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As microprocessors become faster and demand more bandwidth, the already
limited scalability of a shared bus decreases even further. DICE, a shared-bus
multiprocessor, utilizes cache only memory architecture (COMA) to effectively
decrease the speed gap between modern high-performance microprocessors
and the bus. DICE tries to optimize COMA for a shared-bus medium, in par-
ticular to reduce the detrimental effects of cache coherence and the “last
memory block” problem on replacement. In this paper, we present the
coherence and replacement protocol of the DICE multiprocessor and its
design trade-offs. We describe a four-state write-invalidate coherence protocol
in detail. Replacement, which poses a unique overhead problem of COMA,
requires that a victim block with ownership be relocated to a remote node in
order not to discard the last cached memory block. We show that the reloca-
tion process can be efficiently implemented by using a temporary storage
called relocation buffer and a priority-based selection algorithm. We present
performance results that show a drastic reduction in global bus traffic
compared to a traditional shared-bus multiprocessor architecture.  © 1999
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1. INTRODUCTION

Shared-bus multiprocessors such as Sequent Symmetry [24] or SGI Challenge
[ 8] represent a mainstream of accepted and commercially viable computer systems.
However, as microprocessors become faster and demand aggressive data band-
width, the already limited scalability of the shared bus decreases even further. The
effective machine size for shared-bus multiprocessors is fairly limited, typically to
less than 20 processors, and a cache miss can cost up to a few hundred processor
cycles for high-performance microprocessors today. A recent measurement using a
real machine shows that a four-processor shared-bus multiprocessor with 1-MB L2
caches experiences more than 60 % longer memory latency compared with the same
machine with one processor [ 14]. The situation is exacerbated when new, high-
bandwidth memory technologies, such as Rambus DRAM [7], are used in main
memory. To bridge the speed gap between high-performance microprocessors and
a backplane bus, it is important to reduce global bus traffic and to increase local
memory utilization, together with efforts to develop a high-speed wide data-path
backplane bus.

The DICE (direct interconnection of computing elements) project at the University
of Minnesota [ 17, 18] utilizes cache-only memory architecture (COMA) to bridge
the gap. COMA improves utilization of local memory by decoupling the address of
a datum from its physical location, allowing it to move dynamically beyond the
level provided by traditional caches. This decoupling is achieved by treating the
memory local to each node, called attraction memory (AM), as a cache to the
shared address space without providing traditional physical main memory [9].
COMA is similar to shared virtual memory (SVM) that allows sharing of virtual
memory space through migration and replication of pages [23], but it is a more
hardware-oriented approach with a sharing unit called memory block that is of finer
granularity, rather than the page in SVM.

In a COMA machine, most of the capacity misses in processor caches will hit in
the AM due to its large size, leading to reduced miss penalty. Also, there will be no
write-back traffic in the global interconnection on cache replacements since a write-
back operation is performed locally. The higher utilization of local memory can
lower the average memory access time and global traffic. Unlike the previous exam-
ples of scalable COMA machines, including DDM [9] and KSR-1[28], DICE
focuses on improving a bus-based symmetric multiprocessor (SMP) via an efficient
realization of COMA with little provision for scalability for larger scale multipro-
cessing. While we expect that many problems associated with scalable COMA
machines will become less serious with a bus, shared-bus multiprocessors benefit
from COMA in three ways: (i) less bus contention due to lower global traffic; (ii)
shorter average memory latency due to high local memory utilization; and (iii)
more processors in the machine due to less bandwidth requirement on the bus.

DICE tries to optimize COMA for a shared-bus medium, in particular to reduce
the detrimental effects of cache coherence and the last memory block problem on
replacement. This paper presents the coherence and replacement protocol of DICE
in detail with our priority-based relocation scheme [ 19]. We show how the reloca-
tion process can be efficiently implemented by using a temporary storage called a



16 CHO, KONG, AND LEE

relocation buffer and a priority-based selection algorithm. DICE demonstrates that
an efficient shared-bus multiprocessor based on COMA can be realized with very
little additional hardware complexity. In addition, we compare the potential perfor-
mance of the DICE multiprocessor with a traditional shared-bus multiprocessor
model based on program-driven simulations. Our performance study confirms the
observation that COMA provides an excellent opportunity to significantly reduce
the global bus traffic and the average memory access latency [20]. We observed
global bus traffic reduction of up to almost 80% with an average of 68 % for 16
processors in our performance study. A shared-bus COMA SMP model has also
been studied by other researchers [ 16] and their results also support our claim of
its effectiveness over traditional shared-bus SMPs.

