Summary
Our epoch characterization shows that: (1) Epochs define
intervals that repeat in a consistent and predictable way
and therefore they provide a reliable granularity in which
the cyclic pattern of program behavior can be observed; (2)
Different epochs tend to have different behavior and there-
fore they provide an attractive granularity in which the pro-
gram can be characterized. Consequently, epoch boundaries
are likely to naturally indicate changes of program behav-
ior; and (3) Most epochs exhibit stable behavior within their
boundaries. In general, internal behavior patterns reoccur
and thus can be accurately predicted.

5. RUN-TIME SUPPORT
A run-time system capable of tracking changes of program
behavior can trigger a search for an optimal configuration
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Figure 10: Support for Run-time Epoch Detection and

Epoch-based Adaptation: The BarrierWatch technique de-

tects epoch transitions by capturing the barrier points.

The Epoch Table associates epochs with decision signa-

tures to be used for adaptive optimization.

that will adapt the system to a performance and/or power
optimal state. The adaptation can be achieved through con-
figurable hardware mechanisms [3, 4, 6–8]. Using an epoch-
based approach, a system can dynamically detect a change
of program behavior by“watching” for a barrier point. Then
a search for the best configuration can be triggered to cre-
ate and store a decision signature for the running epoch.
Upon new iterations, the system could use the epoch ID to
automatically reinstate the optimal configuration using the
decision signatures stored by the previously seen epochs.

5.1 Epoch change detection
A pass from one epoch to the next occurs when all the exe-
cuting threads of a running program have reached a barrier.
We capture this global synchronization point by watching
a hardware flag that is toggled whenever a barrier is re-
leased. The “barrier-watch-flag” is exposed to the barrier
synchronization routine where is set/reset only by the last
thread reaching the barrier. (Figure 10). To support a hard-
ware flag, a trivial modification is required in the existing
libraries that implement the barriers. Note that no changes
are required to the source code of application. Whenever the
barrier-watch-flag signals a release of a barrier, a barrier
identity (IDBarrier), which is unique for each static barrier
call, is passed as a search key to the epoch table. The barrier
identity is the return address of the barrier routine (obtained
from the call stack), assuming that the barrier routine call
is not enclosed in tight wrapper functions.

5.2 Epoch table
The epoch table is a fully associative array that keeps the
epoch IDs of the already executed epochs along with a deci-
sion mask and a filter bit for each ID. It can be implemented
either as a software routine and linked with the program bi-
nary during compilation, or in hardware for fast adaptation
decisions. A modest number of entries are sufficient to ac-
commodate all the static epochs of a program (10 on average
and 24 in the worse case for the evaluated programs). The
ID field holds a tuple of two 8-bit barrier IDs (IDBEGIN

and IDEND) that correspond to the IDBarrier at the entry
and exit point of the epoch. On a lookup operation, the
search key is compared with each IDBEGIN of the table for

a match. If the entry is found, the decision signature, which
is assumed to keep the optimal configuration for that epoch,
will become available. The system can then use the decision
signature to configure the hardware as directed. The use of
the filter bit is to prevent, when necessary, the extraction of
the decision mask. This might be desirable in several cases.
For example, the decision mask might not yet exist or might
not yet have reached a confident stage.5 In another case,
discussed further in Section 5.3, the filter bit suppresses the
detection of very small epochs.

At the first instance of each epoch, no matching record is
found in the table. This “compulsory miss” will allocate a
new table entry, store the IDBarrier to the IDBEGIN field
and trigger an external process that will enable some kind of
monitoring policy for the running epoch (e.g., enabling some
hardware counters). At the end of the epoch, when the next
barrier is reached and before the new lookup operation is
performed, the new IDBarrier is stored in the IDEND field
and the execution is transfered to a decision algorithm that
evaluates the monitoring results, decides the best configura-
tion and saves the decision signature in the table entry.

The reason for keeping both IDBEGIN and IDEND in the
ID field is two-fold. The first has to do with the possibility
of having two different epochs with the same IDBEGIN . In
that case, the IDEND is required to identify a false positive
match. The second is that knowing the IDEND of the cur-
rent epoch allows us to predict the next epoch in the future.
Assuming that the current epoch ID is detected (i.e., the
IDBEGIN is known), a lookup at the same entry of the ta-
ble can retrieve the IDEND, which is the IDBEGIN of the
following epoch.

