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ABSTRACT
The phase-change random access memory (PRAM) technol-
ogy is fast maturing to production levels. Main advantages
of PRAM are non-volatility, byte addressability, in-place
programmability, low-power operation, and higher write en-
durance than that of current flash memories. However, the
relatively low write bandwidth and the less-than-desirable
write endurance of PRAM remain room for improvement.
This paper proposes and evaluates Flip-N-Write, a simple
microarchitectural technique to replace a PRAM write op-
eration with a more efficient read-modify-write operation.
On a write, after quick bit-by-bit inspection of the original
data word and the new data word, Flip-N-Write writes either
the new data word or the “flipped” value of it. Flip-N-Write
introduces a single bit associated with each PRAM word
to indicate whether the PRAM word has been flipped or
not. We analytically and experimentally show that the pro-
posed technique reduces the PRAM write time by half, more
than doubles the write endurance, and achieves commensu-
rate savings in write energy under the same instantaneous
write power constraint. Due to its simplicity, Flip-N-Write
is straightforward to implement within a PRAM device.

Categories and Subject Descriptors
B.3 [Memory Structures]: Semiconductor Memories; B.7
[Integrated Circuits]: Types and Design Styles—Mem-
ory technologies ; C.4 [Performance of Systems]: Design
studies
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1. INTRODUCTION
The phase-change random access memory (PRAM) technol-
ogy holds great promise to become the next generation non-
volatile memory technology thanks to its excellent operating
characteristics and scalability [20]. First of all, PRAM is a
high-performance byte-addressable device that can directly
replace memory with the standard address-data interface
such as SRAM and NOR flash. PRAM is a non-volatile de-
vice with an adequate retention property (over 10 years) and
has higher write endurance than the flash memory. More-
over, unlike popular flash memory devices with the block
erase and program requirements, PRAM supports in-place
programmability without the need for the erase operation.
Lastly, the scalability of the PRAM technology potentially
surpasses that of the DRAM and the NAND flash technolo-
gies [9, 20]. The PRAM technology is poised to enable a
“unified memory” that is tightly integrated in the memory
hierarchy of various processor-based systems [10, 18].

This paper proposes and evaluates Flip-N-Write, a simple
microarchitectural technique to improve a PRAM’s write
bandwidth, write energy, and write endurance under an
instantaneous write power constraint. The main idea of
Flip-N-Write is (i) to replace a write operation with a read-
modify-write operation in order to skip bit programming
action if not needed (e.g., writing a “0” on “0”) and (ii) to
limit the maximum number of bits to program by introduc-
ing a “flip bit.” The flip bit indicates whether the associated
PRAM word has been flipped or not. By opportunistically
re-encoding the data to write to PRAM, Flip-N-Write folds
the actual number of bits to program (as well as the number
of write steps in an iterative write sequence) to half, poten-
tially doubling the write bandwidth of a PRAM device and
improving its write endurance and write energy.

Previously, Yang et al. [24] proposed data-comparison write
(DCW), an idea essentially identical to above (i). However,
DCW does not reduce the data write time of PRAM devices
with a standard address-data interface, since the maximum
number of bits to update still remains the same. This paper
presents a rigorous analysis of the conventional PRAM write
operation, the DCW write operation, and the Flip-N-Write’s
write operation using statistical and system-level simulation
methods.

Due to its simplicity, Flip-N-Write is straightforward to
implement within a PRAM chip (or a PRAM macro). Our
inspection of the basic algorithm of Flip-N-Write demon-
strates that it will not increase the critical read path of
PRAM. The major overhead of Flip-N-Write is the addi-
tional flip bit we associate with each PRAM word. How-
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Figure 1: PRAM operations. Typical R-I curve of GST (left). State transitions occur when specific levels of currents

are applied to the memory cell. Current pulses during the read, SET, and RESET operations (right). Plots are not

to scale.

ever, with 16 bits or more in a PRAM word, the memory
array area overhead is kept within 7% while the gain in
write energy consumption, write endurance, and write time
can be 50% or more. When Flip-N-Write is implemented
within a PRAM chip, it becomes transparent to the rest of
the system and still offers benefits in the presence of other
architecture-level PRAM optimizations [11, 19, 25].

The rest of this paper is organized as follows. Section 2
presents the basic operations of PRAM to form proper back-
ground. Section 3 describes Flip-N-Write in detail and com-
pares it with a closely related previous proposal. Section 4
evaluates the proposed technique using a system-level sim-
ulation methodology. Related work is summarized in Sec-
tion 5 and finally, conclusions are drawn in Section 6.

2. BASIC PRAM OPERATIONS

2.1 Operating principles
PRAM operation is based on the memory cell material hav-
ing at least two phases with remarkably different properties.
The “amorphous phase” shows high resistivity. However, in
the “crystalline phase,” the resistivity becomes significantly
low—the change can be as large as five orders of magni-
tude [20]. PRAM stores information in terms of the re-
sistivity of such a phase-change material. The phase-change
materials considered for use in PRAM are Ge2Sb2Te5 (GST)
or Ag- and In-doped Sb2Te (AIST). Figure 1(a) shows a typ-
ical R-I curve of the GST material.