The rest of this paper is organized as follows. Section 2 gives a brief background
necessary for our discussions. Section 3 and 4 describe the coherence protocol and
the replacement protocol of the DICE multiprocessor, respectively. We present a
simulation study and the results in Section 5, followed by Section 6 which concludes
the paper.

2. BACKGROUND

2.1. COMA and AM Coherency

The AM of a COMA machine seems to fit very well into a traditional memory
hierarchy. When a memory reference misses both in the processor cache(s) and the
local AM, a copy of the block containing the data is fetched over the network from
a remote AM. It is then placed in the block frame of the local AM that the block
maps to. When a page fault occurs, the page will be brought from the backing store
of disks into the AM of the particular node that caused the page fault. All data,
therefore, tend to replicate and migrate to the nodes accessing the data.

Although the problem of maintaining coherence in a COMA multiprocessor is
similar to that in a traditional shared-memory multiprocessor, there are a few
aspects that differentiate the AMs from the cache memory in traditional cache-
coherent multiprocessors. First, the backing store of the AMs in a COMA machine
is usually composed of (slow) disks of secondary storage. Thus, unlike a traditional
multiprocessor cache, write-backs to the backing store on memory block replace-
ment should be avoided. This creates a unique problem in a COMA machine; the
replaced block may need to relocate to some other AM which has space for it to
avoid a disk write-back, since it may be the last valid copy in the system. Finding
a node whose AM has space for the replaced block can cause a serious overhead
[13, 25]. Second, since a COMA machine tries to maximize the utilization of the
memory local to a processing node by caching the whole working set, not a portion
of it, a typical AM is much larger than a traditional cache memory. Although this
huge size of AM will remove capacity misses, it can create more coherence activities
[18]. Third, the AM plays its role at a different level of memory hierarchy. The
memory requests that reach the AM are the ones missed at a traditional cache
memory of substantial size, even perhaps of a multilevel structure. Further, it is
important to have some of the physical storage space in the AMs left unallocated,
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i.e., not utilized as a part of the physical address space. For example, a COMA
machine of 16 nodes with 64 MB of AM per node may have only 512 MB for its
physical address space, leaving 512 MB unallocated for data replication. Without
enough unallocated space, excessive migration and replacement of memory blocks
between the AMs can result. Proper reservation of the unallocated space needs to
be done in consideration with the set-associativity of the AM, which can be handled
by an operating system with appropriate hardware support [ 12, 13].

With dynamic replication and migration of data through the AMs, a COMA
machine can provide higher utilization of local memory than is otherwise possible,
which will result in lower average memory access latency and network traffic. As
the processor technology is progressing much faster than the bus or interconnection
network technology, this potential reduction in latency and bandwidth requirement
can be a crucial advantage.

2.2. DICE—a Bus-Based COMA Multiprocessor

The DICE architecture described here is a basis for later discussions. Our discus-
sions are not restricted to a specific implementation; however, possible bus and
node designs of a bus-based COMA multiprocessor can be found in [ 16, 21, 227.

Figure 1 shows a high-level structure of a bus-based COMA multiprocessor.
A processor node is composed of a high-performance microprocessor, two levels of
cache memory, and the local memory managed as the AM. The local memory tag,
which includes “state” information and uses fast SRAMs, is duplicated so that local
tag access and global bus snooping will not conflict too often. The inclusion
property [ 1] is maintained in the memory hierarchy.

