
August 18, 2009 8:59 WSPC/123-JCSC 00555

Journal of Circuits, Systems, and Computers
Vol. 18, No. 6 (2009) 1081–1092
c© World Scientific Publishing Company

AUGMENTED FIFO CACHE REPLACEMENT POLICIES
FOR LOW-POWER EMBEDDED PROCESSORS

SANGYEUN CHO∗ and LORY AL MOAKAR†

Department of Computer Science, University of Pittsburgh,
5407 Sennott Square, 210 s. Bouquet St, Pittsburgh, PA 15260, USA

∗cho@cs.pitt.edu
†lorym@cs.pitt.edu

Revised 5 May 2009

This paper explores a family of augmented FIFO replacement policies for highly set-
associative caches that are common in low-power embedded processors. In such proces-
sors, the implementation cost and complexity of the replacement policy is as important
as the cache hit rate. By exploiting the cache hit way information between two replace-
ments, the proposed replacement schemes reduce cache misses by 1% to 18% on average
depending on the cache configuration, compared with the conventional FIFO policy.
The proposed schemes come at a small implementation cost of additional state bits and
control logic. The reduction in cache misses directly translates into data access energy
savings of 1% to 15% on average, depending on the cache configuration. Our work sug-
gests that there is room for improving the popular FIFO policy at a small cost.

Keywords: Cache memory; energy consumption.

1. Introduction

Processor performance is heavily dependent on the timely delivery of data from
memory. To effectively fill the widening speed gap between a processor and main
memory, cache memory has been used in virtually all high-performance proces-
sors.19 Due to the benefit of the cache memory, an increasing number of low-power
embedded processors are employing the cache memory.4, 18, 20

In recent embedded processors, highly associative cache memories based on the
CAM-tag organization have become popular.23 For example, the StrongARM pro-
cessor16 and Intel’s XScale11 have 32-way set-associative caches for instructions
and data. ARM’s 920T core has 64-way set-associative caches.4 In a highly set-
associative cache, the FIFO replacement policy is typically used. Although the
LRU policy is in general, superior to the FIFO policy in terms of the average hit
rate,19 the cost and complexity of the LRU policy is much larger than that of the
FIFO policy, thus discouraging its use in highly set-associative caches.

In this paper, we explore three augmented FIFO replacement schemes for highly
set-associative caches (for higher hit rates), by incrementally adding small storage

1081

August 18, 2009 8:59 WSPC/123-JCSC 00555

1082 S. Cho & L. A. Moakar

and logic overheads to the basic FIFO scheme. The basic idea behind the proposed
schemes is that considering cache block usage patterns as well as the FIFO order
will reduce the chance of replacing a hot cache block. Our experimental result shows
that the proposed simple extensions to the FIFO policy can lead to sizable miss
reductions; the reduction of cache misses was at least 11% on average when the
cache size is 8 kB. Our results demonstrate that there is room for improving the
basic FIFO policy, subject to the hardware budget and the performance goal.

In the remainder of this paper, we will first give a brief background about
the cache replacement schemes and summarize the existing body of research on
cache replacement and cache energy reduction (Sec. 2). Section 3 then describes the
proposed augmented FIFO schemes and their main trade-offs. Section 4 presents a
quantitative evaluation, followed by conclusions in Sec. 5.

2. Background

There is a large body of research and development work related with the cache
replacement policy.19 Today, the most popular policies found in real products are
random, FIFO, LRU and PLRU (Pseudo LRU). They differ both in the complexity
of the design, state update time, and average hit rate.

2.1. Replacement policy in low-power caches

There are two aspects of the replacement policy choice for low-power embedded
processor cache design. The first is the miss rate. A cache miss causes performance
penalty and large energy consumption, as the missed access can make its way to
off-chip memory such as DRAM or flash memory. Our estimation (in Sec. 4.2.2)
indicates that the energy consumption due to a cache miss can be three orders of
magnitude larger than that of a cache hit in current and future deep submicron
CMOS technology. Energy is also wasted during the processor idle time. Hence,
choosing a replacement policy that leads to fewer misses not only improves the aver-
age program execution time but also the overall energy efficiency of the processor.

