
E L S E V I E R Microprocessors and Microsystems 21 (1998) 313-318

MICI~Dlll~OCESSORS AND

M I C ~ T E M S

On timing constraints of snooping in a bus-based COMA multiprocessor 1

S a n g y e u n C h o a'*, J i n s e o k K o n g a, G y u n g h o L e e b

aDept, of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
bDivision of Engineering, University of Texas at San Antonio, San Antonio, TX 78249-0665, USA

Received 25 March 1997; received in revised form 5 August 1997; accepted 2 September 1997

Abstract

Cache only memory architecture has the potential to decrease global bus traffic in shared-bus multiprocessors, thereby reducing the speed
gap between modem microprocessors and global backplane bus systems. However, the (huge) size of attraction memory (AM) in each
processor node makes it difficult to properly match the access time of its state and tag storage to the bus cycle. This becomes a serious burden
in efficient snooping, much more than in conventional shared-bus multiprocessors, especially when a high bus clock frequency is used. In this
paper, we propose a scheme to relax the timing constraints of snooping in a bus-based COMA multiprocessor, which allows an efficient
design of a global bus protocol, and a cost-effective implementation of the overall system by using slower and cheaper memory for the state
and tag storage of AM. © 1998 Elsevier Science B.V.

Keywords: Cache coherence; Cache only memory architecture; Shared-bus multiprocessor; Snooping

1. Introduction

Cache-coherent shared-bus SMPs (symmetric multi-pro-
cessors) such as Sequent Symmetry [1] or SGI Challenge [2]
represent the mainstream of accepted and commercially
viable computer systems. However, as microprocessors
become faster and demand more bandwidth, the already
limited scalability of a bus decreases even further, and the
ill effects of a cache miss penalty become even worse. The
effective machine size for a shared-bus SMP is fairly
limited, typically less than twenty processors, and a cache
miss can cost up to a few hundred processor cycles for
recent high-performance microprocessors. To bridge the
gap between high-performance microprocessors and a back-
plane bus, it is very important to reduce global bus traffic
and to increase local memory utilization, together with
efforts to develop a high-speed, wide data-path backplane
bus.

Cache only memory architecture (COMA) seems to be a
viable candidate to effectively tackle the shared-bus bottle-
neck. Recent studies [3-6] have shown that bus-based
COMA multiprocessors can reduce the global bus traffic
by a large amount. With 16 processors, a traffic reduction

* Corresponding author.
This work was supported by funding from Samsung Electronics, Seoul,

Korea.

0141-9331/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved
PH S0141-9331 (9 7) 0 0 0 5 5 - 0

of up to 65% with an average of 28% was observed in [4],
and up to 70% with an average of 46% in [5]. Considering
current microprocessors that need aggressive data band-
width, the bus-based COMA multiprocessor is of increasing
interest.

With a high bus clock frequency used in recent machines,
it is important to design snooping circuitry that can operate
fast enough to match the bus clock frequency. Due to the
large size of the state and tag storage of the attraction mem-
ory (AM) in COMA, it takes longer to access the AM for
snooping, i.e., extra time is consumed for longer address
decoding and multiplexing due to high set-associativity
[7]. Thus, it is even harder for a snooper to keep up with
the high clock frequency of a modem high-performance bus
in a COMA machine. For example, SGI Challenge uses
47.6 MHz for bus clocking [2], and more recent SMP
servers from Sun Microsystems use 83.3 MHz [8], which
implies that the snooper has a shorter time to look up the
state and tag storage, or needs more bus cycles than before.
Moreover, fast state and tag storage to match short clock
cycles can be a significant overhead in terms of cost due to
its large size. Accordingly, it will be beneficial to develop
techniques to relax the dependence a snooper may have on
the global bus clock, so that a high clock frequency can be
used and the system cost can be kept low as well.

In this paper, we describe a scheme to relax timing
constraints for the snooping in a bus-based COMA

314 S. Cho et al.IMicropm('essors and Micmsystems 21 (1998) 313-318

muitiprocessor by utilizing properties of the COMA cache
coherence protocol and a relaxed memory consistency
model [9]. We present a snoopy scheme with relaxed timing
constraints in the context of the SGI POWERpath-2 bus 12]
and the DICE, a bus-based COMA multiprocessor [4,6].