As in a traditional shared-bus machine, each node snoops all global bus traffic.
In dealing with the large AM, it can be challenging to have a snoop control logic
that can keep up with a modern backplane bus with a high clock frequency, espe-
cially if the memory access model is based on sequential consistency [15]. For
example, in the SGI POWERpath-2 bus [8], each transaction takes five clock
cycles of the 47.6 MHz clock, and the snooper has about two cycles to search the
state and tag memory for its AM and update the state if necessary. With the fast
SRAMs currently available, the snooper can manage to keep the AMs of a COMA
machine coherent. However, if the snooper cannot keep up with the fast clock of
the bus, one can relax the memory model and delay the snooping activity with
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FIG. 1. High-level structure of a bus-based COMA multiprocessor.
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request buffering [5]. The global bus supports split-transactions and distributed
arbitration for various transactions. Distributed arbitration is important not only
for greater scalability but also for our priority-based relocation algorithm.

The impact of COMA on the shared bus was first studied by Lee and Kong [20],
where it was shown that on average COMA had about 40 % of the bandwidth require-
ment on the global bus when compared with a conventional UMA model, assuming
16 processors. A bus-based COMA multiprocessor was studied also by Landin and
Dabhlgren [16]. Using detailed execution-driven simulations, the study reported a
significant traffic reduction of up to 70 %, with an average of 46 %, and an average
execution time reduction of 32% for the benchmark programs examined.
A global bus design for a bus-based COMA multiprocessor based on the Futurebus +
standard backplane bus was presented by Lee et al. [ 21], where they showed that
a bus-based COMA multiprocessor can be built efficiently using off-the-shelf com-
ponents with little additional hardware complexity.

3. COHERENCE PROTOCOL

In this section, we describe a four-state write-invalidate coherence protocol for
the AM in the DICE multiprocessor. We give the definitions of states and events
in the first subsection. A detailed description of the state transitions and the actions
taken to enforce coherence will be given in the second subsection, followed by a
discussion.

3.1. Preliminaries

Figure 2 depicts the coherence protocol. An AM block can be in any one of the
four states: invalid (INV), shared non-owner (SHN), shared owner (SHO), and exclusive
(EXL). The INV state tells that the block contains no valid data. The SHN state
is a nonowner state and guarantees that the block in this state is not the only copy
in the system. The SHO state is an owner state and carries an ambiguity that there

— Local Event

----» Bus-Induced Event

LS

....., Replacement-Related
Event

—————————

FIG. 2. A four-state write-invalidate coherence protocol of DICE.
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may be no other copy in the system. The EXL state guarantees that the block in
the state is the only copy in the system and ownership is implicitly assumed. A
reference is said to “hit” if the target block exists in the local AM in a valid state
other than INV. Note that there is no “dirty” bit associated with any of the states,
since there is a unique owner block for every cached block in the system. The
ownership associated with a block in the SHO or EXL state entitles the caching
node with a responsibility to supply requesting nodes with data.

The following local events are considered: processor read (PR) and processor
write (PW). We assume that a page fault will be handled by the operating system,
and when a page is fetched from the disk, all the blocks in the page will be initially
in the EXL state. Depending on how one wants to handle I/O operations and lock
operations such as test-and-set, PR and PW may be classified further to distinguish
normal memory operations from I/O or lock operations. In this section we limit
our discussion to normal memory operations for simplicity. However, extending the
discussion to allow I/O or lock operations on top of normal memory operations
should be straightforward.

Bus-induced events are as follows: network read request (NR), network write
request (NW), and network invalidation (NI). NR and NW are data requests to
satisfy a remote miss. NI is incurred when a processor writes to a shared block, i.e.,
a block in the SHN or SHO state. Upon receiving an NI transaction specifying a
block, each node that cached the corresponding block invalidates its copy. To
maintain sequential consistency, an NI transaction can complete only when every
node finishes the operation and responds to it, while in relaxed consistency models,
an NI transaction completes as long as each and every node latches the address.