In PRAM, the phase-change material is crystallized by
heating it above its crystallization temperature (SET oper-
ation), and it is melt-quenched to make the material amor-
phous (RESET operation). These operations are controlled
by electrical current (see Figure 1(b)): High-power pulses
for the RESET operation that places the memory cell into
the high-resistance RESET state and moderate power but
longer duration pulses for the SET operation returning the
cell to the low-resistance SET state. Finally, retrieving data
is done with very low power by sensing the device resistivity.

Thanks to its resistive and non-volatile cell properties,
PRAM has very low-power read capability. The resistiv-
ity of PRAM devices ranges from 1kΩ (SET state) to 1MΩ
(RESET state) or more, making the read current extremely
small [2,5,7,12]. When data in PRAM are seldom accessed,
the PRAM device can be opportunistically powered off (to
save static energy) without losing the data.

2.2 PRAM’s write-related limitations
PRAM’s write performance depends on how quickly the de-
vice material can be crystallized (SET) or quenched into the
amorphous state (RESET). Due to the phase-change mate-
rial’s physical property, the SET pulse is usually longer than
the RESET pulse (Figure 1(b)) and dictates the write speed
of PRAM. On the other hand, the SET pulse level is typi-
cally 40–80% of the RESET pulse level [20].

As the voltage levels needed for read, SET, and RESET
operations are higher than the nominal supply voltage, charge
pump circuits are employed. For example, Lee et al. [12] use
voltages ranging between VDD+1 and VDD+3. Applying a
higher voltage than the phase-change threshold voltage [20],
a phase-changing write operation draws significantly more
current and power than a read operation. Because of the
potentially large current flowing during the write operation,
especially for a mobile system, many PRAM prototypes sup-
port “iterative writing” of smaller data units than memory
word to limit the instantaneous current level. For instance,
the prototypes described in [7, 12] support ×2, ×4, and ×8
write modes in addition to the fastest ×16 mode, and the de-
sign in [5] performs “serial writing” of only one bit at a time.
Depending on the application area, the low write bandwidth
of PRAM (given a power constraint) may pose difficulty dur-
ing system optimization.

When a PRAM device is used as a non-volatile program
storage (e.g., to replace a NOR flash chip), the most fre-
quent operation is read (for instruction fetching). In this
case, writing to PRAM (i.e., firmware update) is a rare
event, and the low write bandwidth issue is relatively mi-
nor. However, when PRAM is used for data storage (e.g.,
to replace a NAND flash chip or even a DRAM chip), writ-
ing actions will occur much more frequently and increasing
the write bandwidth of PRAM and improving the write-
related energy and endurance become critical design issues.
Existing chip prototypes have a write endurance ranging be-
tween 105 and 109 [1,2,12], which is sufficient for traditional
non-volatile applications, but questionable for fully replac-
ing DRAM [10, 11, 19, 25].

3. FLIP-N-WRITE

3.1 Basic idea
We improve the write bandwidth, write energy and write
endurance of PRAM with Flip-N-Write. The key idea is to



suppress unnecessary bit programming actions by inspect-
ing the old data word before writing the new data word and
to opportunistically re-encode the new data word to further
minimize bit programming. The following pseudo-code cap-
tures the write operation under the Flip-N-Write scheme:

// N: word width
// F and F’: new and old flip bit values

0: Write(A: address, D: data)
1: D’ := Read(A); // old data

2: F’ := Read_Flip_Bit(A); // old flip bit

3: if hamming_dist({D,0}, {D’,F’}) > N/2
4: D := ~D; // flip data

5: F := 1; // set flip bit
6: else

7: F := 0; // don’t flip
8: for each bit in {D’,F’} and {D,F}

9: if they differ, update memory bit

The first step of Flip-N-Write is to read existing“old data”
from the target address (lines 1 and 2). Next, the old data
and the new data are compared bit by bit to determine how
many bits differ (line 3). Notice that the flip bit is taken
into consideration during this process. Flip-N-Write flips the
data (line 4) and the flip bit value (line 5) to write to PRAM
if the number of bits to program (computed in line 3) is over
N/2 where N is the memory word width of PRAM. As will
be discussed shortly, this “flipping” of data helps strictly
bound the actual number of bits to program. Finally, only
the bits (in the buffer {D,F}) that are different than the data
in PRAM ({D’,F’}) are actually updated (lines 8 and 9).
Again, the flip bit is included in this step.

With Flip-N-Write the maximum number of bits to up-
date never exceeds N/2; when the difference (hamming dis-
tance) between the old data and the new data of N bits is
greater than N/2, Flip-N-Write utilizes the flip bit to re-
encode the new data such that the actual number of bits to
update now falls below N/2. Due to the addition of the flip
bit, the maximum number of bits to update is equal to N/2.
The bottom line is, that the actual update step in line 9 is
done for at most N/2 bits.

