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Abstract 

Cache only memory architecture has the potential to decrease global bus traffic in shared-bus multiprocessors, thereby reducing the speed 
gap between modem microprocessors and global backplane bus systems. However, the (huge) size of attraction memory (AM) in each 
processor node makes it difficult to properly match the access time of its state and tag storage to the bus cycle. This becomes a serious burden 
in efficient snooping, much more than in conventional shared-bus multiprocessors, especially when a high bus clock frequency is used. In this 
paper, we propose a scheme to relax the timing constraints of snooping in a bus-based COMA multiprocessor, which allows an efficient 
design of a global bus protocol, and a cost-effective implementation of the overall system by using slower and cheaper memory for the state 
and tag storage of AM. © 1998 Elsevier Science B.V. 
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1. Introduction 

Cache-coherent shared-bus SMPs (symmetric multi-pro- 
cessors) such as Sequent Symmetry [ 1 ] or SGI Challenge [2] 
represent the mainstream of accepted and commercially 
viable computer systems. However, as microprocessors 
become faster and demand more bandwidth, the already 
limited scalability of a bus decreases even further, and the 
ill effects of a cache miss penalty become even worse. The 
effective machine size for a shared-bus SMP is fairly 
limited, typically less than twenty processors, and a cache 
miss can cost up to a few hundred processor cycles for 
recent high-performance microprocessors. To bridge the 
gap between high-performance microprocessors and a back- 
plane bus, it is very important to reduce global bus traffic 
and to increase local memory utilization, together with 
efforts to develop a high-speed, wide data-path backplane 
bus. 

Cache only memory architecture (COMA) seems to be a 
viable candidate to effectively tackle the shared-bus bottle- 
neck. Recent studies [3-6] have shown that bus-based 
COMA multiprocessors can reduce the global bus traffic 
by a large amount. With 16 processors, a traffic reduction 
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of up to 65% with an average of 28% was observed in [4], 
and up to 70% with an average of 46% in [5]. Considering 
current microprocessors that need aggressive data band- 
width, the bus-based COMA multiprocessor is of increasing 
interest. 

With a high bus clock frequency used in recent machines, 
it is important to design snooping circuitry that can operate 
fast enough to match the bus clock frequency. Due to the 
large size of the state and tag storage of the attraction mem- 
ory (AM) in COMA, it takes longer to access the AM for 
snooping, i.e., extra time is consumed for longer address 
decoding and multiplexing due to high set-associativity 
[7]. Thus, it is even harder for a snooper to keep up with 
the high clock frequency of a modem high-performance bus 
in a COMA machine. For example, SGI Challenge uses 
47.6 MHz for bus clocking [2], and more recent SMP 
servers from Sun Microsystems use 83.3 MHz [8], which 
implies that the snooper has a shorter time to look up the 
state and tag storage, or needs more bus cycles than before. 
Moreover, fast state and tag storage to match short clock 
cycles can be a significant overhead in terms of cost due to 
its large size. Accordingly, it will be beneficial to develop 
techniques to relax the dependence a snooper may have on 
the global bus clock, so that a high clock frequency can be 
used and the system cost can be kept low as well. 

In this paper, we describe a scheme to relax timing 
constraints for the snooping in a bus-based COMA 
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muitiprocessor by utilizing properties of the COMA cache 
coherence protocol and a relaxed memory consistency 
model [9]. We present a snoopy scheme with relaxed timing 
constraints in the context of the SGI POWERpath-2 bus 12] 
and the DICE, a bus-based COMA multiprocessor [4,6]. 

This paper is organized as follows. Section 2 briefly intro- 
duces a bus-based COMA multiprocessor as a background 
necessary for our discussions. Section 3 discusses a mechan- 
ism to relax the timing constraints of snooping in a bus- 
based COMA multiprocessor, and Section 4 will summarize 
the paper. 

2. Background 

2.1. Bus-based COMA multiprocessor 

2.1.1. Overall architecture 
Fig. 1 shows a high-level structure of a bus-based COMA 

multiprocessor. A processor node (dashed box) is composed 
of a high-performance microprocessor, two levels of cache 
memory, and the attraction memory (AM), which is orga- 
nized and managed as a cache to the global address space. 
The AM tag, which includes 'state' information, is dupli- 
cated so that local tag access and global bus snooping will 
not conflict too often. The inclusion property [10] is main- 
tained in the memory hierarchy. Lee et al. [6] describe a 
global bus design of a bus-based COMA multiprocessor in 
the context of the Futurebus+ standard bus specification, 
and shows that it is feasible to design an efficient global 
bus for a COMA multiprocessor with minor modifications 
to existing systems. A more detailed description of the cache 
coherence mechanism and architecture of a bus-based 
COMA multiprocessor can be found in [4,5]. 

