
Achieving Predictable Performance with On-Chip Shared

L2 Caches for Manycore-Based Real-Time Systems

Sangyeun Cho, Lei Jin, and Kiyeon Lee
Department of Computer Science

University of Pittsburgh
{cho,jinlei,lee}@cs.pitt.edu

Abstract

Doubling the number of processing cores on a sin-
gle processor chip with each technology generation has
become conventional wisdom. While future manycore
processors promise to offer much increased computa-
tional throughput under a given power envelope, shar-
ing critical on-chip resources, such as caches and core-
to-core interconnects, poses challenges to guarantee-
ing predictable performance to an application program.
This paper focuses on the problem of sharing on-chip
caching capacity among multiple programs scheduled to-
gether, especially at the L2 cache level. Specifically,
two design aspects of a large shared L2 cache are con-
sidered: (1) non-uniform cache access latency and (2)
cache contention. We observe that both the aspects
have to do with where, among many cache slices, a
cache block is mapped to, and present an OS-based ap-
proach to managing the on-chip L2 cache memory by
carefully mapping data to a cache at the page gran-
ularity. We show that a reasonable extension to the
OS memory management subsystem and simple archi-
tectural support enable enforcing high-level policies to
achieve application performance isolation and improve
program performance predictability thereof.

1 Introduction

The unprecedented technology advances, commonly
referred to as Moore’s law, have enabled packing over
a billion transistors on a single processor chip [4]. It
is further projected that the rate of device scaling will
be sustained for the foreseeable future [12]. In the era
of billion-transistor chips, integrating multiple proces-
sor cores has become a clear and natural architectural
choice of mainstream microprocessors [3, 18, 24], be-
cause the performance scalability of a single processor

by pushing for higher clock frequency and instruction-
level parallelism is running out of steam, and the power
and energy consumption is the single most critical de-
sign constraint [4, 12]. It is now conventional wisdom
to double the number of processor cores on a chip with
each silicon technology generation.

While one may view new multicore processors as a
miniature of existing shared-memory multiprocessors,
the very fact that more system components are inte-
grated on a single die renders widely different design
constraints and therefore design practices. For exam-
ple, many multicore processors implement a logically
shared, yet physically distributed L2 cache organiza-
tion to maximize the on-chip memory utilization and
aggregate bandwidth [11, 18, 24]. Generalized, router-
based on-chip networks are seriously considered for
adoption [19]. Today, exploring the design space of
and optimizing on-chip L2 caches and networks is an
active research area [5–8,13, 14, 16, 17, 20, 22, 28].

We note that employing increasingly more shared
hardware resources will make performance prediction
on a manycore processor harder, exemplified by the
following examples, where, we assume a “tiled” pro-
cessor having a fine-grained shared cache design sim-
ilar to [18] and [28], and a 2D mesh network similar
to [19]. Figure 1(a) depicts the layout of a tiled many-
core processor. First, where a program runs, among
many processor cores, will affect its performance. This
performance asymmetry with regard to program loca-
tion is caused by the changed cache access latency, as
shown in Figure 1(b) and (c). Processor cores located
closer to the center of the network (e.g., processor cores
labeled “A”) will have a smaller average cache access
latency than processor cores on the periphery of the
chip (e.g., cores labeled “C”). Even without any poten-
tially conflicting co-scheduled processes, an OS process
scheduling decision alone can affect a program’s perfor-
mance. Figure 1(c) further shows that the cache hit la-



Tj+1 Tj+2 Tj+3

Tk+3Tk+2Tk+1Tk

Tj

Ti Ti+1 Ti+2 Ti+3

T3T2T1T0

Proc. L1 $

switch

L2 $ slice

D
ir
e
c
to
ry

(a)

C

B

A

A

A

A

BB

BB

B

B

BC

C C

0

40

80

120

160

200

16 tiles 64 tiles 256 tiles 1024 tiles

A
v
g
. 
C

a
c
h
e
 H

it
 L

a
te

n
c
y
 (
c
y
cl

e
s)

Center tile (best case)

Tile 0 (worst case)

(b) (c)

Figure 1. (a) A tiled manycore processor. (b) Three groups of cores having the same average L2 cache
hit latency. (b) Average cache hit latency in processors having 16–1024 tiles. Results for the best and
worst cases are shown. A mesh network with a 5-cycle hop delay and a cache memory with a 12-cycle hit
latency are assumed. Cache blocks are interleaved to all caches [18,24,28].

tency gap between a center tile and a tile on the chip’s
angular point widens as the number of cores grows.