Given the above property of Flip-N-Write, its benefits are
clear. First, write energy and write endurance can be im-
proved; the number of bits to program is decreased since
all redundant bit updates (e.g., writing a “0” on “0”) are
eliminated. We will study this aspect in the following sub-
section. Second, write bandwidth can be improved. This
is because Flip-N-Write strictly (thus predictably) bounds
the actual number of bits to update. With simple look-
ahead identification of write bit positions, the write logic in
a PRAM device can easily cut the number of write steps by
half, by doubling the write unit size without increasing the
instantaneous write current. We will discuss this aspect in
Section 3.3.

3.2 Comparing Flip-N-Write with DCW
To better illustrate the benefit of Flip-N-Write in terms of
write energy and write endurance, we compare in this sub-
section Flip-N-Write and the data-comparison write (DCW)
scheme—a closely related previous work by Yang et al. [24]—
against the conventional PRAM write scheme. The main
metric we use is the number of actual bit updates per mem-
ory word write. Note that with the conventional PRAM

write scheme, the number of bits to update equals the mem-
ory word width. Further note that for PRAM write energy is
much higher than read energy (6–10 times reported in [11]).
Both Flip-N-Write and DCW save write energy by introduc-
ing small read overhead and cutting down more expensive
bit updates.

The pseudo-code of DCW is given in the following:

// N: word width
0: Write(A: address, D: data)

1: D’ := Read(A);
2: for (i := 0, i < N, i++)

3: if (D(i) <> D’(i))
4: update memory bit

5: end for

Like Flip-N-Write, DCW replaces a write operation with
a read-modify-write operation (line 1). Starting from the
first bit to the last bit, each bit in the read buffer (D’(i)) is
compared with the new data bit (D(i)) and the correspond-
ing memory bit is updated if the new data bit differs from
the bit in the memory (lines 2–4). It is important to observe
that the maximum number of bits to update using DCW is
still N , the word width. The actual bit programming (lines
2–4) can be done sequentially [24] or in parallel [25].

On average, DCW reduces the number of bits to update
significantly. Given N bits in a word, the average number
of bits to update (denoted K̄) using the DCW scheme is:

K̄ =

N
X
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In the above equation (1), we assumed that the probability
of a memory bit having a “0” or “1” is 1/2, and so is the
probability of a new data bit being a “0” or “1.” Therefore,
the probability of the two bits having different values is 1/2
because the corresponding combinations are “0 (old bit) and
1 (new bit)” and “1 and 0” out of the four possible combina-
tions. The probability of having i different bits among the
old data and the new data is then (1/2)N
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binomial distribution.

Similarly, the average number of bits to update with Flip-
N-Write is calculated as follows:
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Notice that the counting is now split into two cases, of which
the latter is for the flipped write case. Table 1 presents
Equations (1) and (2) in a series format. The number of
bits to update peaks at N

2
with Flip-N-Write when the ham-

ming distance of the old and the new data words reaches N
2

and (N
2

+ 1). The number of bits to update decreases with
Flip-N-Write after that point while it keeps increasing with
DCW.

Figure 2(a) plots the average number of bits to update per
PRAM write using DCW and Flip-N-Write. Further, Fig-
ure 2(b) depicts the improvement brought by Flip-N-Write,
again in terms of the number of bits to update per write,
over the conventional write scheme and the DCW scheme.
The average number of bits to update differs not greatly, but
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Table 1: Hamming distance of old and new data of N

bits, its probability, and the number of bit updates with

DCW ((a) and (b)) and Flip-N-Write ((c) and (d)). For

Flip-N-Write, we include the flip bit so that the maxi-

mum distance is (N + 1).

noticeably between DCW and Flip-N-Write. This is because
of the binomial distribution; the probability of having many
different bits between the old and new data words turns out
to be quite small. The reduction in bit updates with Flip-
N-Write over the conventional scheme is significant. In the
word widths we examined, the reduction is at least 55%.
Compared with DCW, Flip-N-Write’s advantage is between
11% (32-bit word) to 25% (2-bit word). The relative ad-
vantages we present here are based on the assumption of
uniform random bit value distribution. With realistic work-
loads, we actually see larger benefits with Flip-N-Write (and
DCW) over the conventional write scheme (Section 4).

The memory array area overhead of Flip-N-Write is 1/N
when the memory word width is N , and is plotted also in
Figure 2(b). It is shown that the overhead decreases quickly
as N increases; it is 12.5% with N = 8 and becomes well
less than 10% with N = 16 or more. Considering the usual
non-array contribution of 20% or more in the total memory
chip area [2, 7, 12], the flip bit overhead is less than what
we indicated in Figure 2(b). We will further discuss other
design issues with Flip-N-Write in Section 3.4.

Finally, Figure 2(c) depicts the average number of bits to
update given an in-position bit flip probability. The question
is: How do DCW and Flip-N-Write perform if the number
of different bits in the old and the new data words is given
as probability? The result shows that Flip-N-Write writes
fewer bits than DCW from the in-position bit flip probability
of around 39% and above. It is also shown that DCW degen-
erates into the conventional write scheme if all data bits are
different in consecutive writes (e.g., all-“0” data and all-“1”
data are written in sequence). In such situations (patho-
logical for DCW), Flip-N-Write offers the maximum rela-
tive benefit over DCW and the conventional scheme—either
none or single bit update is required depending on how the
old data word has been encoded in PRAM.