Replacement in a COMA multiprocessor may lead to data transfer and state
transition. The following events are related to replacement: network transfer of
ownership (NTO) and network no other copies (NNOC). When a block in the SHO
state is replaced and relocated to a remote node that contains a shared copy of the
block, an NTO event is said to occur to the shared copy of the remote node. When
a block in the SHO or EXL state is replaced, and if there is no other copy in the
system (which is always the case for the EXL state), an NNOC event is said to
occur to the node which accepts the replaced block. The SHO state has ambiguity
on replacement, since it is not known if there is a shared copy. However, the DICE
replacement protocol distinguishes between the two cases using distributed arbitra-
tion of the shared bus.

3.2. State Transitions and Actions

A read miss generates a read request on the bus and the owner of the block will
supply the data. The new block will always be in the SHN state unless there was a
page fault because the block is supplied by a remote AM. In the process, the owner
that supplies the data will move to the SHO state if its original state was EXL.

A write reference that hits in the local memory may or may not cause an explicit
invalidation depending on the state of the block. If the block is in the SHN or SHO
state, an NI transaction will be launched on the bus to invalidate all other copies
and the block will be in the EXL state thereafter. A write miss will generate a write
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request on the bus and the owner of the block will supply the data. All the other
copies of the block including the owner’s are invalidated, and the block supplied by
the owner will be in the EXL state.

When a read or write request is seen on the bus, every node will snoop the
request and look up its state and tag memory to see if it has the corresponding
block with ownership. As the result of this look-up, the node in charge of supplying
the data is uniquely determined.

When a block is replaced and relocated to a remote AM, NTO and NNOC
events determine the actions taken and the resulting state of a relocated block. An
NTO event occurs when a block in the SHO state is replaced and there exists at
least another copy in the SHN state. The relocation process will effectively transfer
ownership to an “already-there” copy in a remote node which is chosen on a
priority basis. The shared block (in the SHN state) now changes to the SHO state,
and the replaced block is not written in the remote AM.

An NNOC event is said to occur when there is no shared copy of a block to be
relocated. There are two cases for NNOC: (i) when a block in the EXL state is
replaced and (ii) when a block in the SHO state is replaced and no other copy in
SHN exists. The second case is possible since blocks in the SHN state can be
replaced locally at any node. A replaced block in the SHO state, with no shared
copy elsewhere, should move to a remote node and is required to be written in the
AM. The resulting state will be EXL.

3.3. Discussion

The ownership associated with each memory block is very important to the
coherence mechanism in the DICE architecture. Because the ownership per block
uniquely determines which node is responsible for providing data, the “selection”
phase of DDM [9] is unnecessary.

Although we have presented an invalidation-based coherence protocol in this
paper, an update-based or hybrid protocol can become attractive when applications
show a lot of write sharing. Our simulation results in Section 5.2 show that coherence
misses due to previous invalidations can constitute a large portion of or even dominate
the overall misses in a bus-based COMA multiprocessor.

As hinted in the previous subsections, the coherence protocol of bus-based COMA
multiprocessors is closely connected with the replacement problem. The mechanism
of the replacement and associated coherence maintenance will differentiate the
DICE architecture from conventional shared-bus multiprocessors, as discussed in
greater detail in the next section.

4. REPLACEMENT PROTOCOL

4.1. Victim Block Selection

On a reference miss, a (victim) block in the set to which the reference maps needs
to be selected to accept the incoming data. Let us assume that the AM is set-
associative and there are more than one victim candidates. The states of the
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candidate blocks are used to choose the victim prioritized in the following order:
INV, SHN, SHO, EXL.

Our first choice is naturally a block in INV state. The second choice is a block
in the SHN state, which can be overwritten safely. Note that in the first two cases
relocation to a remote node is not necessary. A block in the SHO state is the third
choice that will incur a relocation process. If there is a copy of the block in the
SHN state in a remote node, the relocation activity will effectively transfer the
ownership possessed by the original block (NTO event in Fig. 2). It is possible,
however, that there is no other copy residing in the system due to replacement of
SHN blocks. A block in the EXL state always needs to be relocated.