Second, uncoordinated, “free contention” at vari-
ous shared resources, such as network routers and L2
caches, will impact performance predictability. Since
the network traffic patterns seen by each router will
depend on the temporal and spatial interleaving of pro-
cesses on all processor cores, it is typically very difficult
to accurately estimate or predict the impact of con-
tentions at routers on a specific program’s performance.
Likewise, contentions at the L2 cache level have been
considered as the key factor affecting the program per-
formance variability [17,21]. As large as a 5× response
time difference has been reported, due to unmanaged
sharing of L2 cache resources when only two programs
are co-scheduled.

In this paper, we are concerned with the perfor-
mance variability caused by sharing L2 caches among
multiple programs in a tiled manycore processor.
Given a distributed L2 cache organization (such as
the one in Figure 1(a)), our goal is to utilize the
caching capacity flexibly, in order to (1) allocate an
adjustable amount of caching space to each program
(i.e., “on-demand cache resource provisioning”); (2) al-
locate caching space close to the program location for
improved performance (i.e., “program-data proximity”
awareness); and (3) limit the performance interference
due to contentions at L2 caches among co-scheduled
programs (i.e., “performance isolation” [27]). Cur-
rently practiced industry designs largely lack capabili-
ties to attain these properties.

Our current approach to achieving the above goal
is centered on the idea of explicit data mapping via a
hardware-software collaborative way. Previously, we

observed that if the physical address to L2 cache slice
mapping is done at the page granularity, the OS con-
trols where a cache block is mapped to, when it maps a
physical page to a virtual page [7,14]. We also showed
that simple hardware support allows the OS to more
freely map data to different cache slices, and cache
block to cache slice mapping information can be re-
trieved and used without paying extra latency. Based
on this framework, this paper discusses several design
and management strategies to realize high-level poli-
cies governing the on-chip L2 cache usage. Our main
conclusion is that the studied approach provides an ef-
ficient mechanism to manage the distributed shared L2
caches in a manycore processor in terms of performance
isolation, as well as performance improvement.

The rest of this paper is organized as follows. To
form adequate background, Section 2 summarizes the
current L2 cache management approaches, namely, pri-
vate cache and shared cache. Section 3 describes our
approach – managing distributed shared L2 caches via
two-dimensional page coloring, followed by a quantita-
tive evaluation in Section 4. Conclusions will be sum-
marized in Section 5.

2 Private Cache vs. Shared Cache

There are two baseline L2 cache design and manage-
ment approaches in current-generation multicore pro-
cessors: private caching and shared caching. Each pri-
vate cache, as depicted in Figure 2(a), is associated
with and dedicated to a specific processor core [1, 26].
When there is a miss in the L1 cache of a core, a request
is sent to its private L2 cache. If the access happens to



(b)(a)

interconnect

to memory

L1 $

L2 $

L1 $

L2 $

to memory

interconnect

L2 $

L1 $

L2 $

L1 $

P PPP

Figure 2. Conceptual view of (a) a private cache
design and (b) a shared cache design.

miss in the L2 cache, the missing block will be always
brought into the cache. This automatic data attrac-
tion allows processors to access data quickly thereafter,
leading to a low average cache hit latency. However,
the limited per-core cache capacity in this scheme may
incur many capacity misses, resulting in expensive off-
chip memory accesses and degraded performance.

Shared caches form a single logical cache by hav-
ing each cache slice accept only an exclusive subset
of all memory blocks and allowing accesses from all
processor cores to all cache slices, as shown in Fig-
ure 2(b) [11, 18, 24]. Typically, memory blocks are
mapped to a cache slice based on a simple arithmetic
function (e.g., modulo) defined on the memory block
address. When there is an L1 cache miss, therefore,
the L2 cache slice to access is uniquely determined by
inspecting the missed address. Overall, a shared cache
design will result in better utilization of on-chip caching
capacity than a private design because memory blocks
and cache accesses are finely distributed over a large
caching space. Unfortunately, the average L2 cache hit
latency will be longer than that of a private cache.