This paper is organized as follows. Section 2 briefly intro-
duces a bus-based COMA multiprocessor as a background
necessary for our discussions. Section 3 discusses a mechan-
ism to relax the timing constraints of snooping in a bus-
based COMA multiprocessor, and Section 4 will summarize
the paper.

2. Background

2.1. Bus-based COMA multiprocessor

2.1.1. Overall architecture
Fig. 1 shows a high-level structure of a bus-based COMA

multiprocessor. A processor node (dashed box) is composed
of a high-performance microprocessor, two levels of cache
memory, and the attraction memory (AM), which is orga-
nized and managed as a cache to the global address space.
The AM tag, which includes 'state' information, is dupli-
cated so that local tag access and global bus snooping will
not conflict too often. The inclusion property [10] is main-
tained in the memory hierarchy. Lee et al. [6] describe a
global bus design of a bus-based COMA multiprocessor in
the context of the Futurebus+ standard bus specification,
and shows that it is feasible to design an efficient global
bus for a COMA multiprocessor with minor modifications
to existing systems. A more detailed description of the cache
coherence mechanism and architecture of a bus-based
COMA multiprocessor can be found in [4,5].

2.1.2. Attraction memory (AM)
Unlike the traditional main memory, AM is organized as

a cache to the lower-level memory hierarchy. This uncon-
ventional structure of the AM allows dynamic replication
and migration of memory blocks as they are accessed by
processors. It is important to have some of the physical
storage space in the AM left unallocated, i.e. not utilized

as a part of the physical address space, in order to aid effi-
cient data replication. For example, a COMA machine of 16
nodes with 64 MBytes of AM per node may have only
512MBytes for its physical address space, leaving
512 MBytes unallocated. Proper reservation of the unallo-
cated space needs to be performed in consideration with the
set-associativity of the AM, and can be handled by the oper-
ating system with appropriate hardware support [7,11]. For
AM coherence, each memory block is associated with state
information, and an AM coherence protocol (such as the one
in Section 3.1) is necessary.

To see the overhead due to the size of the state and
tag storage for AM, let us take an example of a machine
with 16 nodes, each of which has 256 MBytes of 4-way set-
associative AM, with an overall AM size of 4 GBytes. The
size (number of bits) of the state and tag storage is given by
Ino. of blocks) x ((no. of tag bits per block) + (no. of state
bits per block)). Assuming a 128-Byte block size, a 40-bit
physical address, and a 2-bit state, this amounts to 32 Mbits
(256M/128 × (40-7-1og((256M/4)/128) + 2)) per node,
which is roughly 1.6% of the AM size. If the storage is
duplicated to efficiently support snooping, the cost should
be doubled. It is economically unwise to provide very fast
SRAMs for this large size of the state and tag storage. How-
ever, with slow state and tag storage, a fast bus cycle does
not translate into better performance.

2.1.3. Potential perJormance
Since global bus traffic can become a severe performance

bottleneck in a shared-bus SMP [12], the capability of
COMA to increase the local memory utilization and thus
decrease the global bus traffic can help the system achieve
higher performance, as reported by some recent papers
I3.5]. For a set of FORTRAN benchmark programs, [3]
reports that a traffic reduction of up to 65% with an average
of 28% was achieved. Similarly, [5] reports that up to 70%
with an average of 46% of bus traffic reduction was
observed for a set of benchmark programs written in C. In
terms of the execution time, [5] found execution time reduc-
tions of up to 59% with an average of 32%. These results
reveal the potential of COMA as a viable memory architec-
ture for a shared-bus SMP.

J

. i

0 Q 0

.

Shm'ed Bus

Fig. 1, A bus-based COMA multiprocessor.