There are two advantages in preferring a block in the SHO state to a block in
the EXL state when selecting the victim. First, relocating a block in the EXL state
may force a node which has nothing to do with the block into receiving it. This
may again replace a valid block in the remote node, possibly decreasing the hit rate.
However, if a block in the SHO state is selected, there is a high probability that a
shared copy exists in a remote AM and thus a third party will not be dragged into
participation. Second, if there is a shared copy in the system, the relocation of a
block in the SHO state is effectively a transfer of the ownership only, and data write
(AM update) can be avoided. The relocation of a block in the EXL state, however,
always updates a remote AM usually composed of (slow) DRAMSs, and it can be
on the critical path of the remote processor.

Figure 3 shows the results of this priority-based victim selection scheme, assuming
a four way set-associative AM. Victim candidates after the priority-based selection
are marked with darker block, and the victim is selected randomly, should there be
more than one candidate. Note that this selection and data movement activity can
be done in parallel with the request for the missing block. While the processor sits
idle waiting for the missing block, the victim block can be fetched from the AM and
placed in the relocation buffer, thus hiding a portion of the latency due to the
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FIG. 3. Priority-based victim block selection.
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relocation process. The replaced block in the relocation buffer will be relocated to
a remote AM on a priority basis, as will be described in the next subsection.

4.2. Block Relocation

When a block in the SHO or EXL state is replaced, it is required to relocate the
victim to a remote AM to keep the last copy of a datum in the system. A four-level
priority scheme is again used in choosing which node to accommodate the replaced
block. Figure 4 briefly depicts our priority scheme.

A node with a shared copy of the replaced block is given the highest priority. It
is clear that this case is possible only when a block in the SHO state is replaced.
The shared copy now takes ownership, and no data update in the AM is necessary.
The resulting state of the block is SHO.

The second priority is given to a node with at least one block in the INV state
and no shared copy of the replaced block. The data will be stored in the block, and
the resulting state is EXL, regardless of the state that the original replaced block
had. This is because (i) if the original state of the replaced block was SHO and
there exists a shared copy in a node, this case falls into the priority 1 case, and (ii)
if, however, there is no shared copy of the replaced block (which is always the case
for the replaced block in the EXL state), the resulting state should be EXL. It may
seem that relocation to the node with a block in the INV state is preferable to the
node having a shared copy of the replaced block. However, our scheme favors a
node with a shared copy because (i) relocation incurs ownership transfer only and
(i1) better performance can be achieved from the efficient use of memory space [ 11].

A node with a block in the SHN state which is not a shared copy of the replaced
block gets the next priority. As in the victim selection process, a block in SHN state
can be overwritten. Last, the lowest priority is given to the node with all owner
blocks in the set. In this case, a new victim is selected and needs to be relocated to

Relocation Buffer Ba SHO or

at Node 0 EXL
SHO | SHN | SHN | EXL EXL SHOI INV | SHO
Be Ba Bc Bk Bi Bj ?? Bh
Node 1 - Priority 1 Node 2 - Priority 2
SHN SHO: EXL SHN EXL EXL SHO: EXL |
Be Bf Bg Bh Bm Bn Bc Bq
Node 3 - Priority 3 Node 4 - Priority 4

FIG. 4. Priority-based remote node selection for relocation.



COHERENCE AND REPLACEMENT PROTOCOL 23

a different AM again. One observation is that in the presence of unallocated
space [ 12], it is very rare to come down to this lowest-priority case. As the worst-
case scenario, however, we also need to handle the last case with care in order not
to have a chain of replacement actions which can happen in previous COMA
machines [ 11, 13]. A simple solution is given in the next subsection incorporated in
our priority scheme.

Figure 5 illustrates a conceptual mechanism of the relocation. On a reference
miss, the node decides whether a relocation action is necessary (1a). It sends a data
request on the bus while fetching the victim block from the local memory (2a). It
puts the fetched block into the relocation buffer with the state (3a). Upon the
arrival of missed data, it begins the relocate transaction and the processor resumes
its execution (4a).