We note that the two caching schemes result in a dif-
ferent degree of program performance variability; be-
cause it does not allow sharing of caching space, the
private cache scheme leads to limited performance in-
terferences between programs. On the other hand, pro-
grams running on the shared cache may exhibit large
performance variability. Figure 3 shows how the execu-
tion time of a program is affected by running other pro-
grams together. We limited the number of co-scheduled
programs to ensure that program execution time is af-
fected mainly by the sharing of the L2 cache. It is
clearly shown that the execution time of a program
on a shared L2 cache is susceptible to variability. Ac-
cordingly, the focus of this paper is on achieving low
performance variability when a program with real-time
constraints is running on a manycore processor employ-
ing a distributed shared L2 cache.

0

50

100

150

200

250

a
rt

+
 1

 m
c
f

+
 3

 m
c
f

+
 5

 m
c
f

+
 7

 m
c
f

a
rt

+
 1

 g
z
ip

+
 3

 g
z
ip

+
 5

 g
z
ip

+
 7

 g
z
ip a
rt

+
 1

 g
c
c

+
 3

 g
c
c

+
 5

 g
c
c

+
 7

 g
c
c

E
xe

c
u
ti

o
n
 t

im
e
 (

se
c
o
n
d
s)

Figure 3. Program execution time of the program
“art” (image recognition) in the SPEC2k bench-
mark, when run alone or with a variable number
of other programs. The processor used is T1 [18],
an 8-core chip with a 3MB shared L2 cache.

There are two streams of work related to this paper.
The first set of work tries to overcome the non-uniform
cache access latency of a large shared cache [16], by
balancing between the private caching and the shared
caching approach [6, 13, 28]. For instance, Zhang and
Asanović [28] proposed victim replication based on a
shared L2 cache organization, where each L2 cache
slice can keep a replaced cache block from its local L1
cache as well as the designated cache blocks. Jin and
Cho [13] showed that careful mapping of data to cache
slices considering both data proximity and cache miss
rate leads to superior program performance to the ex-
isting, private and shared caching schemes. Especially,
they presented a profile-driven framework for finding
an optimal data to cache slice mapping.

The second set of work considers cache partitioning
techniques to achieve fairness (i.e., same performance
degradation due to interference) among a small num-
ber of co-scheduled programs or improve the overall
throughput by limiting interferences [10,17,22]. Kim et
al. [17] defined and evaluated five cache fairness metrics
and studied cache partitioning algorithms. They found
that enforcing fairness usually leads to better overall
throughput. The utility-based partitioning technique
in [22] monitors programs’ cache usage and partitions
the cache based on the obtained usage information.
They reported a throughput improvement of 11% over
the conventional, unmanaged shared caching scheme.
Iyer [10] presented a cache management framework for
achieving priority-based QoS in shared L2 cache. The
proposed mechanism includes set partitioning, which
is also used in [17, 22]. These works do not consider
performance isolation, however.



3 Flexibly Managing Shared L2 Caches

The cache management issues considered in this pa-
per – unpredictable and increased cache latency due
to fine-grained data distribution and performance vari-
ability due to capacity sharing – are both closely re-
lated with the basic question of “where do we map
a cache block, among many cache slices?” If we are
given a mechanism for defining mapping between data
and cache slices and for efficiently exploiting the map-
ping information on frequent events such as L1 cache
misses, we can implement high-level policies describing
how the L2 cache should be used by a set of programs.

3.1 Creating data to cache mapping

In our proposed approach, we create a data to cache
slice mapping at the granularity of a memory page on
a page allocation event in the OS. This mapping gran-
ularity allows efficient handling of the mapping data
within the OS and the hardware (e.g., TLB) [7, 14].

Now, let us introduce the notion of cache bin. A
cache bin is a smallest group of cache sets which would
hold an entire memory page, as depicted in Figure 4(a).
The number of cache bins in a cache is simply the cache
size divided by the product of the page size and the as-
sociativity (i.e., bin capacity). We note that picking
up a specific cache bin will in turn decide the cache
slice holding the cache bin (i.e., there are multiple
cache slices and each cache slice holds multiple cache
bins). Given this, to be more accurate in describing
our scheme, we assign a cache bin to a memory page,
so that cache blocks belonging to the memory page are
mapped to the cache bin. While this mapping is deter-
mined at the time of page allocation, actual installation
of cache blocks will occur on cache misses. Judicious
memory page to cache bin mapping has been used to re-
duce conflict misses in a conventional L2 cache [15,23].