2.2. Revisiting snooping

To avoid the stale data problem (or cache coherence pro-
blem) in a cache-coherent shared-bus SMP, each processor
node with private cache memory snoops all bus transactions
(memory request and invalidation), either to provide sharing
intbrmation and provide data if needed, or to change the
state of its local copy. Sharing information is propagated
by asserting a special bus line (e.g., shared*) to inform the
requesting node of which state among 'shared' and 'exclu-
sive' the missed block needs to be loaded in. For correct
operation of the system, a read request is retried if any
remote node was unable to respond with the information

S. Cho et al./Microprocessors and Microsystems 21 (1998) 313-318

[Cache/AM Controller I.~L-~ k'Up/Resp°nse

I
I r State & Tag I

i

Assert p

Tb Ta Global Bus

Fig. 2. Snooping activity.

in time. Snooping in practice is mostly under pressure of
tight timing and often wastes bus cycles due to late snoop
acknowledgments from other nodes.

Fig. 2 shows the operations done by a bus snooper. At
time Ta, the snooper latches the address of a memory
request. It then looks up the state and tag storage of its
cache memory or AM, gets the result, and asserts the
shared* line and other acknowledgments at Tb accordingly.
We define the maximum valid (Tb -- Ta) as snoop turn-
around time (or STT). A long ST1" from erroneous con-
ditions will lead to a bus transaction retry.

Now consider Fig. 3, where a read request transaction in
the SGI Challenge SMP [2] is depicted. It consists of 5
phases: arbitration, resolution, address, decode, and
acknowledgment. Address is put on the bus in third cycle,
when each processor node latches the address and starts
looking up the state and tag storage of its cache. Tc is the
time when the address of the request is available for latching
by processor nodes. T d is the time when each processor node
should drive control lines so that the requesting node will
collect the sharing information and decide whether or not to
retry the transaction. We define (To - To) as snoop cycle
time (SCT), which is related to the clock frequency and the
number of cycles per transaction. About 30-35 ns of SCT is
given to each node in the Challenge SMP. Clearly, the STT
should be smaller than the SCT, or (T b - Ta) ~ (T d - To). In
a traditional shared-bus SMP, the snooper can manage to
meet this requirement with fast SRAMs of 5 -10 ns access/
cycle time currently available [13].

However, in a COMA multiprocessor, we employ a huge
local memory (AM), and it takes longer to retrieve a datum
from the state and tag storage compared to that of a small
cache, due to the extra time consumed for address decoding
and multiplexing. This will increase the STT, forcing the

Tc Td

~,et----- 30 - 35 n s - - ~

/ I I I I t I - - I I-- 46.7 Mm ¢,o¢k

Fig. 3. A read request in SGI Challenge.

315

SCT to be longer, which may decrease the clock frequency
or lengthen the number of bus cycles in a transaction. Since
the bandwidth of a bus B is defined as

B = D × F × E

where D is the bus width for data, F the bus clock frequency,
and E the efficiency of the bus protocol, the bandwidth may
become smaller in proportion to the amount of decrease in F
or E. This creates the snooping problem in a bus-based
COMA multiprocessor: the STT has to be fast enough not
to limit the bus transaction frequency, and yet the state and
tag storage has to be cheap enough not to increase the
system cost unnecessarily [5,6].

A previous work [5] uses a buffer called IB fifo and a
cache to the STM (state and tag memory) called TraSM
(transient state memory) to handle this problem. Their tech-
nique buffers the bus requests in the IB fifo, and stores
transient state information about ongoing accesses in
TraSM, in order to control the system cost (by adopting
hierarchical tag memory-- fas t TraSM and slow STM)
and allow for the access time variation with buffering. In
this paper, we utilize the properties of a COMA coherence
protocol and a relaxed memory model [9] to tackle the
problem without introducing an additional cache.