From the viewpoint of a remote node, when a relocate transaction is seen on the
bus, the node buffers the data with its address and state (1r). The node looks up
the AM tag and state to decide its priority in accepting the block it has just
received (2r). Based on the result of the tag and state look-up, it generates and
sends to the arbiter a priority vector, which is the 2-bit priority concatenated with
its node ID (3r). In case of a tie in the 2-bit priority, the node 1D, the lower bits
in the vector will help decide the winner. After arbitration, the result will be passed
back to the controller, which will either update the AM and the tag with the buffered
data and state or simply discard them (4r). The distributed arbitration determines
the unique winner that will accommodate the block, and all other nodes will discard
the block, thus achieving our goal. If needed (as in the priority 4 case), a node performs
a similar relocation process using its relocation buffer.

4.3. Ownership Relinquish

Swapping [ 13] is beneficial in the lowest priority case to avoid a chain of replace-
ment actions. The swapping technique forces two nodes—the node which has a
reference miss and needs to replace a block and the node which supplies the data—
into exchanging the blocks. With some modification to our original protocol, swap-
ping can be easily implemented.

Global Shared Bus

Input Buffer

Relocation Buffer Arbiter

1
]
2r i 1a

AM Controller <

AM Tag 3r Priority vector

2a 3a

e 4r Arbitration result |

I

FIG. 5. Block relocation mechanism.



24 CHO, KONG, AND LEE
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FIG. 6. Ownership relinquish.

We introduce a local event called processor read with relocation (PRR), which
occurs when there is a read reference miss and relocation is necessary due to
replacement. We introduce a new bus-induced event, network read request with
ownership (NRO), which is a request for data with the ownership (in Fig. 6). When
PRR occurs, the node will request the missing block and ask for the ownership also
by issuing NRO. The owner node, upon receiving the NRO event, provides the
data and relinquishes the associated ownership, leaving the block now in SHN
(dotted lines). The other party, the requesting node, will set the state of the new
block SHO.
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FIG. 7. Swapping.
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Now the replaced block in the relocation buffer is guaranteed not to go down to
the priority 4 case in the relocation process, because the node which just supplied
its data to the requesting node, has an SHN block in the same set that the replaced
block will be in. Thus the original priority 4 case now does not occur, avoiding a
chain of relocation actions (Fig. 7). For simplicity, a direct-mapped AM is assumed
in the figure, and only one set (set A) is shown. With this modification, we made
swapping a natural subset of our priority-based relocation.

5. PERFORMANCE

5.1. Experimental Setup

We use a set of program-driven simulations to compare two shared-bus multi-
processors with different memory architectures: UMA (uniform memory access), a
traditional SMP similar to SGI Challenge [ 8] and DICE, a COMA machine with
the above coherence and replacement mechanism. Our simulator consists of two
parts: the MINT front end [26] which simulates the execution of the processors
and a back end that simulates the memory system and the bus. The front end calls
the back end on every data reference and synchronization operation, and the back
end decides which processors block waiting for memory and which continue execu-
tion. Since the decision is made on-line, the back end affects the timing of the front
end, so that the control flow of the application and the interleaving of instructions
across processors can depend on the behavior of the memory system and the bus.

The simulator is capable of capturing contention within the bus and in the state
and tag memory due to conflicting accesses from the processor and the bus. The
simulated processor is MIPS R4000 [ 10] with a 200-MHz clock. We assume no
stalls for instruction fetching, and an instruction can be executed in a processor
clock cycle (pclock) if there is no data cache miss. The L1 cache is 2 KB and the
access time is hidden if an access hits in the cache. It has a 6-pclock block fill time.
The 4-way set-associative L2 cache is 32 KB for UMA and 16 KB for DICE and
has a cycle time of 30 ns (6 pclocks) and a 10-pclock block fill time. UMA’s L2
cache is made larger than that of DICE for a fairer comparison. With this cache
configuration, UMA achieves node hit rates of 96-99%. Main memory is fully
interleaved with an access time of 120 ns. The block size in the memory hierarchy
is 32 bytes.