3.3 Write bandwidth
Assuming that address and data transfers are done in a
pipelined manner, PRAM’s write bandwidth is strictly lim-
ited by the data unit programming time (especially the SET
operation latency). Currently, high-density prototypes have
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same position has different values in the old and the new

data. The memory word is assumed to be 16 bits.

a SET latency of 150ns–400ns [2,7,12]. PRAM bandwidth is
also limited by the write data unit size. Unfortunately, the
write data unit size, the number of bits to program simul-
taneously, is limited (especially in mobile platforms) by the
instantaneous write current as we discussed in Section 2.2.
Reducing the SET operation latency depends heavily on ma-
terial, circuit, and integration technologies [20] and is be-
yond the scope of this paper.

Flip-N-Write improves the PRAM write bandwidth by
doubling the write unit size under a write current constraint.
For instance, the maximum write current of ×16 write with
Flip-N-Write is the same as the maximum current of ×8
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write under the conventional and the DCW write schemes.
Given the write data unit size (S) and the SET operation
latency (TSET), T , the time to write M bits to a PRAM is
as follows, not including the delays that can be hidden with
pipelining:

T = (M/S) × TSET (conventional)

T = Tread + (M/S) × TSET (DCW)

T = Tread + (M/2S) × TSET (Flip-N-Write)

The actual write bandwidth for each scheme is, given M
and T shown above, is M/T . Notice that DCW actually
hurts the bandwidth with its read operation that precedes
required write sequences. Flip-N-Write improves the band-
width over the other two schemes; with larger M , the im-
provement can be as high as (nearly) two. We will look at
how a large gain in write bandwidth can lead to measurable
system performance improvement when PRAM is used as
the main memory component in a multicore processor sys-
tem in Section 4. Note that a PRAM bank under program-
ming becomes unavailable to read access until programming
is completed. If both memory updates and memory reads
occur frequently and they overlap (e.g., PRAM is used for
main memory), the memory reads will often block waiting
for the target bank to become free.

3.4 Design issues
In this subsection we will discuss a few design issues related

to Flip-N-Write. For concrete discussions, we will use a base-
line design example derived from a published product-grade
high-density prototype from Samsung [12, 15]. First of all,
the proposed Flip-N-Write scheme does not prolong the crit-
ical read path. Figure 3(a) is the modified datapath with the
flip bits attached to memory words (16 bits in a word in this
example). The bit flip action (if the flip bit for the memory
word is one) takes after the read buffer and before the data
out buffer. Between the two buffers there is only one layer
of multiplexers and the simple data flip logic can be easily
implemented along with the multiplexers and latches (in the
buffers) without impacting the clock frequency.

Second, the information required for Flip-N-Write opera-
tion boils down to bit-by-bit SET/RESET enable and bit-
by-bit program enable. Figure 3(b) shows the logic blocks to
compute the two enable signals. In a conventional PRAM,
the SET/RESET enable signals are determined solely based
on the write data and program enable signals are not needed.
The Flip-N-Write design we depicted has “data difference”
logic and “count1” logic. Data different logic compares the
old and the new data words, bit by bit, to produce a bit vec-
tor indicating which bits are different. Count1 logic counts
how many bits differ and determines whether the new data
word (along with its flip bit) need be flipped before it is
written. SET/RESET enable signals can be easily gener-
ated from the data multiplexer output (RESET enable sig-
nals are simply “inverted” SET enable signals or vice versa)
and program enable signals are derived from the data differ-



Number of cores Four symmetric cores connected with a crossbar
Core pipeline Intel’s ATOM-like two-issue in-order pipeline with 16 stages [6]

Branch predictor Hybrid with 4K-entry gshare, local, and selector; 6 cycle misprediction penalty
Hardware prefetch Four stream prefetchers per core [21]; 16 cache block prefetch distance and 2 prefetch degree

On-chip caches 32KB 4-way L1 I/D caches with 1-cycle latency; 2MB, 16-way shared L2 cache with 11-cycle latency;
all caches use LRU replacement and have 64B block size

PRAM memory module Has a variable number of banks each with a 2KB row buffer and 2KB write queue. Read latency: 1 (row
address) + 27 (initial) + 4 (data transfer) = 32 memory cycles; read latency (row buffer hit): 1 (row
address) + 1 (column address) + 1 (match) + 4 (data transfer) = 7 memory cycles; read busy time:
27 memory cycles; write busy time (64B cache block): 160 (set time) × 8 (data units) = 1280 memory
cycles (conventional), 27 (read latency) + 160 × 8 = 1307 memory cycles (DCW), and 27 + 160 × 4 =
667 memory cycles (Flip-N-Write)

Table 2: Baseline CMP configuration with timing parameters for system performance evaluation experiment.

ence logic output and the count1 logic outcome by program
enable logic. When the program enable signal for a bit is
“low” (i.e., no programming), programming for the bit is
suppressed and the SET/RESET enable signal for the bit
becomes a don’t care condition.