Second, the hardware implementing the replacement policy should be simple
and efficient. Especially, the required state bit maintenance actions should be min-
imized, as well as the memory capacity needed to store the state bits. In embedded
processors with a shallow pipeline, handling frequent events such as cache hits need
to be done within a single clock cycle. The hardware complexity issues in cache
replacement policy implementation have resulted in the popularity of relatively
simple random and FIFO policies, even in high-performance processors. Recent
highly set-associative caches we considered in this paper exclusively employ the
FIFO replacement policy.4, 11, 16 Another important consideration in the embedded
processor cache design is the support for lock-down.4 “Locked” cache blocks are not
replaced on a cache miss; the memory contents in those cache blocks are guaranteed
to be found in the cache, resulting in constant and fast memory access latency for

August 18, 2009 8:59 WSPC/123-JCSC 00555

Augmented FIFO Cache Replacement Policies 1083

them. The FIFO policy naturally yields an efficient cache lock-down implementa-
tion by limiting the value of the victim pointer within two bounding values.4 The
LRU and its variant policies would require more complex control logic.

2.2. Related work

Due to the complexity of implementing the LRU policy, various simpler replacement
policies have been proposed. The PLRU policy is one of the most popular policies
used in the place of LRU.2, 6, 14 PLRU typically uses a tree structure (“PLRUt”)
or per-block MRU bits (“PLRUm”) to determine the victim block on a cache miss.
When a cache miss occurs, the victim cache way is determined by decoding the bits
associated with the tree nodes, beginning from the root of the tree, or by locating
a cache block with its MRU bit not set. It still requires relatively complex state
updates on a hit, however, because the tree bits or the MRU bits must be properly
updated based on the hit way.

Deville8 presents a replacement policy which uses a counter per cache set to
partition “old” and less critical cache blocks and “busy” and more important ones.
On a cache miss, the counter points to the victim block to replace. This scheme
performs reasonably well in caches with low associativity, but may suffer in highly
associative caches, even worse than FIFO. Our policies build on and performs better
than FIFO robustly. Their later work9 develops a more complex phase-based scheme
to remedy the weakness in their previous scheme. It keeps information about the
access patterns in previous phases. A global counter is used to keep track of the
phase changes, and MRU bits are used to record access patterns.

There are “intelligent” cache replacement strategies that combine different
replacement policies by taking into account previous cache access behaviors and
dynamically configuring the cache replacement policy. Altman et al.3 proposed a
genetic algorithm-based strategy to tune the cache to a given workload by using an
appropriate combination of LRU, FIFO, or other information. Their strategy leads
to hit rate improvement over the LRU policy. Khalid13 presented a neural network-
based algorithm that uses back-propagation neural network (BPNN) to guide block
replacement decisions. The key to their algorithm is to identify and subsequently
discard the dead blocks in cache sets such that other cache blocks that may be
used in the future can be kept in the cache for longer time. Manzoul15 proposed
two fuzzy inference systems for cache replacement that considers information on
cache block age and cache block access frequency to select a victim. They employ
18 or 34 rules for inference in their proposed systems. While these intelligent cache
replacement strategies were shown to be effective under the workloads and cache
configurations examined, their applicability is limited in low-cost embedded pro-
cessors with a highly set-associative cache because they require more state bits to
maintain and their effectiveness tends to narrow when the associativity is high.

Finally, highly set-associative caches are usually designed with a circuit for fast
associative search in the tag memory — Content Addressable Memory (CAM).21–23

August 18, 2009 8:59 WSPC/123-JCSC 00555

1084 S. Cho & L. A. Moakar

Studies show that smart CAM circuit designs enable highly set-associative caches
to be power efficient. Our work in this paper uses this already energy-optimized,
highly set-associative cache design as our target of optimizing further. Because such
designs are and will be popular in low-power embedded processors,11, 16 our findings
in this paper carry practical importance.