2.1.2. Attraction memory (AM) 
Unlike the traditional main memory, AM is organized as 

a cache to the lower-level memory hierarchy. This uncon- 
ventional structure of the AM allows dynamic replication 
and migration of memory blocks as they are accessed by 
processors. It is important to have some of the physical 
storage space in the AM left unallocated, i.e. not utilized 

as a part of the physical address space, in order to aid effi- 
cient data replication. For example, a COMA machine of 16 
nodes with 64 MBytes of AM per node may have only 
512MBytes for its physical address space, leaving 
512 MBytes unallocated. Proper reservation of the unallo- 
cated space needs to be performed in consideration with the 
set-associativity of the AM, and can be handled by the oper- 
ating system with appropriate hardware support [7,11]. For 
AM coherence, each memory block is associated with state 
information, and an AM coherence protocol (such as the one 
in Section 3.1) is necessary. 

To see the overhead due to the size of the state and 
tag storage for AM, let us take an example of a machine 
with 16 nodes, each of which has 256 MBytes of 4-way set- 
associative AM, with an overall AM size of 4 GBytes. The 
size (number of bits) of the state and tag storage is given by 
Ino. of blocks) x ((no. of tag bits per block) + (no. of state 
bits per block)). Assuming a 128-Byte block size, a 40-bit 
physical address, and a 2-bit state, this amounts to 32 Mbits 
(256M/128 × (40-7-1og((256M/4)/128) + 2)) per node, 
which is roughly 1.6% of the AM size. If the storage is 
duplicated to efficiently support snooping, the cost should 
be doubled. It is economically unwise to provide very fast 
SRAMs for this large size of the state and tag storage. How- 
ever, with slow state and tag storage, a fast bus cycle does 
not translate into better performance. 

2.1.3. Potential perJormance 
Since global bus traffic can become a severe performance 

bottleneck in a shared-bus SMP [12], the capability of 
COMA to increase the local memory utilization and thus 
decrease the global bus traffic can help the system achieve 
higher performance, as reported by some recent papers 
I3.5]. For a set of FORTRAN benchmark programs, [3] 
reports that a traffic reduction of up to 65% with an average 
of 28% was achieved. Similarly, [5] reports that up to 70% 
with an average of 46% of bus traffic reduction was 
observed for a set of benchmark programs written in C. In 
terms of the execution time, [5] found execution time reduc- 
tions of up to 59% with an average of 32%. These results 
reveal the potential of COMA as a viable memory architec- 
ture for a shared-bus SMP. 
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Fig. 1, A bus-based COMA multiprocessor. 

2.2. Revisiting snooping 

To avoid the stale data problem (or cache coherence pro- 
blem) in a cache-coherent shared-bus SMP, each processor 
node with private cache memory snoops all bus transactions 
(memory request and invalidation), either to provide sharing 
intbrmation and provide data if needed, or to change the 
state of its local copy. Sharing information is propagated 
by asserting a special bus line (e.g., shared*) to inform the 
requesting node of which state among 'shared' and 'exclu- 
sive' the missed block needs to be loaded in. For correct 
operation of the system, a read request is retried if any 
remote node was unable to respond with the information 
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Fig. 2. Snooping activity. 

in time. Snooping in practice is mostly under pressure of 
tight timing and often wastes bus cycles due to late snoop 
acknowledgments from other nodes. 

Fig. 2 shows the operations done by a bus snooper. At 
time Ta, the snooper latches the address of a memory 
request. It then looks up the state and tag storage of its 
cache memory or AM, gets the result, and asserts the 
shared* line and other acknowledgments at Tb accordingly. 
We define the maximum valid (Tb -- Ta) as snoop turn- 
around time (or STT). A long ST1" from erroneous con- 
ditions will lead to a bus transaction retry. 

Now consider Fig. 3, where a read request transaction in 
the SGI Challenge SMP [2] is depicted. It consists of 5 
phases: arbitration, resolution, address, decode, and 
acknowledgment. Address is put on the bus in third cycle, 
when each processor node latches the address and starts 
looking up the state and tag storage of its cache. Tc is the 
time when the address of the request is available for latching 
by processor nodes. T d is the time when each processor node 
should drive control lines so that the requesting node will 
collect the sharing information and decide whether or not to 
retry the transaction. We define (To - To) as snoop cycle 
time (SCT), which is related to the clock frequency and the 
number of cycles per transaction. About 30-35 ns of SCT is 
given to each node in the Challenge SMP. Clearly, the STT 
should be smaller than the SCT, or  (T  b - Ta) ~ (T  d - To). In 
a traditional shared-bus SMP, the snooper can manage to 
meet this requirement with fast SRAMs of 5 -10  ns access/ 
cycle time currently available [13]. 