A modified write driver circuit is presented in Figure 3(c).
Note that the SET and RESET enable signals for a bit are
AND-gated with the program enable signal. As discussed
previously, only when the program enable signal is high, a
programming action (SET or RESET) occurs. The changes
we added to the original write driver design in [12] is min-
imal and we do not expect the delays of our extra logic to
affect the PRAM clock frequency. The design in [12] re-
serves a 30ns initialization delay before actual programming
sequence commences, which would more than subsume the
extra logic delays.

4. SYSTEM-LEVEL EVALUATION
Our analysis in Section 3 used statistical methods based on
certain assumptions about the bit-level data distribution in
memory words. This section performs a system-level evalua-
tion of Flip-N-Write PRAM using realistic workloads. As in
Section 3, we will focus on evaluating the conventional write
scheme, the data-comparison write (DCW) scheme, and the
proposed Flip-N-Write scheme.

4.1 Evaluation methodology
We design and perform three experiments in this section: (1)
Firmware update, (2) data update, and (3) multicore system
performance. Each experiment uses a different workload set
and PRAM configuration, as described in the following.

The firmware update experiment employs five embedded
benchmark programs from the MiBench suite [4]: basicmath,
typeset, stringsearch, patricia, and pgp. These programs rep-
resent relatively large programs in the five categories of the
benchmark suite. To compile the programs, we use gcc
2.95.3 (ARM architecture) and gcc 3.4.6 (x86 architecture).
First, the programs are compiled with the “-O1” optimiza-
tion flag and written to the PRAM-based code memory we
model. The same programs are then compiled with the“-O3”
optimization flag and written again to the same code mem-
ory, mimicking a firmware update. The experiment is re-
peated, this time reversing the order of compiler optimiza-
tion levels. We will report the average number of actual
bit updates per 1,024 code bits, split into SET and RESET
operations. The 133MHz PRAM chip we model in this ex-
periment has a 16-bit word width, similar to [12].

The data update experiment uses a set of photo files (in
the jpeg format) taken from publicly available New York

Times “Pictures of the Day” color photo series [17]. We
selected seven dates from mid- to late-April of 2009. Each
date contains 11 to 13 photos mostly having 600×400 pixels.
During experiment, photos in individual dates are written
into a PRAM device in sequence. As before, we will report
the average number of actual bit updates per 1,024 data bits,
split into SET and RESET operations. We also employ mp3
music files from two albums: Diana Krall’s When I Look in

Your Eyes (Verve label) and Igor Stravinsky’s The Rite of
Spring and Firebird Suite by Ozawa, Chicago Symphony
and Leinsdorf, Boston Symphony (RCA Silver label). Krall
has 13 tracks and Stravinsky 24 tracks. For generating the
mp3 files, we use Nero 8 [16] to rip the CDs at “medium
quality” (128Kbps bit rate) and “high quality” (192Kbps).
We perform similar experiments with the mp3 files as we do
with the photo files. We use the same PRAM chip model as
used in the first experiment.

Finally, for the multicore system performance experiment,
we use an in-house trace-driven simulator that models a
four-core processor system [3]. We generate traces using
the PIN binary instrumentation infrastructure [13] to feed
the simulator. The processor model details are summa-
rized in Table 2. Unlike the previous two experiments that
used a discrete PRAM chip, we use a PRAM-based mem-
ory module in this experiment. The memory module has
four ×16 PRAM chips and features a 64-bit data interface
(e.g., SO-DIMM) running at 400MHz. Like DDR2 memo-
ries, the module’s data transfer occurs on both rising and
falling edges of the clock, effectively doubling the I/O band-
width to 800MHz. The read access latency, read busy time,
and write busy time parameters are derived from the pro-
totype of [12] and are summarized in Table 2. We choose
to use this prototype because it is of a real high-density
product grade [15]; we also change the parameters in our
sensitivity study. Benchmark programs are drawn from the
SPEC 2006 CPU suite [22] (“multiprogrammed” workload),
the SPLASH-2 benchmark suite [23] (“multithreaded”), and
the SPECjbb benchmark [22] (“server”). The workload de-
tails are summarized in Table 3. Performance is defined to
be the instructions executed per cycle (IPC) measured dur-
ing 10B cycles after initial phases (multiprogrammed), the
reciprocal of the program execution time (multithreaded),
and the reciprocal of the time needed to complete 10,000
transactions (server).

4.2 Results
Firmware update experiment. Figure 4 presents the
result for the two instruction set architectures (ARM and
x86) we examined, in terms of the number of bit updates



Workload name (type) Description

LLMM (multiprogrammed) 464.h264ref, 435.gromacs, 473.astar, and 483.sphinx3 with the reference input
LLHH (multiprogrammed) 464.h264ref, 435.gromacs, 429.mcf, and 459.GemsFDTD with the reference input

MMHH (multiprogrammed) 473.astar, 483.sphinx3, 429.mcf, and 459.GemsFDTD with the reference input
cholesky (multithreaded) Input: -p4 -B4 -C32768 tk29.O

lu (multithreaded) Input: -p4 -n4096 -b16

ocean (multithreaded) Input: -p4 -n258 -e1e-9 -r1500 -t28800

SPECjbb (server) 4 warehouses, total 10,000 transactions

Table 3: Workloads for multicore system performance evaluation. Multiprogrammed workloads are formed by co-

scheduling four single-thread programs. We compose workloads by including programs with relatively low cache

pressure (“L”), medium pressure (“M”), and high pressure (“H”).