For DICE, the memory pressure, or the ratio of the data size to the total AM
size, is adjusted to be around 50-75%. An AM is four-way set-associative. Note
that we avoided a fixed memory pressure by arbitrarily setting the memory size to
a number that is not a power of two times the set-associativity, e.g., 385 KB. The
relationship between the memory pressure and the performance of a COMA machine
has been studied in other works [12, 13, 16]. For example, Jamil and Lee [12]
have shown that a memory pressure of 50% is needed to keep the rate of replace-
ment per reference miss to less than 30 %.

The backplane bus simulated for both the models is similar to POWERpath-
2 [8]. It supports a split-transaction protocol to decouple memory requests and
responses, is clocked at 50 MHz, and can have up to eight outstanding read
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TABLE 1

Summary of Benchmark Programs

Program Description Input
Barnes Barnes-Hut algorithm for the many-body problem 4 K bodies for 5 time steps
Cholesky Cholesky factorization of a sparse matrix besstkld
FFT Complex 1D version of radix f\/]Tf six-step FFT 256 K points
LU LU decomposition of a dense matrix 300 x 300 matrix, 16 x 16 block
Ocean Ocean basin simulator 130 x 130 ocean, 107 tolerance
Radix Radix sorting 400,000 integers
Water Simulates evolution of a system of water molecules 512 Molecules, 3 time steps

requests waiting for responses. Each bus transaction consumes five bus cycles, and
a cache block can be transferred in one bus transaction.

We use seven programs from the SPLASH-2 benchmark suite [27] to drive our
simulator. Program descriptions and inputs are summarized in Table 1. The programs
are all written in C using the ANL macros to express parallelism [ 2] and are compiled
by gcc with -O2 optimization flag. For all measurements, we gathered statistics
during the parallel sections only.

5.2. Simulation Results

5.2.1. Bus utilization. We compare the bus utilization (i.e., the fraction of time
when the global bus is busy) of each model when 16 processors are used. Figure 8
shows the result where each bar comprises two components: coherence traffic due
to invalidation transactions and all the others including read and write memory
requests and memory write-backs. DICE achieved a significantly lower global bus
utilization in all the programs studied. Programs with heavy bus usage like FFT
and Ocean are likely to benefit from this traffic reduction.

In terms of the absolute number of bus transactions which is not shown in the
figure, DICE could reduce the global bus traffic, by as much as 80% for Ocean,
with an average of 64%. The reduction of traffic was consistent over all the
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FIG. 8. Bus utilization when P =16 (left bar: UMA and right bar: DICE).
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TABLE 2

Block State on a Read Reference

UMA DICE

Program M E S I EXL SHO SHN INV
Barnes 71.5% 26%  259% 0.0% 73.5% 44%  22.0% 0.1%
Cholesky 38.4% 44%  572% 0.0% 45.0%  293%  25.6% 0.1%
FFT 56.5%  424% 1.1% 0.0% 80.6%  189% 0.2% 0.3%
LU 52.9% 32%  439% 0.0% 55.0% 189%  26.0% 0.1%
Ocean 429%  394%  175% 0.2% 80.3% 25%  16.8% 0.4%
Radix 56.3% 55%  382% 0.0% 59.4% 54%  352% 0.0%
Water 51.7% 0.8%  475% 0.0% 52.4% 39%  43.6% 0.0%

benchmark programs by about 40% (FFT)-80% (Ocean). The highest reduction
in Ocean is due to its high local data traffic rate per instruction [27] which is
captured in the attraction memory of COMA.

As predicted in [18], an interesting phenomenon is that the invalidation traffic
was not reduced in DICE; rather, more invalidation transactions were generated
because the large caching space allows and exposes more sharing of memory blocks
in DICE. This increases the relative portion of coherence traffic in DICE, implying
that it can become a performance degrading factor; in Ocean and Water the
invalidation traffic was more than 30% of all the bus traffic. To further cut down
the bus traffic, techniques such as the adaptive protocol for migratory blocks [6]
or self-invalidation [4] can be integrated with the DICE coherence protocol.