3. Relaxing snooping

3.1. Cache coherence in a bus-based COMA multiprocessor

We start this section by introducing a cache coherence
protocol for a bus-based COMA multiprocessor DICE [4,6].
Fig. 4 shows the four-state write-invalidate coherence pro-
tocol for the DICE multiprocessor, which utilizes 'owner-
ship' to reduce coherence overhead. An AM block can be in
any one of the four states: invalid (INV), shared non-owner
(SHN), shared owner (SHO), and exclusive (EXL). The
SHN state is a non-owner state and guarantees that the

PR

/- PR \

PR

PR. PW

iNw

Local Event

- - - ~ Bus-Induced Event

. . . . ~ Replace-Relatnd Event

Fig. 4. The DICE write-invalidate coherence protocol (PR: Processor Read,
PW: Processor Write, NR: Network Read, NW: Network Write, NI: Net-
work Invalidation, NTO: Network Transfer of Ownership, NNOC: Network
No Other Copy).

316 S. Cho et al./Microprocessors and Microsystems 21 (1998) 313-318

block in this state is not the only copy in the system. The
SHO state is an owner state and carries an ambiguity--there
may or may not be other copies. The EXL state guarantees
that the block is the only copy in the system, and ownership
is implicit. The SHO and EXL states indicate the responsi-
bility of supplying data when a read or write request for the
block is seen on the bus. There is no need for 'modified'
state in the protocol, since there is no distinction between an
EXL block and a modified block in that they are the only
copy of a block in the system, carrying the ownership of the
block. Note that the 'modified' state is used for write-back
on replacement in traditional memory hierarchy.

Ownership removes the ambiguity in responding to bus
transactions (e.g. on an AM miss) and reduces the traffic
related to memory block replacement, which poses a unique
problem in COMA multiprocessors. A falling-off block due
to replacement, if it has ownership, needs to transfer its
ownership to a shared copy if any, or relocate to a remote
node if it is the 'last copy' of the memory block. Although
the cache-like local memory can be backed up by system
disk(s) on replacement, its tremendous overhead prohibits
such operations. The replacement problem in COMA is not
addressed in this paper due to limited space. Lee et al. [4]
describes in detail an efficient coherence and replacement
protocol for the DICE multiprocessor.

3.2. Mechanism of relaxation

The above-presented DICE coherence protocol has two
desirable properties that can help relax the timing con-
straints of snooping. The first property is that a read miss
always brings a block in the SHN state if there was no page
fault. This is because the owner of the block is a processor
node, not the main memory (there is no central main mem-
ory in COMA), and after a read miss is satisfied, the degree
of sharing for the block becomes at least two. The property
obviates the need for each node to look up its state and tag
storage and give back the sharing information in a strictly
synchronous manner as in Fig. 3. Instead, each node can
buffer the request to perform necessary coherence actions
at a later time.

The second property is that there is only one owner of an
AM block. The property uniquely determines which node is
responsible for providing data to a requesting node. In SG1
Challenge, when there is an ambiguity of which, among
caches and the main memory, provides the data, the cache
suppresses the main memory by asserting the inhibit* signal
line and provides the block when it is known that the main
memory has stale data [2]. The second property removes the
complexity of driving inhibit* signals, making the AM/Bus
controller design simpler.

Based on these properties, a snooping mechanism and
request handling operations are shown in Figs. 5 and 6,
respectively. Note that STT is not dependent on the
state and tag storage access time any more but on the
queue insertion operation (see Snoop() in Fig. 6). Each

ACK/NAK

I Cache/AM C Z l l e r l~--~L~k.Up/Respolme
I

ok/error ,

"rb

State & Tag

Storage

, REQ

Ta Global Bus

Fig. 5. Mechanism for relaxed snooping.

request is stored in a small and fast FIFO queue called
Request FIFO Queue (RFQ), and if RFQ is full, a NAK is
returned by the bus driver, so that the request can be retried
later.

Although timings may vary, the requests (including
coherence requests) are seen and processed by each node
in the same order (the bus serializes requests and FIFO
keeps the order). Since coherence requests are observed in
the same sequence by every node, a program will run cor-
rectly on the relaxed snooping mechanism [9].