The created mappings need be kept in the OS and
also stored in a hardware structure for fast look-up.
Figure 4 presents a TLB design extended with the
cache bin number per memory page. Because the map-
ping information is available by the time an L1 cache
miss is detected, the necessary L2 cache request can be
immediately launched to the correct target cache slice.
Assuming 8kB pages, an 8-way 4MB cache has 64 bins,
and each bin can be addressed with a 6-bit number.

3.2 Two-dimensional page coloring

We call the mapping action involving a memory
page and a cache bin in a manycore processor two-
dimensional page coloring, because the mapping deter-

(b)

way 0 way 1 w. (K-2) w. (K-1)

page size

cache bin 0

cache bin i

cache bin (N-1)

(a)

Virtual Page # Physical Page #V Cache Bin #
Virtual Page # Physical Page #V Cache Bin #

virtual page # physical page #v cache bin #

=

virtual page # page offset

virtual address

match? TLB

physical page # page offset

physical address

L2 cache

memory

Figure 4. (a) Set-associative cache and cache bins.
(b) TLB extended with a (global) cache bin number.

mines not only the cache slice (i.e., dimension 1), but
also the bin within the cache slice (i.e., dimension 2),
as we discussed in the previous subsection. The first di-
mension differentiates our scheme from traditional page
coloring techniques [15, 23] in that it changes the dis-
tance between the program and the mapped data. The
second dimension will determine the actual cache shar-
ing between the two pages mapped to the same cache
slice. It is important to notice that two memory pages
mapped to a different cache bin will never compete
with each other over cache capacity.

The two-dimensional page coloring can be used for
achieving various high-level cache management goals.
We have shown in our previous work [7] that the pri-
vate cache scheme, the shared cache scheme, and the
clustered, hybrid cache scheme [9] can be emulated in
a rather straightforward way. Optimizing both the di-
mensions (i.e., data proximity and cache miss rate)
leads to better performance than what simple private
and shared caching schemes can bring [13]. Cache slices
or cache bins carrying hardware faults can be made off-
line and their impact masked by not mapping pages
to them [14]. Likewise, by allocating exclusive sets of
cache bins to potentially competing programs, the per-
formance interference between them can be reduced.

In the following two subsections, we will highlight
strategies to estimate and achieve the best performance
from a program given the cache capacity, and to achieve
performance isolation.



3.3 Profile-driven performance optimization

In this subsection, we consider the following two
questions: (1) “what is the minimum number of cache
bins needed to obtain a near-peak performance level
given an application?” and (2) “given a manycore pro-
cessor organization (esp. cache slices and network) and
an application, how can we create the page to cache bin
mappings to achieve the highest performance?” The
first question is important for cache capacity provision-
ing and working set aware process scheduling, and the
second question is important for optimizing individual
programs. We will limit our discussions to an off-line,
profile-driven approach here.

Answering the first question with profiling is rela-
tively straightforward; give the largest number of cache
bins to the application to obtain the peak performance
first, and change the number of cache bins and repeat
experiments to obtain a curve. One can utilize a search
method (e.g., binary search) or a multi-configuration
simulation technique to make the process faster.

The second question is much more involving, and we
adopt a methodology with three phases: trace gener-
ation, trace analysis and generating mappings. In the
trace generation phase, memory references of the tar-
get program are collected. To accurately capture the
related cost in the trace analysis phase, we collect only
L2 cache references. In the trace analysis phase, we
count the number of references to different pages and
the number of inter-page conflicts, with the scope of
the whole trace. The inter-page conflict information is
used in the last phase when estimating the potential
cache misses caused by placing a page to a cache bin.
The first two phases are motivated and derived from
an earlier work by Sherwood et al. [23].

The main idea of our algorithm is to minimize the
overall cost of L2 cache accesses by iteratively com-
puting the cost of assigning a particular page to all
cache bins and selecting the cache bin with the small-
est computed cost. Obtaining the cache access cost
involves calculating both aggregate cache access laten-
cies given the page location and the memory access
penalties due to conflict misses. While the number of
references per page is easily obtained given the mem-
ory reference trace, computing the number of conflicts
between pages is impossible before they are assigned a
cache bin. To tackle this complication, we assume that
if there are two references to page A and B and there
is no other reference to page B in between, these two
references can potentially cause a conflict miss if page
A and page B are placed in the same cache bin [23].