0
128
256
384
512
640
768
896

1,024

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) 

basicmath typeset stringsearch patricia pgp Average

0
128
256
384
512
640
768
896

1,024

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) 

basicmath typeset stringsearch patricia pgp Average

SET

RESET

# b
it u

pd
ate

s/1
,02

4 c
od

e b
its

305.7
278.6

385.0
331.3

Figure 4: The number of actual bit updates per writing 1,024 bits of program code. Results for the ARM architecture

(left) and the x86 architecture (right) are shown. The three write schemes shown are: (a) Conventional write scheme,

(b) DCW, and (c) Flip-N-Write.

per 1,024 code bits. The plots show that both DCW and
Flip-N-Write significantly reduce the number of actual code
bit updates during firmware update, compared with the con-
ventional write scheme. For updating 1,024 code bits, DCW
programs 305.7 bits on average and Flip-N-Write 278.6 bits
for the ARM architecture and 385.0 bits (DCW) and 331.3
bits (Flip-N-Write) for the x86 architecture. Compared with
the conventional scheme, Flip-N-Write reduces code bit up-
dates by 73% and 68% on average for the ARM and the x86
architectures, respectively. Compared with DCW, Flip-N-
Write achieves a reduction of 9% (ARM) and 14% (x86).

For the conventional write scheme, there are more SET
operations performed than RESET operations. There are
739.4 SET operations and 284.6 RESET operations on av-
erage for the ARM architecture and 667.2 SET operations
and 356.8 RESET operations for the x86 architecture. This
asymmetry in the frequencies of the two operations is caused
by the distribution of zero’s and one’s in the program codes;
there are in general more zero’s than one’s in code and
data [14]. However, the intrinsic bit value distribution does
not directly affect the ratio of SET operations to RESET
operations for DCW and Flip-N-Write. The frequencies of
the two operations are more or less matched. This is be-
cause the two schemes update a memory bit only when its
old data value differs from the new data value and skip other
bit positions with no transition.

Comparing the two ISAs, we find that DCW and Flip-
N-Write have fewer bit updates with the ARM architecture
(i.e., RISC) than the x86 architecture (i.e., CISC). This is
expected as the x86 architecture’s code density is higher

than that of the ARM architecture.1 Higher code density
implies that the bit distribution (“0” or“1”) is more random.
This is indirectly evidenced by the ratio of SET frequency
to RESET frequency with the conventional scheme; ARM
shows wider asymmetry than x86 (SET frequency:RESET
frequency = 2.60:1 (ARM) vs. 1.87:1 (x86)). Accordingly,
the improvement with Flip-N-Write over DCW (14%) is
close to the theoretical improvement rate (15%) in the case
of x86 (Figure 2). On the other hand, the absolute reduction
of bit updates is larger for the ARM architecture, with both
DCW and Flip-N-Write.

In terms of firmware update bandwidth, Flip-N-Write has
twice the bandwidth (9.28MB/s) compared with that of
the conventional scheme and DCW (4.64MB/s) in the ×16
mode. Based on the read, SET, and RESET operation en-
ergy estimates of [11], the conventional scheme consumes
123.6nJ to update 1KB of firmware on average, DCW 44.8nJ,
and Flip-N-Write 39.9nJ for the ARM architecture. For
x86, they consume 126.9nJ (conventional), 56.4nJ (DCW),
and 47.2nJ (Flip-N-Write). Lastly, in terms of write en-
durance, Flip-N-Write has over 67% less wear than the con-
ventional scheme and about 9% (ARM) and 14% (x86) less
than DCW.
Data update experiment. Figure 5 shows the result of
our second experiment. As with the first experiment, DCW
and Flip-N-Write achieve a large reduction of bit updates
compared with the conventional write scheme.

We make several interesting observations. First, the re-

1We do not use the 16-bit Thumb instruction set in this
experiment.
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Figure 5: The number of actual bit updates per writing 1,024 bits of photo data (left) and music data (right). The

three write schemes shown are: (a) Conventional write scheme, (b) DCW, and (c) Flip-N-Write.

duction with DCW and Flip-N-Write is smaller than that
for the firmware update experiment. The reason is, the com-
pressed file formats (jpeg and mp3) randomize the bit value
distributions in the data files we examine. This is shown by
the ratio of SET and RESET operation frequencies for the
conventional write scheme; the ratio is close to 1:1. Slight
asymmetry in the ratio is observed in high-quality mp3 files.
In this case, “high-quality” implies less compression and less
randomization.

The number of bit updates with DCW approaches 512
bits per 1,024 data bits (exactly the half), as the theoret-
ical study suggests (equation (1)). The improvement with
Flip-N-Write over DCW is 14%–15%, again very close to our
theoretical analysis result (Figure 2(b)). We expect that un-
compressed data will have much less randomized bit value
distributions (across a sequence of data written to the same
memory location) [14] and we predict the result with un-
compressed data to be more like Figure 4 than Figure 5.