FIFO_Handler0 in Fig. 6 shows how a request on top of
RFQ is processed. For a read request, the handler needs to
look up the state and tag storage with the address of the
request first. Upon deciding whether to provide data based
on the ownership information, the handler can initiate data
fetching and change the block state if needed, or ignore the
rest of the operations. Thus, the ownership information fil-
ters out unnecessary operations due to read requests. Note
that in the RFQ there cannot be multiple entries of requests
targeting the same block which the node owns, since pend-
ing read buffer (read resources in SGI Challenge [2], not
shown in the figures) forbids such a request from coming out
to the bus until the owner node has finished answering to the
previous request. A write request is similarly processed
when it appears on the top of the RFQ and so is an invalida-
tion request.

By the mechanism presented in this section, a read
request, the most common bus transaction, can be done
independently of the state and tag storage access time,
thus having possibly shorter latency than a transaction in
conventional SMPs. Thus, we may lower the system cost by
using cheaper and slower memory for the state and tag
storage without causing significant performance loss. How-
ever, it is needed to quantitatively study the performance
impact of this mechanism on a realistic bus-based COMA
multiprocessor model.

4. C o n c l u s i o n

In this paper we examined the snooping problem in a bus-
based COMA multiprocessor and presented a mechanism to

S. Cho et al./Microprocessors and Microsystems 21 (1998) 313-318 317

Snoop (input)
{

if (input == RELOCATE)

Relocate ();
else if (Put_FIFO (input)

ACK ();
else NAK ();

}

// called on input

// handler for relocation

== SUCCESS)// buffer not full ?
// quick answer ack

// quick answer nak

FIFO_Handler ()
{

while (I) {
switch (top) {

case READ_REQ:
st = LookUp (top.addr) ;

if (st == DONT__HAVE) break;

if (st == EXL or SHO)
Provide Data (top.addr);

else { remove top; break; }
st' = FSM (Read__Req, st);

if (st != st')
Set_State (top.addr, st');

Remove_Top ();

break;

// top element of FIFO
// on a read request

// state and tag look-up

// don't bother
// if owner

// none of my business
// st' is the new state

case WRITE_REQ:
st = LookUp (top.addr);
if (st == DONT_HAVE) break;

if (st == EXL or SHO)

Provide__Data (top.addr);
Set_State (top.addr, INV);

Remove_Top ();
break;

// on a write request
// state and tag look-up

// don't bother
// if owner

// invalidate

case INV_REQ:
Set_State (top.addr, INV);

Remove_Top ();
break;

// on invalidation request
// invalidate

)

l

default:
break;

Fig. 6. Operations of snooping and request handling.

ease the burden of the snooping constraints imposed on
the bus and the AM controller design. By utilizing the
properties of the COMA cache coherence protocol and
relaxed memory consistency models, the burden of
strictly synchronized snooping can be relaxed. This relaxa-
tion can be valuable in case the snooper has very tight
timing, causing some wasted cycles due to late snoop
acknowledgments.

Relaxation of snooping constraints can contribute to
shorter latency of common bus transactions and decreasing
the system cost with careful choice in system components.
The proposed relaxation of the bus snooping guarantees
that a program will run correctly on a bus-based
COMA multiprocessor as long as the program obeys a

set of rules for synchronization as relaxed memory con-
sistency models specify. It seems interesting to study
the effects of the mechanism on the overall performance
of a bus-based COMA multiprocessor executing real
applications.

Acknowledgements

We thank the anonymous referees for their constructive
comments and encouragements. A version of this paper
appeared in the Proc. of lASTED International Conference
on Parallel and Distributed Computing and Systems,
Chicago, IL, October 1996.

318 S, Cho et al./Microprocessor~ and Microsvstems 21 (1998) 313-318

References

[1] T. Lovett, S. Thakkar, The symmetry multiprocessor system, in: Proc.
of the 17th Int. Conference on Parallel Processing, August 1988,
pp. 303-310.

[2] M. Galles. E. Williams, Performance optimizations, implementation,
and verification of the SGI Challenge multiprocessor, in: Proc. of the
27th Int. Conference on System Sciences, vol. I, 1994. pp. 134-143.