We define two matrices Reference[][] and Conflict[][],
each of which keeps track of temporal relationships

while trace is not empty {

get the next reference R from trace

PI = array index of the page accessed by R

for (i = 0; i < total number of pages; i++) {

Reference[i][PI] = 1;

if (Reference[PI][i] == 1) {

Conflict[PI][i]++;

Reference[PI][i] = 0;

}

}

}

Figure 5. The algorithm to extract conflict informa-
tion from a reference trace.

among references and counts the number of potential
conflicts between any pair of pages, respectively. To
update the matrices, references in the trace are pro-
cessed one by one, as shown in Figure 5. For each ref-
erence, the column bits in Reference[][] corresponding
to the accessed page are set to 1. All the bits in the row
corresponding to the same page are then checked. Any
bit previously set to 1 indicates that the current refer-
ence can cause a conflict with this previous reference.
After all the references are processed, Conflict[i][j] will
contain the number of potential conflicts when page i
and j are mapped to the same cache bin. Note that
the numbers in Conflict[][] are over-estimations as the
conflicts are summarized for each page.

Given Conflict[][] and other necessary microarchitec-
tural parameters, we can start mapping pages to cache
bins. Since the page coloring problem is in general
NP-complete [15], we adopt a heuristic approach to
make the computation tractable. Our coloring algo-
rithm evaluates pages from the one with the largest
number of accesses and proceeds in a decreasing order.
The cost of assigning a particular color or bin C to a
page P is computed by the following cost function:

Cost(P,C) = α × TotalConflicts(P,C)× MemLatency

+ (1 − α) × TotalAccesses(P)

× (L2Latency + NoCDelay(C)) (1)

In the above equation, TotalConflicts(P,C) is given as∑
Conflict[P][Xi]/N for any page Xi already mapped to

C. N stands for the number of pages that have been al-
located to the cache bin. Without losing generality, we
assumed in the above that the program location is fixed
(and thus not shown) for the clarity of presentation.

Since TotalConflicts(P) is an estimate, we introduce
a parameter α to mitigate the inaccuracy. α also con-
trols the page aggregation density. With a smaller α,
more weight is put on NoCDelay(), thus placing pages
closer to the program location. As such, when α is 0,



the algorithm simulates a private cache. On the other
hand, with α equal to 1, the algorithm simulates a
shared cache, ignoring the network latency. The pro-
cess of assigning a cache bin to a page using the above
cost function is repeated until all pages are colored.
The derived color assignment information is then used
to direct the OS page allocations at run time.

3.4 Cache performance isolation

Due to its flexibility in managing a shared L2 cache,
the proposed approach provides a simple and elegant
way of achieving desired performance isolation, given
a set of co-scheduled programs: Provide each program
with its own, private cache by not sharing cache bins
among the programs. To obtain good performance and
not to introduce performance interference due to con-
tentions at network routers, one will strive to map data
belonging to a program to its local cache slice or cache
slices near to the program. Hitting in a local cache slice
does not generally create traffic on the network.

Cache partitioning assisted by the proposed two-
dimensional page coloring is different from the pre-
viously proposed horizontal, within-set partitioning
scheme [10,17,22] in several important ways. First, the
proposed scheme can accommodate potentially more
programs than the horizontal partitioning scheme, be-
cause the maximum number of partitions is limited by
the number of cache bins in the former case (e.g., 64
bins in a 4MB cache) and cache’s associativity in the
latter case (e.g., 8 ways). Second, the proposed scheme
allows us to simultaneously consider controlling capac-
ity sharing and traffic flow (i.e., two dimensions), in or-
der to minimize performance variability, while the hor-
izontal scheme alone does not. Note that contentions
in network routers, as well as a cache slice, can af-
fect program performance. Lastly, partitioning-related
actions occur much more frequently in the horizontal
partitioning scheme, as often as each cache block instal-
lation event. On the other hand, the proposed scheme
allocates a cache bin on a page mapping event and
does not further require hardware or software support
to maintain partitions. In summary, due to their gener-
ally different operating requirements and effectiveness,
we consider them complementary to each other.

4 Quantitative Study

In this section, we study the efficacy of the profile-
guided static mapping scheme (Section 3.3) in overcom-
ing non-uniform cache access latencies and the perfor-
mance variability of several programs under different
cache management schemes (Section 3.4).