Two different epochs can have the same IDBEGIN if a con-
trol point can lead the execution path into different barriers
during different iterations. Such an example is illustrated
in Figure 2, where a branch after barrier C redirects the
execution to a previous point multiple times, before pro-
ceeding. In this case, epoch(C,B) and epoch(C,D) have the
same IDBEGIN . Such a case happens if an application uses
barriers at loop iteration boundaries.

Assuming that epoch(C,B) is recorded in the epoch ta-
ble, epoch(C,D) will be incorrectly identified as epoch(C,B)
during its first execution. To identify a false positive match,
the IDEND is compared with the IDBarrier when the epoch
reaches its exit point. The first false positive match of the
(few) epochs like epoch(B,B) is inevitable and a new table
entry will be allocated to accommodate the new epoch, as
if there was no match. The new entry will have the same
IDBEGIN but a different IDEND. The filter bit might need
to remain “set” until more iterations of the epoch are moni-
tored and the appropriate decision signature is determined.

The possibility of having more than one epochs with the
same IDBEGIN in the epoch table will result in lookups with
multiple matches. To avoid new false positives, we need to
accurately predict and pick the entry with the correct epoch
ID. A simple 2-bit branch prediction like scheme [27] is likely
to work well in this case, since the reoccurring sequence of
such epochs is based on a few easy-to-predict branch deci-
sions.6 To explore such a scheme, a 2-bit saturating counter
is added per entry. At the entry point of each epoch, if the

5Depending on the adaptation approach, a decision algorithm
may need more than one iterations to determine the signature.
6Although more than two matching entries can exist, no such
case was observed throughout our experiments.



Benchmark Num. dyn. epochs Num. mis-detected epochs
w/o pred. w/ 2-bit pred.

bodytrack 19 4 1
fluidanimate 39 0 0
streamcluster 7,569 2,139 4

barnes 8 0 0
fmm 33 1 1
lu 258 1 1

ocean 707 40 4
radiosity 17 2 2
water-ns 19 4 2

Table 3: Number of mis-detected epochs with and

without 2-bit prediction. Remaining epochs are detected

correctly if they already existed in the epoch table.

IDBarrier matches two different entries, then the entry with
the higher counter is picked. At the exit point, the predic-
tion is evaluated by looking for a match with the IDEND of
the picked entry. Based on the outcome of the evaluation,
the counters of both candidate entries are updated.

Table 3 shows the effectiveness of the prediction method.
Overall, the 2-bit predictor significantly reduces the mis-
detected epochs. There are plenty of prediction models that
can be used to further improve the accuracy of epoch de-
tection or handle multi-match cases [5, 28]. However, fully
exploring a large design space of such prediction mechanisms
is beyond the scope of this work.

The size of the epoch table is determined by the num-
ber of static epochs of the program. This number is typ-
ically small mainly because programming tactics generally
encourage balanced and limited use of global synchroniza-
tion points. Therefore, a possible hardware implementation
can offer fast table lookups with negligible area and power
overheads. A table with 24 entries (worst case in our ex-
periments) occupies less than 0.1KB of capacity, and can
be integrated on chip. If more space is required, a simple
displacement policy such as LRU is likely to perform well,
since there may be epochs that are used only once.

5.3 Avoiding small epochs
Adaptation actions during epochs that appear as “noise” be-
tween longer epochs may have no practical benefit. There-
fore, it is desirable for the epoch detection mechanism to
recognize them. A small epoch can be detected either by the
external process, which is called during the first instance of
the epoch, or by a dedicated hardware. In both cases, the de-
tection involves a calculation of the time difference between
the entry and exit point of the epoch and a comparison with
a predefined threshold (e.g., 50K cycles). After an epoch is
labeled as small, it can be avoided either by enabling the
filter bit of the corresponding entry or by not saving it in
the epoch table. Using the first approach, future instances
of the same epoch will automatically be classified as small
and no optimization action will be taken.