However, in a COMA multiprocessor, we employ a huge 
local memory (AM), and it takes longer to retrieve a datum 
from the state and tag storage compared to that of a small 
cache, due to the extra time consumed for address decoding 
and multiplexing. This will increase the STT, forcing the 
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Fig. 3. A read request in SGI Challenge. 
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SCT to be longer, which may decrease the clock frequency 
or lengthen the number of bus cycles in a transaction. Since 
the bandwidth of a bus B is defined as 

B = D × F × E  

where D is the bus width for data, F the bus clock frequency, 
and E the efficiency of the bus protocol, the bandwidth may 
become smaller in proportion to the amount of decrease in F 
or E. This creates the snooping problem in a bus-based 
COMA multiprocessor: the STT has to be fast enough not 
to limit the bus transaction frequency, and yet the state and 
tag storage has to be cheap enough not to increase the 
system cost unnecessarily [5,6]. 

A previous work [5] uses a buffer called IB fifo and a 
cache to the STM (state and tag memory) called TraSM 
(transient state memory) to handle this problem. Their tech- 
nique buffers the bus requests in the IB fifo, and stores 
transient state information about ongoing accesses in 
TraSM, in order to control the system cost (by adopting 
hierarchical tag memory-- fas t  TraSM and slow STM) 
and allow for the access time variation with buffering. In 
this paper, we utilize the properties of a COMA coherence 
protocol and a relaxed memory model [9] to tackle the 
problem without introducing an additional cache. 

3. Relaxing snooping 

3.1. Cache coherence in a bus-based COMA multiprocessor 

We start this section by introducing a cache coherence 
protocol for a bus-based COMA multiprocessor DICE [4,6]. 
Fig. 4 shows the four-state write-invalidate coherence pro- 
tocol for the DICE multiprocessor, which utilizes 'owner- 
ship' to reduce coherence overhead. An AM block can be in 
any one of the four states: invalid (INV), shared non-owner 
(SHN), shared owner (SHO), and exclusive (EXL). The 
SHN state is a non-owner state and guarantees that the 
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Fig. 4. The DICE write-invalidate coherence protocol (PR: Processor Read, 
PW: Processor Write, NR: Network Read, NW: Network Write, NI: Net- 
work Invalidation, NTO: Network Transfer of Ownership, NNOC: Network 
No Other Copy). 
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block in this state is not the only copy in the system. The 
SHO state is an owner state and carries an ambiguity--there 
may or may not be other copies. The EXL state guarantees 
that the block is the only copy in the system, and ownership 
is implicit. The SHO and EXL states indicate the responsi- 
bility of supplying data when a read or write request for the 
block is seen on the bus. There is no need for 'modified' 
state in the protocol, since there is no distinction between an 
EXL block and a modified block in that they are the only 
copy of a block in the system, carrying the ownership of the 
block. Note that the 'modified' state is used for write-back 
on replacement in traditional memory hierarchy. 

Ownership removes the ambiguity in responding to bus 
transactions (e.g. on an AM miss) and reduces the traffic 
related to memory block replacement, which poses a unique 
problem in COMA multiprocessors. A falling-off block due 
to replacement, if it has ownership, needs to transfer its 
ownership to a shared copy if any, or relocate to a remote 
node if it is the 'last copy' of the memory block. Although 
the cache-like local memory can be backed up by system 
disk(s) on replacement, its tremendous overhead prohibits 
such operations. The replacement problem in COMA is not 
addressed in this paper due to limited space. Lee et al. [4] 
describes in detail an efficient coherence and replacement 
protocol for the DICE multiprocessor. 

3.2. Mechanism of relaxation 

The above-presented DICE coherence protocol has two 
desirable properties that can help relax the timing con- 
straints of snooping. The first property is that a read miss 
always brings a block in the SHN state if there was no page 
fault. This is because the owner of the block is a processor 
node, not the main memory (there is no central main mem- 
ory in COMA), and after a read miss is satisfied, the degree 
of sharing for the block becomes at least two. The property 
obviates the need for each node to look up its state and tag 
storage and give back the sharing information in a strictly 
synchronous manner as in Fig. 3. Instead, each node can 
buffer the request to perform necessary coherence actions 
at a later time. 