4.1 Experimental setup

We extended the SimpleScalar tool set (v3.0) [2] to
model a tile-based multicore processor on a 2D mesh.
The baseline processor configuration is (4×4) tiles,
where each tile has a processor with private L1 caches
and a globally shared L2 cache slice. The modeled pro-
cessor is either a 4-issue out-of-order or a single-issue
in-order processor. The 32KB, 2-cycle L1 caches are 2-
way associative and the 8-cycle L2 cache slice is 4-way
associative and 256KB in size. Cache blocks are 64B
(L1) and 128B (L2). A miss in an L1 cache triggers a
request sent through the on-chip network to a target L2
cache. Each hop in the network takes 5 cycles and the
main memory latency is 300 cycles. Otherwise stated,
a program always runs on tile 5. We use 11 integer
and 7 floating-point programs from the SPEC2k CPU
suite [25] as workloads. After a fast-forward period of
500M instructions and a warm-up period, we collect
statistics during a period of 800M instructions.

To study the performance variability of a program in
a controlled manner, we introduce a synthetic bench-
mark program called ttg (tunable traffic generator),
which generates a continuous stream of memory ac-
cesses. We can adjust the working set size of ttg,
the rate of memory accesses injected into the network
and memory system, and the level of contention within
shared cache slices. During actual simulations, we run
a target benchmark on core 5 and ttg on all the other
cores and homogeneously change each ttg’s parameters
to stress the target benchmark less or more.

4.2 Performance of static 2D page coloring

Figure 6 shows the performance of the conventional
private caching scheme (“Private”), the conventional
shared caching scheme (“Shared”) and our “Static2D”
(Section 3.3). Results are relative to the baseline
shared caching scheme (“SharedBase”) and simple page
coloring with no profile information. We use an ag-
gressive profile-guided page coloring technique [23] for
Private and Shared for fair comparison.

It is shown that Static2D consistently outperforms
Private and Shared. The performance of Private often
suffers due to the relatively small cache slice size of
256KB; vpr, twolf, art and ammp are among the most
affected. We observed a high L2 cache miss rate in
these programs, which cannot be simply compensated
by L2 cache latency savings. On the other hand, Shared
always shows better performance than SharedBase by
reducing conflict misses (but not access latency). Pro-
grams like mcf, swim and mgrid benefit much from
the miss rate reduction and achieve over 50% perfor-



S
p

e
e

d
u

p
o

v
e

r
S

h
a

re
d

B
a

s
e

0.0

0.5

1.0

1.5

2.0

2.5

private w/ profiling

shared w/ profiling

static 2D coloring

gzip vpr gcc mcf crafty parser eon gap vortex bzip2 twolf wupwise swim mgrid mesa art equake ammp g-mean

2.91 2.58

Figure 6. Program performance of Private, Shared, and Static2D.

mance improvement. Static2D achieves higher perfor-
mance than both Private and Shared by balancing cache
miss rate and cache access latency. swim is a notable
exception, for which Shared achieves a better miss rate
than Static2D due to its fine-grained block interleav-
ing. On average, Static2D achieves 38.2% performance
improvement over SharedBase, 18.5% over Shared, and
74.5% over Private.

Figure 7 shows how performance of different schemes
scales when the cache slice size or the tile count is var-
ied. When cache slices are small, miss rate is the dom-
inant performance factor and Private performs poorly.
As we increase the cache slice size, however, the gap be-
tween Private and Shared decreases and Private begins
to outperform Shared at 2MB, where cache access la-
tency becomes a determining factor. Though not plot-
ted, Private and Static2D will merge finally and Shared
will approach 1 (i.e., degenerate to SharedBase) as we
increase the cache size indefinitely. When there are
more tiles on a chip, the average cache access latency
of Shared and SharedBase grows (also shown in Fig-
ure 1(c)). Shared is shown to approach 1 as we add
more tiles since latency becomes the dominant factor
and the benefit of profile-guided coloring becomes neg-
ligible. By comparison, the performance of Private and
Static2D is largely insensitive to the addition of tiles.
Private begins to outperform Shared due to the perfor-
mance degradation of Shared in larger-scale chips.

4.3 Program performance variability

Figure 8 presents four programs’ performance vari-
ability under four different cache management schemes
at different contention levels. Programs used are: gzip
(compression), art (image recognition), eon (visualiza-
tion), and vortex (OODB). Examined cache manage-
ment schemes are: 2DPriv (all pages allocated to the lo-
cal cache slice, protected against sharing), 2DSpread20

0

1

2

3

4

16 tiles 64 tiles 256 tiles 1024 tiles

prvivate w/ profiling

shared w/ profiling

static 2D coloring

0.0

0.5

1.0

1.5

128k 256k 512k 1M 2M

prvivate w/ profiling

shared w/ profiling

static 2D coloring

S
p

e
e

d
u

p
o

v
e

r
S

h
a

re
d

B
a

s
e

(a) (b)

Figure 7. Program performance (average of all
studied programs) when (a) cache slice size is var-
ied and (b) tile count is varied.