3. Augmented FIFO Policies

In this section, we present three new FIFO-based replacement schemes: Move-on-Hit
FIFO (MH-FIFO), Set-on-Hit FIFO (SH-FIFO) and Counter-Based FIFO (CB-
FIFO). These schemes differ in how they capture cache access patterns (i.e., hit
way information) and how they exploit the information in making a replacement
decision. They incrementally add more state bits to record the information.

3.1. Move-on-Hit FIFO (MH-FIFO)

Our first scheme, MH-FIFO, is the simplest of all with no additional state bits added
to the baseline FIFO scheme. In the baseline FIFO scheme, each set has a counter
of log W bits pointing to the next victim block in the set (i.e., “victim pointer”4),
where W is the number of cache blocks per set or simply the associativity of the
cache. This counter is incremented whenever there is a cache miss in the FIFO
scheme. On the other hand, in MH-FIFO, this counter is also incremented if the
cache block that is hit by the current access coincides with the counter value. This
is illustrated in Fig. 1(a). When a cache access hits in the block pointed by the
FIFO pointer (case 1), the FIFO pointer moves to the next cache block in the set.
When a cache access hits in the block not pointed by the FIFO pointer (case 2),
the FIFO pointer remains at its current position.

MH-FIFO salvages the “oldest” cache block in the target cache set from being
replaced if it is still in use. By comparison, FIFO simply discards the oldest cache
block on a replacement. Intuitively, MH-FIFO will reduce the probability of replac-
ing a cache block that will be used again soon, thereby decreasing the miss rate.
Implementing MH-FIFO does not incur additional state bits. However, it intro-
duces a match operation between the current FIFO counter value and the hit way
number on a cache hit so that the FIFO counter value can be updated if they actu-
ally match. This match operation can be efficiently implemented with a log W -bit
comparator or an array of a single-bit comparator (an AND gate) if the counter
value is pre-decoded.

3.2. Set-on-Hit FIFO (SH-FIFO)

Our second scheme, SH-FIFO, attaches a use bit to each cache block. The use bit is
set when a cache access hits in the associated cache block. The use bits in a set are
reset all together when a cache access misses in the set. Therefore, the use bits in
aggregation record the recent history of access patterns (since the last cache miss).

August 18, 2009 8:59 WSPC/123-JCSC 00555

Augmented FIFO Cache Replacement Policies 1085

(a) (b) (c)

Fig. 1. (a) Operation of MH-FIFO, (b) Operation of SH-FIFO, (c) Operation of CB-FIFO. From
an initial state (“before”), a series of cache hit and miss events occur. Multiple cases are shown
to expose different operational behaviors of each policy.

Given the use bits, SH-FIFO determines the victim block by selecting a cache
block that has not been accessed since the last replacement in its set. Starting from
the cache block pointed by the FIFO victim pointer, SH-FIFO searches for the first
block whose use bit is not set. This is illustrated in Fig. 1(b). If no cache block
with its use bit unset can be found (i.e., all the cache blocks have been accessed
since the last miss), the victim block is simply the cache block pointed by the FIFO
pointer at first. SH-FIFO does not victimize a cache block that was accessed at
least once if there is a cache block that was not. Like MH-FIFO, SH-FIFO reduces
the probability of replacing a cache block that will be used again soon.