As discussed earlier, Flip-N-Write achieves twice the data
update bandwidth compared with that of the conventional
scheme and DCW under a given instantaneous write cur-
rent constraint. In terms of write energy, the conventional
scheme consumes 133.9nJ on average for 1KB of photo files
whereas DCW and Flip-N-Write consume 76.3nJ and 65.5nJ
each. For music files, they consume 134.8nJ (conventional),
73.5nJ (DCW), and 62.7nJ (Flip-N-Write) on average. In
terms of write endurance, Flip-N-Write has over 57% less
wear than the conventional scheme and at least 14% less
wear than DCW.
Multicore system performance experiment. Figure 6
presents the average memory access latency (AMAL) and
the relative performance of the three PRAM write schemes.
In addition to the three write schemes we examine, we de-
fine an unrealistic yet intuitive scheme called “NoDelay” to
put the studied schemes in perspective. With NoDelay,
PRAM has perfect, zero-latency write capability with no
bank lockup due to programming. In all other schemes,
PRAM banks under programming are unavailable for read
access. Performance of the three studied write schemes is
presented relative to that of NoDelay.

It is clearly shown in Figure 6 that AMAL and the perfor-
mance of a workload are significantly improved with Flip-
N-Write, compared to the other two schemes; it cuts down
AMAL by 47% on average, relative to the conventional scheme.

In contrast, DCW degrades AMAL, albeit slightly. We also
saw similar boost in system performance with Flip-N-Write.
With the slow SET operation, the performance of the ex-
amined workloads is dominantly affected by PRAM bank
lockup, even with a generous write queue size of 2kB per
bank. Well less than half of all read accesses find their tar-
get bank available immediately; the rest experience (usually
significantly) longer memory latency because the bank has
been locked up or the write queues are full.

As hinted above, both AMAL and system performance
suffer with the three PRAM write schemes, compared with
NoDelay. AMAL degradation (averaged over workloads) is
as large as 9.08× (conventional), 9.42× (DCW), and 4.81×
(Flip-N-Write). Performance degradation is 2.88× (con-
ventional), 2.95× (DCW), and 1.91× (Flip-N-Write). The
PRAM memory module we initially model based on a product-
grade PRAM prototype, assisted with reasonable architec-
tural support (8 banks, per-bank row buffer, per-bank write
queue, and 2MB L2 cache), simply falls short of meeting the
write bandwidth demand of a small-scale multicore proces-
sor.

Lastly, Figure 7 presents the result of a sensitivity study
on AMAL. We consider three parameters: Number of PRAM
banks, L2 cache size, and SET operation latency. Each of
these parameters affect the availability of a PRAM bank tar-
geted by a memory read. The first two parameters represent
potential microarchitectural improvements (at cost) that in-
crease PRAM bandwidth and reduce traffic to PRAM. The
third parameter is driven largely by the PRAM technology.

We derive three messages from the result. First, the mi-
croarchitectural techniques help reduce the impact of long
SET latency. AMAL is reduced from 1159 (cycles) down to
560 when the number of banks is increased from 16 to 128
(conventional). By increasing the cache size from 2MB to
16MB, AMAL is improved by 19% (conventional).2 While
the obtained improvement in AMAL is respectable, the two
microarchitectural techniques were unable to close the AMAL
gap to NoDelay. For instance, the gap with 128 banks is
still 4.37× or 432 cycles, using a modest 1.6GHz proces-
sor clock. Second, as expected, solving the very source of

2This result is rather disappointing; only cholesky and
ocean saw significant improvement from the increased cache
capacity.
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Figure 6: Average memory access latency for reads (left). Relative performance to NoDelay (right). We show the

result for PRAM with 16 internal banks.
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the problem—long SET latency—proves to be immediately
rewarding. At 50ns SET latency, the gap between the con-
ventional scheme and NoDelay closes to 1.60× or 77 cy-
cles. With Flip-N-Write, the gap is only 1.34× and 44 cy-
cles. This sharp contrast underscores the future direction
in PRAM research and development—how to reduce the
severe bank lockup impact caused by long SET operation
latency if PRAM is to competitively serve main memory de-
signs. Third, Flip-N-Write consistently provides benefits in
all design points we examined. This is because the under-
lying mechanisms used by the microarchitectural techniques
and Flip-N-Write are different and synergistic. Flip-N-Write
works at the lowest level (bit cell) to filter out unnecessary
bit programming.

5. RELATED WORK
Vast PRAM research so far has concentrated on electro-
thermal properties of phase change materials, circuit-level
device implementation, and process integration.3 The ex-
ploration of microarchitectural and architectural optimiza-
tions for PRAM and PRAM-based systems has begun rather
recently. We find that the work by Yang et al. [24], Lee et
al. [11], Zhou et al. [25], and Qureshi et al. [19] are the most
closely related work to ours. Because we’ve discussed in
detail the work of Yang et al. throughout this paper, espe-
cially in Section 3.2 and Section 3.3, we will only summarize

3Interested readers are referred to Raoux et al. [20] for
literature.

the three other papers here, all of which look at design and
optimization issues for PRAM-based main memory.