6. A CASE STUDY
In this section, we evaluate the effectiveness of epoch-based
adaptation in a CMP architecture with a case study. The
adaptation aims to optimize the energy and performance
trade-off using the Dynamic Voltage/Frequency Scaling (DVFS)
technique applied to the NoC [29]. NoC DVFS extends the
concept of per-core DVFS to per-router DVFS for conges-
tion and energy management. In this study, we consider
a simple NoC DVFS configuration in which all the routers

Caption Frequency Voltage

f100% 3 GHz 0.8 V
f75% 2.25 GHz 0.65 V
f50% 1.5 GHz 0.5 V
f25% 0.75 GHz 0.35V

Table 4: Frequency/voltage levels. The linear relation

between frequency and voltage is consistent with esti-

mates in [30,31].

of the network comply to the same voltage/frequency set-
ting at a given time. Although this strategy is less flexible
than per-router DVFS, it requires much smaller design and
implementation effort.

Changes in the NoC’s clock frequency shift performance
and power to opposite directions. Decreasing the frequency
leads to lower power consumption in the routers, but af-
fects negatively their congestion and processing speed. In
addition, operating the NoC in a lower frequency than the
processor cores can potentially incur network overloading
and result in significant performance penalties. Thus, care-
ful control of the NoC frequency is needed to exploit the
energy/performance trade-off.

We note that the purpose of this case study is not to pro-
pose a complete solution for the energy/performance man-
agement of the NoC; rather, we aim to demonstrate the ap-
plicability of our simple and low-cost approach in the context
of dynamic adaptation. Fully exploring the design space and
comparing against other adaptive techniques is beyond the
scope of this work.

6.1 Epoch-based Adaptation
We present two different implementations of epoch-based
adaptation. In the first one, off-line profiling determines the
frequency/voltage setting best suited for each epoch of the
application (“static scheme”). We perform a profile run for
each NoC voltage/frequency setting to record the execution
time (Df ) and energy consumed (Ef ) by each epoch (all
the combined dynamic instances of each epoch). Then, we
pick, for each epoch, the frequency/voltage level fx for which
Efx×Dfx is minimized, i.e., to hit the best trade-off between
energy and performance. The selected frequency level for
each epoch is then included in the binary of the application
as a decision signature. At run time and at the beginning
of every epoch instance, the signature is retrieved and the
NoC switches to the desirable frequency/voltage level.

In the second implementation, the epoch table and the
decision signatures are determined dynamically at run time
(“dynamic scheme”). A search for the best frequency level
is triggered at the first instance of each epoch. During this
period, all possible NoC voltage/frequency settings are ex-
amined by switching to a different frequency on a fix time-
interval basis within the epoch instance. Because the energy
and performance measurements for each frequency have to
be taken from different time intervals, we measure energy per
instruction (EPI) and cycles per instruction (CPI). Thus,
the best frequency fx for each epoch becomes the one that
minimizes CPIfx × EPIfx . The selected frequency is then
stored in the epoch table as a decision signature as described
in Section 5. Upon new iterations of the same epoch, the
signature is retrieved to adapt the system accordingly.

The static, profile-based approach is particularly suitable
to embedded and special-purpose environments where the



execution environment is known a priori. Clearly, the static
scheme is more effective than the dynamic scheme since opti-
mal decisions will be readily available at run time. However,
the dynamic scheme is more general and is applicable to a
wider range of environments. We note here that even in dy-
namic environments, users often tend to execute a limited
number of applications frequently, possibly solving similar
problems repeatedly. In this case, the user (or the OS) can
choose to store the applications’ epoch tables to a persistent
storage when they finish execution and pre-load them when
the applications run again. Such a strategy can further im-
prove the effectiveness of the epoch-based adaptation since
all compulsory misses in the epoch table will be eliminated.

6.2 Experimental Setup
The experiments are performed using the same simulation
environment as described in Section 3. In our simulator, the
NoC models a wormhole-switched network with determinis-
tic X-Y routing and ACK/NACK flow control. Data packets
consist of six 128-bit flits and control messages one flit. Each
router models a two-stage router pipeline and has 5 physical
channels (PCs) and 2 Virtual Channels (VCs) multiplexed
on each PC. We use a buffer size of 2 flits per VC.