An SH-FIFO implementation incurs more state bits than FIFO, namely, a use
bit per cache block. Unlike LRU (or PLRU), however, updating a use bit in SH-
FIFO does not require reading and modifying other state bits. When a hit way is
known, the corresponding use bit is simply set. Implementing the update logic for
SH-FIFO is, therefore, more straightforward. Moreover, because the victim choice
in SH-FIFO is still based on the FIFO pointer, the cache lock-down support can
be easily implemented by assigning the lower-bound value to the FIFO pointer (to
skip the locked-down ways) whenever it wraps around.4

3.3. Counter-Based FIFO (CB-FIFO)

Our third and last scheme is CB-FIFO, which uses a two-bit counter to regis-
ter the number of accesses to a cache block. CB-FIFO is similar to SH-FIFO in
that it records the access history of individual cache blocks. CB-FIFO adds more

August 18, 2009 8:59 WSPC/123-JCSC 00555

1086 S. Cho & L. A. Moakar

information than SH-FIFO; it counts and records the number of accesses that hit
in each cache block. The recorded information places different “weights” among
the cache blocks in a set when a victim block is to be selected. In fact, SH-
FIFO can be thought of as a special case of CB-FIFO where each counter is a
single bit.

Figure 1(c) depicts how CB-FIFO works in three different cases. On a cache hit,
the counter associated with the hit cache block is incremented. Each counter is a
saturating counter; if a counter has already reached the maximum value, it does not
change its value on the next increment. On a cache replacement following a miss,
a victim block whose access count is the smallest is selected as the victim. All the
counter values in the set are then decremented, or alternatively, reset. While this
action is more complex than the replacement action in the baseline FIFO policy,
it can be done easily by grouping W cache blocks into four value groups (0, 1, 2,
and 3) with parallel comparators. We will discuss the impact of using more than
two bits per cache block in CB-FIFO and the impact of resetting the counter values
in Sec. 4.

Like SH-FIFO, CB-FIFO guarantees that it never replaces a cache block that
was accessed recently if there is a cache block that has not been used. Because CB-
FIFO attaches two state bits to each cache block, it incurs more storage overhead
than SH-FIFO. However, the number of bits to be inspected and updated is limited
to two bits on a cache hit, and the update logic implementation is straightforward
as in the case of SH-FIFO.

Table 1. Different replacement schemes’ number of state bits,
action on a hit and action on a miss. The numbers in () are the
necessary state bits for a 32-way 8 kB cache with 32 B blocks.

Scheme Description

Nsets × W × log W (1280 bits)
LRU Update LRU list

Update LRU list

Nsets × log W (40 bits)
FIFO Do nothing

Advance FIFO counter

Nsets × log W (40 bits)
MH-FIFO Advance FIFO counter if it matches hit way

Advance FIFO counter

Nsets × (log W + W) (296 bits)
SH-FIFO Set use bit of hit block

Search for victim and set FIFO counter

Nsets × (log W + 2 · W) (552 bits)
CB-FIFO Increment counter of hit block

Search for victim and set FIFO counter

Nsets × (W − 1) (248 bits)
PLRU (PLRUt) Update tree bits

Update tree bits

August 18, 2009 8:59 WSPC/123-JCSC 00555

Augmented FIFO Cache Replacement Policies 1087

3.4. Discussion

The three augmented FIFO schemes we presented add a small overhead to the
baseline FIFO scheme. Table 1 summarizes each scheme’s state storage requirement
and the necessary actions on a hit or a miss. For comparison, we included a tree-
based PLRU in the table.

It is shown that the required state bit storage of MH-FIFO, SH-FIFO or CB-
FIFO is much smaller than that of LRU. It is also clear that their state update
actions on frequent cache hits are significantly simpler than the LRU list update
action. To assess the complexity of the state update logic, we implemented a cache
controller using a product-grade 130nm standard cell library. Because new state
bits (e.g., (counter+1) in MH-FIFO) can be computed a priori even before the hit
information is provided, the state bit update latency is found to never extend the
existing critical path. Our cache controller has about 500 bits of storage (flip-flops)
to implement controller state bits and various buffers (e.g., a 4-entry write-back
buffer) to interface the processor and the memory bus. In the case of FIFO, MH-
FIFO, SH-FIFO and PLRU, the number of replacement-related state bits is roughly
equivalent to or smaller than the number of bits needed to implement the cache
controller and the cache datapath. For an 8 kB 32-way cache design, the cache area
difference relative to FIFO is, 0%, 3.7%, and 3.0% for MH-FIFO, SH-FIFO and
PLRU, respectively. The area of full LRU and SH-FIFO is 17.9% and 7.2% larger
than that of FIFO.