(20% of pages allocated to other nearby cache slices,
protected against sharing), 2DSpread60 (60% of pages
spread to other nearby cache slices, protected against
sharing), and SharedBase (conventional shared caches
with cache block interleaving). We use four contention
levels: “no contention” (ttg is dormant), “low con-
tention” (ttg generates a non-local cache access every
1500 cycles), “mid contention” (every 300 cycles), and
“high contention” (every 60 cycles). The parameters
were chosen after studying various program character-
istics of the SPEC2k benchmark. We used a single-
issue processor model in this experiment to emphasize
the impact of contention on program performance.

We make the following observations from the re-
sult. First, as we expected, the performance of Shared-
Base suffers much from contention, more severely at
a higher contention level. Especially, art experienced
performance degradation of over 70% under the high
contention level. Other programs saw 5–26% perfor-
mance variability. Clearly, a great deal of care must be
taken to guarantee performance when an application
with real-time constraints runs on a manycore proces-
sor employing shared caches. Second, across all the
studied programs, 2DPriv isolates target program per-



Figure 8. Performance variability of four programs, when contention level is adjusted from “no contention”
(left) to “high contention” (right).

formance robustly; target program’s performance is not
sensitive to ttg behaviors. Of course, this does not nec-
essarily mean that the performance of 2DPriv is better
than that of other schemes (as can be deduced from
Figure 6). The other two schemes, 2DSpread20 and
2DSpread60, show that even when the cache space for
an application is protected, depending on the location
of the cache slices used, performance variability exists.
The possible causes are contention at network routers
and contention at cache ports. The performance vari-
ability manifested in 2DSpread60 is somewhat more
pronounced than that of 2DSpread20, as more accesses
have to travel on the on-chip network in 2DSpread60.

To summarize, the studied performance isolation
scenarios using the proposed two-dimensional page
coloring technique (2D*) showed limited performance
variability, within 6% for the studied programs, even
under a high contention level. We expect that our
approach can provide a differentiated, QoS-aware pro-
gram execution environment on a manycore processor
with distributed, yet shared L2 caches.

5 Conclusions

This paper studied the performance variability issue
in a manycore processor employing distributed, shared
L2 caches. In order to effectively utilize the large L2

cache capacity in a manycore processor and to achieve
desired performance isolation among co-scheduled pro-
grams, we argued that explicit mapping of data to a
cache slice is instrumental. We further showed that
a synergistic, OS-architecture framework to flexibly
map data to L2 cache slices at the page granularity
provides a mechanism for us to efficiently implement
on-demand L2 cache capacity allocation, performance-
aware capacity allocation, and performance isolation at
the same time.

Our future work includes (1) exploring the design
space of a dynamic page coloring scheme for perfor-
mance isolation; and (2) studying the interplay of pro-
cess scheduling and various data mapping schemes.

References

[1] AMD Dual-Core Processors. http://www.amd.com.

[2] T. Austin, E. Larson, and D. Ernst. “SimpleScalar: An In-
frastructure for Computer System Modeling,” IEEE Com-
puter, 35(2):59–67, Feb. 2002.

[3] S. Borkar et al. “Platform 2015: Intel Processor and Plat-
form Evolution for the Next Decade,” Tech.@Intel Mag.,
Mar. 2005.

[4] D. Burger and J. R. Goodman. “Billion-Transistor Architec-
tures: There and Back Again.” IEEE Computer, 37(3):22–
28, Mar. 2004.



[5] J. Chang and G. S. Sohi. “Cooperative Caching for
Chip Multiprocessors,” Proc. Int’l Symp. Computer Arch.
(ISCA), pp. 264–276, June 2006.

[6] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Optimiz-
ing Replication, Communication, and Capacity Allocation
in CMPs,” Proc. Int’l Symp. Computer Arch. (ISCA), pp.
357–368, June 2005.

[7] S. Cho and L. Jin. “Managing Distributed, Shared L2 Caches
through OS-Level Page Allocation,” Proc. Int’l Symp. Mi-
croarchitecture (MICRO), pp. 455–465, Dec. 2006.