For NoC DVFS, we assume four possible clock frequency
and voltage levels, as shown in Table 4. f100% represents the
maximum operating frequency of the NoC, which we con-
sider as the baseline frequency (no energy savings). DVFS
policies are triggered during epoch transitions; assuming on-
chip voltage regulators, we account 100 cycles for switching
overhead.7 For the dynamic implementation, we use 100k
sampling intervals and thus the per-epoch monitoring pe-
riod lasts at least 500K cycles—100k for warm-up + 100k
(at least one sample) per frequency level. During this pe-
riod, we keep high voltage and we switch only frequency,
therefore we account zero switching overhead, while the en-
ergy consumption for the corresponding frequency level is
estimated. Epoch instances are usually larger than 500k cy-
cles, so a large number of samples are taken per frequency.
When the first instance is smaller than 500k, the epoch is
considered too short and is marked with the filter bit; later
instances of the same epoch will be therefore skipped by the
epoch detection mechanism.

Power consumption is modeled with dynamic, leakage,
and background components. Dynamic power scales with
fV 2 and leakage power with V . Background power, rep-
resenting the cores and the rest of the system, is not in
the same clock domain and consumes a constant amount of
power. Leakage power consumption is assumed to be twice
that of dynamic power when operate at 1GHz, which is con-
sistent with estimates from Kim et al. [31]. Background
power is computed assuming that a loaded NoC at 1 GHz
consumes 30% of the total system power [32].

6.3 Results
Figures 11, 12, and 13 compare energy savings, execu-
tion slowdowns and energy-delay improvement, respectively,
between non-adaptive fixed frequency schemes and epoch-
based adaptation schemes, for the reference applications.
Results are shown with respect to the baseline scheme, where
the NoC operates at full frequency f100%.

7State-of-the-art on-chip voltage regulators can transition voltage
even faster (5ns) [30].
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Figure 11: Energy savings (relative to the baseline fixed

scheme f100%): Reducing the frequency/voltage of NoC

can result in overall energy savings.

As the NoC frequency decreases, the power consumed in
the NoC is reduced and the overall on-chip energy savings
are expected to grow. On the other hand, when NoC oper-
ates in lower frequencies, more time is needed for the appli-
cation to complete execution, making unclear whether the
benefits gained by the low-power NoC will result in system-
wide energy savings at run completion. For example, the
results show that when the NoC operates at f25%, the slow-
down is large enough to adverse the NoC power savings into
significant sytem energy loss. The same effect is also ob-
served occasionally for other sub-optimal fixed frequencies.
On average, all schemes exept f25% show energy savings at
the cost of performance.

Our results indicate the effectiveness of both, static and
dynamic epoch-based DVFS schemes, in adapting the sys-
tem into a more efficient state. In all cases, both adaptive
schemes show energy reductions for the least performance
degradation compared with the fixed schemes. The static
off-line scheme achieves about 13.1% energy savings on av-
erage, with 2% slowdown. The savings achieved by the dy-
namic on-line scheme for roughly the same average slowdown
are about 7.8%, which is around 60% of what the off-line
achieves. In general, the dynamic scheme follows closely
and consistently the effectiveness of the static scheme, in-
dicating the strength of the dynamic approach in capturing
correctly the changes in program behavior. In the case of
barnes and radiosity, where a single epoch is dominating
the execution, a wrong voltage/frequency adaptation deci-
sion for that epoch could significantly impact the results. As
figure 13 implies, both approaches reach the same decision
and successfully pick the optimal frequency.

Overall, our evaluation shows that the BarrierWatch ap-
proach is robust in detecting phase changes and adapting an
epoch-aware system effectively. The lightweight detection of
a phase change using epoch boundaries is limited, however,
to the epoch granularity. Further techniques are required if
changes within large multi-phase epochs need to be handled.
Apart from accurately detecting behavior shifts, the effec-
tiveness of an epoch-based adaptation strategy depends on
the accuracy of the decision signatures and the underlying
configurable hardware.

7. RELATED WORK
The concept of epoch as a code region was also introduced
by Choi et al. [34] to guide a compiler directed cache co-
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Figure 13: Energy-Delay improvement: The ED im-

provement is the product of energy and delay, normal-

ized to the baseline f100%. The higher the ratio is, the

more efficient a given scheme is.

herence scheme. According to their definition, epochs do
not have a static ID and therefore are not reoccuring. In-
stead, they represent the dynamic sequence of parallel loops
and serial sections of a program’s execution. This allows
them to use epochs for exploiting temporal and spatial lo-
cality across task boundaries by detecting accesses to the
same data during different epochs. In our work, we use the
notion of epochs to characterize the varying program behav-
ior rather than data between consequtive tasks, representing
reoccuring program phases with predictable behavioral pat-
terns.