Lastly, PLRU has a lower state storage requirement than SH-FIFO and CB-
FIFO. However, incorporating support for cache locking was more complex in
PLRU because state update actions on hits must also consider locked-down cache
blocks.

4. Quantitative Evaluation

4.1. Experimental setup

To evaluate the performance of different cache replacement policies, we use a
detailed execution-driven simulator based on sim-outorder in the SimpleScalar tool
set (v4.0)5 to model a processor configured to resemble a real design.16 The modeled
processor has a single-issue in-order pipeline and uses a 266MHz clock. The off-chip
SDRAM is clocked at half the processor clock (133MHz). Table 2 summarizes the
key processor parameters.

Table 2. Summary of the simulated processor.

Pipeline Single-issue in-order

Branch prediction 2 k-entry combined branch predictor
I-cache 4–16 kB, 8/16/32-way SA, 32B block, 1-cycle latency
D-cache 4–16 kB, 8/16/32-way SA, 32B block, 1-cycle latency
Main memory SDRAM, 32-bit bus, 24 processor cycles for cache block transfer

August 18, 2009 8:59 WSPC/123-JCSC 00555

1088 S. Cho & L. A. Moakar

Table 3. Summary of the benchmark programs.

Name Description

cjpeg jpeg encoder; ppm to jpeg
djpeg jpeg decoder; jpeg to ppm
ispell spell checker
mp3decode mp3 audio decoder; mp3 to wave
mp3encode mp3 audio encoder; wave to mp3
rijndaeld aes decryption
rijndaele aes encryption
rsynth text to speech synthesis
tiff2rgba image format conversion

For workload, we use nine programs from the MiBench suite,10 summarized
in Table 3. We picked programs based on their different miss rates, ranging from
∼ 0.4% (rsynth) to 12.6% (rijndaele) when a 4 kB 8-way cache is used. Programs
were compiled to target the ARM ISA using gcc 2.95.2 with the -O2 optimization
flag. Programs were run in their entirety.

4.2. Evaluation results

4.2.1. Cache misses

Figure 2 shows the number of cache misses per thousand instructions (MPKI)
using different replacement policies. Table 4 shows the maximum and the average
reduction in cache misses under each different cache configuration, relative to the
conventional FIFO policy.

Although the absolute reductions vary depending on the application and the
particular cache configuration used, the proposed augmented FIFO schemes are
consistently able to reduce cache misses, compared with the conventional FIFO
scheme. It is also demonstrated that adding more state bits leads to more reductions
in general. Almost always, CB-FIFO outperforms SH-FIFO and SH-FIFO reduces
more misses than MH-FIFO. Most of the time, LRU achieves the best results. We
have examined both PLRUt and PLRUm; however, they performed worse than the
presented schemes (including FIFO) and especially poorly when running media-
processing benchmarks such as cjpeg, djpeg, and mp3*. Hence, we do not further
consider PLRU.

There are several programs and configurations exhibiting a different result than
the above general description. SH-FIFO performs poorer than the FIFO or the
other augmented FIFO schemes in cjpeg. rijndaeld and rijndaele perform better
under the SH-FIFO and the CB-FIFO schemes than LRU when the cache size is
4 kB and the associativity is at least 16. Interestingly, LRU performed not as well
as all the other schemes for tiff2rgba when the cache size is 16 kB, regardless of the
associativity.

In CB-FIFO, employing counters with more than two bits does not lead to
significantly better results and is not justified. In certain cases, miss rates can be

August 18, 2009 8:59 WSPC/123-JCSC 00555

Augmented FIFO Cache Replacement Policies 1089

(a) 8-way

(b) 16-way

(c) 32-way

Fig. 2. Misses per thousand (kilo) instructions (MPKI). Three cache sizes (4 kB, 8 kB and 16 kB
from left) are shown for three associativities (8-way, 16-way and 32-way from above).

negatively affected because it takes more time to replace a cache block that is no
longer in use. Resetting counter values instead of decrementing them also leads to
mixed results, with a slightly worse result on average.