[8] J. Huh, D. Burger, and S. W. Keckler. “Exploring the Design
Space of Future CMPs,” Proc. Int’l Conf. Parallel Arch. and
Compilation Techniques (PACT), pp. 199–210, Sep. 2001.

[9] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. “A NUCA Substrate for Flexible CMP Cache Shar-
ing,” Proc. Int’l Conf. Supercomputing (ICS), pp. 31–40,
June 2005.

[10] R. Iyer. “CQoS: A Framework for Enabling QoS in Shared
Caches of CMP Platforms,” Proc. Int’l Conf. Supercomput-
ing (ICS), pp. 257–266, June 2004.

[11] Intel. “A New Era of Architectural Innovation Arrives with
Intel Dual-Core Processors,” Tech.@Intel Mag., May 2005.

[12] ITRS (Int’l Technology Roadmap for Semiconductors).
2005 Edition. http://public.itrs.net.

[13] L. Jin and S. Cho. “Better than the Two: Exceeding Private
and Shared Caches via Two-Dimensional Page Coloring,”
Proc. Int’l Workshop Chip Multiprocessor Memory Systems
and Interconnects (CMP-MSI), Feb. 2007.

[14] L. Jin, H. Lee, and S. Cho. “A Flexible Data to L2 Cache
Mapping Approach for Future Multicore Processors,” Proc.
Workshop Memory Systems Performance and Correctness
(MSPC), pp. 92–101, Oct. 2006.

[15] R. E. Kessler and M. D. Hill. “Page Placement Algorithms
for Large Real-Indexed Caches,” ACM Trans. Computer
Systems (TOCS), 10(4):338–359, Nov. 1992.

[16] C. Kim et al. “An Adaptive, Non-Uniform Cache Structure
for Wire-Delay Dominated On-Chip Caches,” Proc. Int’l
Conf. Arch. Support for Prog. Lang. and Operating Systems
(ASPLOS), pp. 211–222, Oct. 2002.

[17] S. Kim, D. Chandra, and Y. Solihin. “Fair Cache Shar-
ing and Partitioning in a Chip Multiprocessor Architecture,”
Proc. Int’l Conf. Parallel Arch. and Compilation Techniques
(PACT), pp. 111–122, Sep. 2004.

[18] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara:
A 32-Way Multithreaded Sparc Processor,” IEEE Micro,
25(2): 21–29, Mar.-Apr. 2005.

[19] M. LaPedus. “Intel tips teraflops programmable processor,”
EETimes, Sep. 26 2006.

[20] N. Muralimanohar and R. Balasubramonian. “Interconnect
Design Considerations for Large NUCA Caches,” Proc. Int’l
Symp. Computer Arch. (ISCA), June 2007.

[21] D. Newell. “Workloads, Scalability, and QoS Considerations
in CMP Platforms,” Keynote, Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), Apr. 2007.

[22] M. K. Qureshi and Y. N. Patt. “Utility-Based Cache Par-
titioning: A Low-Overhead, High-Performance, Run-Time
Mechanism to Partition Shared Caches,” Proc. Int’l Symp.
Microarchitecture (MICRO), pp. 423–432, Dec. 2006.

[23] T. Sherwood, B. Calder, and J. Emer. “Reducing Cache
Misses Using Hardware and Software Page Placement,”
Proc. Int’l Conf. Supercomputing (ICS), pp. 155–164, June
1999.

[24] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer,
and J. B. Joyner. “POWER5 system microarchitecture,”
IBM J. Res. & Dev., 49(4/5):505–521, July/Sep. 2005.

[25] SPEC. http://www.specbench.org.

[26] T. Takayanagi et al. “A Dual-Core 64-bit UltraSPARC Mi-
croprocessor for Dense Server Applications,” IEEE J. Solid-
State Circuits (JSSC), Jan. 2005.

[27] B. Verghese, A. Gupta, and M. Rosenblum. “Performance
Isolation: Sharing and Isolation in Shared-Memory Multi-
processors,” Proc. Int’l Conf. Arch. Support for Prog. Lang.
and Operating Systems (ASPLOS), pp. 181–192, Oct. 1998.

[28] M. Zhang and K. Asanović. “Victim Replication: Maximiz-
ing Capacity while Hiding Wire Delay in Tiled Chip Multi-
processors,” Proc. Int’l Symp. Computer Arch. (ISCA), pp.
336–345, June 2005.