Lee et al. show in their experiment with a baseline design
using a DDR2-like configuration and a set of parallel work-
loads that PRAM gives a 1.6× delay penalty and a 2.2× en-
ergy penalty compared with DRAM. To close this gap, they
explore two microarchitectural techniques: (1) Multiple row
buffers (inside a PRAM chip) and (2) partial writes enabled
by introducing multiple dirty bits in the cache blocks. Em-
ploying multiple row buffers helps improve the read latency
and cut down the write energy and endurance through write
coalescing. The multiple row buffers bring the PRAM delay
and energy disadvantages down to 1.2× and 1.05×, respec-
tively. Partial writes reduce the number of bit updates by
not writing untouched, clean data portion in a dirty cache
block to the main memory when the cache block is replaced.
They report an average PRAM module lifetime of 5.6 years
with the two techniques. Flip-N-Write is complementary to
them because it exploits the actual content of old and new
data words rather than architecturally visible events (e.g.,
writes occurring on the same address).

Zhou et al. propose and evaluate three architectural tech-
niques to prolong the lifetime of 3D stacked PRAM-based
main memory: Redundant bit write removal, an idea sim-
ilar to [24], shifting of data in a PRAM row periodically
to distribute hot spots, and segment swapping to distribute
data writes with coarse granularity such as a multiple of
pages. The proposed techniques, when used together, were
shown to significantly increase PRAM’s lifetime to 13 years



(for MLC PRAM) to 22 years (for SLC PRAM) on average,
from less than one year.

Qureshi et al. examine a hybrid main memory architec-
ture having a DRAM buffer and PRAM main memory. The
DRAM buffer becomes a cache to the lower-level PRAM
main memory and filters out detrimental write traffic to the
main memory. Their evaluation using a 16-core processor
shows that the hybrid main memory can reduce page faults
by 5× and provide a speedup of 3×. They also explore tech-
niques to reduce write traffic: Lazy write, line level write-
back, and page level bypass. They reduce the write traffic by
3× and increase the average lifetime of PRAM from 3 years
to 9.7 years. It will be interesting to combine the techniques
of Zhou et al. and Qureshi et al. with Flip-N-Write (except
redundant bit write removal) as they will create synergy.

Lastly, while not sharing the goal and context of our work,
researchers have examined strategies to exploit asymmetry
in SRAM memory cells. Like our proposed approach, Kumar
et al. [8] used a memory cell flipping technique to combat
memory cell degradation caused by negative bias tempera-
ture instability (NBTI). In order not to continuously “stress”
a specific PMOS device in a 6T SRAM cell, they periodi-
cally flip the cell content to “relax” the two PMOS devices
in the cell in an alternating manner. Their design is how-
ever unaware of the memory content and simply flips all the
memory bits from time to time. Moshovos et al. [14] ob-
served that there are more zero bits in memory than are
ones. Accordingly, they proposed and studied an asymmet-
ric memory cell design that sheds less leakage current when
the bit stored in a memory cell is zero. They do not consider
flipping data bits to further cut down leakage current.

6. CONCLUSIONS
Based on the observation that write operation is much more
expensive than read operation for PRAM, this paper pro-
posed and evaluated Flip-N-Write, a simple microarchitec-
tural technique to enhance the write performance, energy
and endurance of PRAM. The following summarizes our con-
tributions and conclusions:

• We analyzed in detail the two PRAM write optimiza-
tion strategies using a read-modify-write sequence: DCW
(data-compare write) [24] and the proposed Flip-N-
Write scheme. With its data re-encoding capability,
Flip-N-Write is strictly better than DCW in terms of
the average number of bits to program per write and
cuts the maximum number of bits to program per write
by half. For the word widths of 2 bits to 32 bits, the
reduction in bit updates with Flip-N-Write over the
conventional write scheme is 56% (32-bit word) to 63%
(2-bit word). Flip-N-Write also reduces the memory
array busy time due to programming to nearly half.
The deterministic write delay of Flip-N-Write is con-
sidered a crucial advantage, enabling improved PRAM
write performance without changing the rest of the sys-
tem.

• Using system-level simulation methods, we analyze the
operating characteristics of the conventional PRAM
write operation, the DCW write operation, and the
Flip-N-Write write operation when the PRAM device
is used as a program storage (replacement of NOR
flash), a data storage (replacement of NAND flash),
and main memory (replacement of DRAM). The ex-

perimental result agrees with the analytical study we
perform. Additionally, we showed that reducing the
bank lockup time due to memory writes will remain a
critical problem for PRAM to be fully adopted as the
main memory technology.

The proposed Flip-N-Write scheme can be implemented
within a PRAM device and is completely transparent to the
rest of the system. Accordingly, the benefits of other PRAM-
aware architectural optimizations (e.g., Lee et al. [11]) will
not be compromised when Flip-N-Write is in place. On the
other hand, Flip-N-Write can help simplify the design of the
architectural PRAM optimization strategies since it takes
care of unnecessary PRAM updates at the lowest, bit level.
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