Prior work has focused much less on characterizing and
detecting the time-varying behavior of multithreaded work-
loads than single-threaded ones. Some researchers have re-
cently studied the potential of extending previously estab-
lished phase detection techniques, primarily developed for
single-threaded workloads, to parallel ones [12, 17]. They
show how the existing profile-based phase classification meth-
ods are inaccurate in the domain of parallel applications and
accordingly propose a new set of metrics that can be used
to improve the phase-based simulation methodologies.

Single threaded program behavior has been studied and
exploited using both, region- and interval-based methods.
Code-region methods split the application’s code into sec-
tions that corresspond to possibly different program phases
and ensure that those sections can be effectively tracekd and
characterized at run-time. Balasubramonian et al. [3], and
Huang et al. [8] propose subroutines as a region granularity

in which program phases can be tracked effectively for the
purpose of dynamic adaptive optimization. They use a hard-
ware call stack to identify major program subroutines and
look for program changes by comparing the program behav-
ior across different subroutines. Magklis et al. [35] consider
also loop nests within long-running subroutines as possible
phases. However, they rely on a static profile-based method
to select the appropriate subroutines, loops, and settings for
reconficuration and they expose this information through
binary rewritting. Liu et al. [11] use a similar profile-based
approach to select representative subroutines and loops to
speed up detailed simulation. Other more recent studies use
profiling to identify other various locations in the code that
indicate phase changes, and propose to incorporate this in-
formation into the program binary as software phase mark-
ers [10,13,15].

Interval methods, on the other hand, divide an execution
into fixed-size instruction (or time) windows, characterize
past intervals using some architectural or code-based metric,
and predict future intervals using history information. Bal-
asubramonian et al. [3] use hardware counters to measure
miss rate and branch frequencies and they identify a be-
havioral change by comparing them with adjustable thresh-
olds on an interval basis. Their method is used to guide
dynamic cache reconfiguration to save energy. Dhodopkan
and Smith [6] use “working sets signatures” to characterize
each interval of execution and identify a phase change by
calculating a signature distance between consecutive time
intervals. To reduce re-optimization overhead, they store a
configuration for every signature and reinstate it when in-
tervals with the same signature occur. Sherwood et al. [16]
represent program behavior using interval-based basic block
vectors (BBVs) and employ off-line clustering to classify
regions of program execution into phases. In a follow-up
work, they extend their approach with a hardware support
for dynamic phase detection [7]. Lau et al. [14] investigate
other code-related metrics for capturing program phases,
such as loop, procedure, and register usage vectors. Isci and
Martonosi [4], and Duesterwald et al. [5] have thouroughly
shown the potential of using hardware performance coun-
ters to dynamically detect and predict changes in program
behavior. Intervals have been studied in various scales, e.g.,
from 100K [3] to 10M instructions [16]. Vandeputte and
Eeckhout [33] present“phase complexity surfaces”as a method
to systematically characterize a program’s phase behavior in
different time scales.

All above work studies the behavior of single-threaded
programs. Our focus in this paper is a simple effective ap-
proach to characterizing multithreaded workloads.

8. CONCLUSIONS
In this paper we have presented a characterization study of
multithreaded workload behavior across and within program-
defined epochs. Being a globally defined code section across
all running threads, epochs are a natural granularity for ex-
amining the time-varying behavior of multithreaded work-
loads. Our analysis reveals that epochs repeat with strong
behavioral similarity, while their boundaries indicate a sig-
nificant behavioral change. Based on this observation, we
propose BarrierWatch as an effective and lightweight tech-
nique for dynamically detecting and predicting changes in
program behavior with the epoch granularity. Desirable
properties of our approach include: being independent from



the underlying architecture, requiring no monitoring and
sampling of fine-grained fixed execution intervals, naturally
adopting variable-length intervals, being amenable for low-
cost implementation and deployment, and finally being ap-
plicable to many multithreaded workloads written with bar-
rier synchronizations.

Detecting changes in program behavior is essential for
adaptive program optimization, both static and dynamic.
BarrierWatch provides a simple elegant approach to captur-
ing the varying behavior of multithreaded programs. We
anticipate that our approach will open up new opportuni-
ties for up-to-bottom run-time optimizations and effective
resource management in future CMPs.
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