5.2.2. Block state distribution. Table 2 shows the frequency of block states on a
read hit. It is observed that DICE, with its large local memory, generally allows
more sharing of blocks; i.e., the percentage of the “SHO” and “SHN” states exceeds
that of the “S(hared)” state of UMA. In FFT, the L2 cache of UMA fails to capture
the blocks across program phases, resulting in few read hits in the “S(hared)” state,
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FIG. 9. Execution times when P =16 (left bar: UMA and right bar: DICE).
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while DICE still retains some shared blocks for later read hits. It is also noted that
there are relatively more coherence misses in DICE. In fact, coherence misses con-
stitute more than half of all the misses in Barnes, Ocean, and Water under the
machine configuration studied.
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5.2.3. Execution time. Figure 9 shows the execution times (normalized to those
of UMA) of benchmark programs when 16 processors are used. Each execution
time is divided into three components: busy time, time spent for memory (both read
and write), and synchronization time. For five programs out of seven, DICE had
reasonably or significantly shorter execution times (by about 10% to 60 %) than
UMA, and the geometric mean of the execution times of all the programs on DICE
was 75 %. The difference in execution time mainly came from the difference in time
spent on waiting for memory. High local hit ratio and less bus contention due to
low bus utilization contribute to shorter execution times in DICE.

For Barnes and Water, two machine models achieved virtually the same perfor-
mance, although the bus traffic for them was significantly lower in DICE. The
reasons include (i) Barnes and Water have relatively low bus utilization (40% and
20%, respectively) meaning that there was little contention in the bus while other
programs exhibit very high bus utilization (for example, 96 % for Ocean and 70 %
for Radix), and (ii) both the programs have relatively high percentage of busy time.
Their relatively weak dependence of performance on the global bus is indicated in
Fig. 10, where they show good scalability even on UMA. Traffic generated per instruc-
tion or communication-to-computation ratio for both the programs is comparatively
small [27].

5.2.4. Scalability. To measure the scalability of UMA and DICE, experiments
were conducted on both models with varying number of processors. Fig. 10 shows
the speedups for all the configurations over the single-processor UMA model.

Cholesky experienced speed-down in either model with 32 processors, as it
requires very high bandwidth [27] which is not handled well by the global bus
model simulated. Ocean and Radix showed good scalability on DICE while their
performance suffered on UMA due to bus saturation after 16 processors. The
results show that the advantage of the DICE architecture becomes clear as more
processors are introduced.

6. CONCLUDING REMARKS

DICE is a shared-bus multiprocessor utilizing cache-only memory architecture
(COMA) to effectively decrease the gap between modern high-performance micro-
processors and the bus. DICE tries to optimize COMA for a shared-bus medium,
in particular to reduce detrimental effects of cache coherence and the “last memory
block” problem on replacement. We presented the coherence and replacement
protocol for the DICE multiprocessor in this paper. With careful use of ownership
some unnecessary coherence and replacement actions are avoided. Although replace-
ment in local memory presents a unique problem to coherence, our replacement
algorithm dynamically chooses an optimal location for data relocation.

As the bus performance falls further behind the microprocessor speed, shared-bus
multiprocessors will no longer be able to capitalize on the advances in micropro-
cessors. We have shown in this paper that the DICE machine can be efficiently
implemented using a shared-bus medium to reduce the dependency microprocessors
have on bus bandwidth. Our experimental results with seven SPLASH-2 benchmark



30 CHO, KONG, AND LEE

programs show a drastic reduction of the global bus traffic up to 80% with an average
of 68 % for 16 processors. Execution times of DICE were also improved due to reduced
bus traffic and higher local memory utilization, by as much as about 60% with an
average of 25%. The reduced bus traffic helps DICE achieve a better scalability
than a traditional SMP. A bus-based COMA multiprocessor like DICE can
become a viable alternative for future shared-bus SMP implementation.

With the current progress of VLSI technology, a system-on-a-chip with several
hundred million transistors will be a reality within a few years [3]. A node of a
DICE machine with a decent AM (32 MB or 64 MB) can be fabricated on a single
chip with such technology, which will make a nice building block for multipro-
cessors. The DICE architecture described in this paper can be implemented on a
single board with such building blocks for cost-effective general-purpose multipro-
cessing.
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