The second property is that there is only one owner of an 
AM block. The property uniquely determines which node is 
responsible for providing data to a requesting node. In SG1 
Challenge, when there is an ambiguity of which, among 
caches and the main memory, provides the data, the cache 
suppresses the main memory by asserting the inhibit* signal 
line and provides the block when it is known that the main 
memory has stale data [2]. The second property removes the 
complexity of driving inhibit* signals, making the AM/Bus 
controller design simpler. 

Based on these properties, a snooping mechanism and 
request handling operations are shown in Figs. 5 and 6, 
respectively. Note that STT is not dependent on the 
state and tag storage access time any more but on the 
queue insertion operation (see Snoop() in Fig. 6). Each 
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Fig. 5. Mechanism for relaxed snooping. 

request is stored in a small and fast FIFO queue called 
Request FIFO Queue (RFQ), and if RFQ is full, a NAK is 
returned by the bus driver, so that the request can be retried 
later. 

Although timings may vary, the requests (including 
coherence requests) are seen and processed by each node 
in the same order (the bus serializes requests and FIFO 
keeps the order). Since coherence requests are observed in 
the same sequence by every node, a program will run cor- 
rectly on the relaxed snooping mechanism [9]. 

FIFO_Handler0 in Fig. 6 shows how a request on top of 
RFQ is processed. For a read request, the handler needs to 
look up the state and tag storage with the address of the 
request first. Upon deciding whether to provide data based 
on the ownership information, the handler can initiate data 
fetching and change the block state if needed, or ignore the 
rest of the operations. Thus, the ownership information fil- 
ters out unnecessary operations due to read requests. Note 
that in the RFQ there cannot be multiple entries of requests 
targeting the same block which the node owns, since pend- 
ing read buffer (read resources in SGI Challenge [2], not 
shown in the figures) forbids such a request from coming out 
to the bus until the owner node has finished answering to the 
previous request. A write request is similarly processed 
when it appears on the top of the RFQ and so is an invalida- 
tion request. 

By the mechanism presented in this section, a read 
request, the most common bus transaction, can be done 
independently of the state and tag storage access time, 
thus having possibly shorter latency than a transaction in 
conventional SMPs. Thus, we may lower the system cost by 
using cheaper and slower memory for the state and tag 
storage without causing significant performance loss. How- 
ever, it is needed to quantitatively study the performance 
impact of this mechanism on a realistic bus-based COMA 
multiprocessor model. 

4. C o n c l u s i o n  

In this paper we examined the snooping problem in a bus- 
based COMA multiprocessor and presented a mechanism to 
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Snoop (input) 
{ 

if (input == RELOCATE) 

Relocate (); 
else if (Put_FIFO (input) 

ACK (); 
else NAK (); 

} 

// called on input 

// handler for relocation 

== SUCCESS)// buffer not full ? 
// quick answer ack 

// quick answer nak 

FIFO_Handler () 
{ 

while (I) { 
switch (top) { 

case READ_REQ: 
st = LookUp (top.addr) ; 

if (st == DONT__HAVE) break; 

if (st == EXL or SHO) 
Provide Data (top.addr); 

else { remove top; break; } 
st' = FSM (Read__Req, st); 

if (st != st') 
Set_State (top.addr, st'); 

Remove_Top (); 

break; 

// top element of FIFO 
// on a read request 

// state and tag look-up 

// don't bother 
// if owner 

// none of my business 
// st' is the new state 

case WRITE_REQ: 
st = LookUp (top.addr); 
if (st == DONT_HAVE) break; 

if (st == EXL or SHO) 

Provide__Data (top.addr); 
Set_State (top.addr, INV); 

Remove_Top (); 
break; 

// on a write request 
// state and tag look-up 

// don't bother 
// if owner 

// invalidate 

case INV_REQ: 
Set_State (top.addr, INV); 

Remove_Top (); 
break; 

// on invalidation request 
// invalidate 

) 

l 

default: 
break; 

Fig. 6. Operations of snooping and request handling. 

ease the burden of the snooping constraints imposed on 
the bus and the AM controller design. By utilizing the 
properties of the COMA cache coherence protocol and 
relaxed memory consistency models, the burden of 
strictly synchronized snooping can be relaxed. This relaxa- 
tion can be valuable in case the snooper has very tight 
timing, causing some wasted cycles due to late snoop 
acknowledgments. 

Relaxation of snooping constraints can contribute to 
shorter latency of common bus transactions and decreasing 
the system cost with careful choice in system components. 
The proposed relaxation of the bus snooping guarantees 
that a program will run correctly on a bus-based 
COMA multiprocessor as long as the program obeys a 

set of rules for synchronization as relaxed memory con- 
sistency models specify. It seems interesting to study 
the effects of the mechanism on the overall performance 
of a bus-based COMA multiprocessor executing real 
applications. 
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