[3] G. Lee, J. Kong, Prospects of distributed shared memory for reducing
global traffic in shared-bus multiprocessors, in: Proc. of the 7th
1ASTED-ISMM Int. Conference on Parallel and Distributed Comput-
ing and Systems, Washington D.C., October 1995, pp. 63 67.

[4] G. Lee, J. Kong, S. Cho, Coherence and replacement protocol for a
bus-based COMA multiprocessor DICE, Technical Reporl No. 96-
008, Dept. of Computer Science, Univ. of Minnesota, January 1996.

151 n. Landin, F. Dahlgren, Bus-based COMA--reducing traffic in
shared-bus multiprocessors, in: Proc. of the 2nd lnt. Symposium on
High-Performance Computer Architecture, San Jose. CA, February
1996, pp. 85-105.

[61 G. Lee. B. Quattlebaum, S. Cho, L. Kinney, Global bus design of a
bus-based COMA multiprocessor DICE, in: Proc. of the IEEE Int.
Conference on Computer Design, Austin, TX, October 1c)96. pp.
231-240.

[7] S. Jamil, G. Lee, Unallocated memory space in COMA multi-
processors, in: Proc. of the 8th Int. Conference on Parallel and
Distributed Computing Systems, Orlando, FL, September 1995,

[8] Ultra Enterprise X000 Server Family: Architecture and Implemen-
tation, Sun Microsystems, White Paper, April 1996.

[9] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbson, A. Gupla, J.I,.
Hennessy, Memory consistency and event ordering in scalable shared-
memory multiprocessors, in: Proc. of the 17th Int. Symposium on
Computer Architecture, June 1990, pp. 15-26.

[10] J.-L. Baer, W.-H. Wang, Architectural choices for multi-level cache
hierarchies, in: Proc. of the 16th Int. Conference on Parallel
Processing, 1987, pp. 258-261.

[11] T. Joe, J. Hennessy, Evaluating the memory overhead required for
COMA architectures, in: Proc. of the 21st Annual International
Symposium on Computer Architecture, April 1994, pp. 82--93.

[12] J.L. Hennessy. D.A. Patterson, Computer Architecture A Quantitative
Approach. 2nd ed., Morgan Kaufmann, San Francisco, CA, 1996.

[13] Computer Design, Pennwell, Vol. 35, No. 3, Febrnary 1996.

Sangyeun Cho is a PhD student in Computer
Science and Engineering at the University of
Minnesota where he is a Graduate Research
Assistant for the Agassiz project. His current
research ,focuses on high-perfornumce micro-
processors, shared-memory multiprocessors,
compiler techniques for such architectures, and
their performance evaluation. Cho received a BS
in Computer Engineering from Seoul National
University, Seoul. Korea in 1994 and an MS in
Computer Science from the University of Minne-
sota in 1996. He is a student member of the

A CM, the IEEE, and the IEEE Computer Society.

Jinseok Kong is a PhD candidate in Computer Science at the Universi~'
~!1" Minnesota. His research interest is computer architecture. He
received a BS and an MS in Computer Science ,from Seoul National
University, Seoul, Korea.

G yungho Lee has been with the J~tculty of the Division of Engineering at
the University of Texas at San Antonio since 1996. Prior to joining the
University of Texas at San Antonio, he was an Assistant Professor in the
Dept. ~[" Electrieal Engineering at the University of Minnesota from
1988 to 1996 and an Assistant Professor at the Universi~ of SW
Louisiana in Lafayette from 1986 to 1988. While he was on a leave
of absence from the Universi~ ~?f Minnesota from 1990 to 1992, he
worked as the principal architect of SSM7000. the first commercial
shared-memor), multiprocessor in Korea, which is currently being
marketed by Samsung Electronics. He was responsible for the design
o[' coherence protocol and two-level cache memory_ in addition to the
overall architecture of SSM7000. Dr. Lee's research interests are in
high-speed packet switch architecture for multiprocessor inter-
connection and ATM network, multiprocessor memory architectures,
and compiler support for high-performance computing. Dr. Lee is a
senior member of the IEEE, and currently serves on the editorial board
~)r the International Journal of Computer and Software Engineering.