It is interesting to observe that the media-type benchmarks (cjpeg, djpeg,
mp3decode, mp3encode, and tiff2rgba) show somewhat different results compared
with the rest of the benchmarks. With a small cache size (4 kB), CB-FIFO performs
better than SH-FIFO or MH-FIFO for the media-type benchmarks. However, all the
augmented FIFO schemes perform very similarly when the cache size is increased to
16 kB. On the other hand, CB-FIFO and SH-FIFO perform better than MH-FIFO
for the other, non-media-type benchmarks especially when the cache size is large
(16 kB).

4.2.2. Energy consumption

Today, the energy consumption related with a cache hit is much different from
the energy consumption due to a cache miss. As new, low-power technologies are

August 18, 2009 8:59 WSPC/123-JCSC 00555

1090 S. Cho & L. A. Moakar

Table 4. Average (maximum) miss reduction (%), relative to FIFO.

Configuration MH-FIFO SH-FIFO CB-FIFO LRU

4kB, 8-way 6 (22) 1 (22) 7 (26) 10 (33)
4 kB, 16-way 5 (20) 5 (22) 7 (22) 10 (35)
4 kB, 32-way 4 (15) 6 (21) 4 (12) 10 (36)
8 kB, 8-way 12 (26) 12 (22) 14 (29) 20 (47)
8 kB, 16-way 13 (29) 11 (25) 15 (32) 25 (54)
8 kB, 32-way 11 (22) 12 (18) 12 (18) 26 (56)
16 kB, 8-way 10 (50) 18 (74) 14 (59) 15 (62)
16 kB, 16-way 8 (32) 14 (49) 17 (59) 12 (48)
16 kB, 32-way 4 (8) 6 (19) 8 (34) 6 (24)

continuously deployed, the relative energy discrepancy between a cache hit and a
cache miss will likely increase. Using CACTI 4.2,7 we estimate that a read hit in a
8 kB 32-way CAM-tag cache consumes about 0.156nJ at 0.887V and about 0.199nJ
at 1V assuming a 70 nm technology.a On the other hand, accessing off-chip memory
composed of four 128Mbit×8 SDRAM (similar to K4S280832B-TC1L17) to fetch
a 32B cache block can consume as much as 690.1 nJ. The estimation assumes a
16.35pF load capacitance per data bus line, a 13.75pF load per address bus line12

and a 3.3V interface voltage. Lowering the interface voltage to 1.8V and halving
the load capacitance result in much reduced total energy of 302.5 nJ, still much
higher than the hit energy.

The bottom line of our estimation is that a cache miss can easily consume three
orders of magnitude more energy than a cache hit, depending on the cache configu-
ration (i.e., set-associativity in the CAM-tag structure23) and the voltage level used
for the cache memory, the external DRAM memory, and the chip interface. Because
of the large difference in the cache hit energy and the cache miss energy, the cache
miss rate will determine the energy consumption in the memory hierarchy. In our
experimental setup, this suggests that unless the cache miss rate is in the range
of as low as 0.01% to 0.1%, the cache miss energy, not the cache hit energy, will
dominate the total data access energy.

Fig. 3. Average energy consumption per data memory access (nJ/access). Results for three cache
sizes (4 kB, 8 kB and 16 kB from left) and the associativity of 32 are shown.

aCACTI 3.2 gives a more conservative number: 0.556 nJ at 0.9V.

August 18, 2009 8:59 WSPC/123-JCSC 00555

Augmented FIFO Cache Replacement Policies 1091

Table 5. Average (maximum) energy savings (%), relative to FIFO.

Configuration MH-FIFO SH-FIFO CB-FIFO LRU

4kB, 8-way 6 (22) 1 (22) 7 (25) 10 (33)
4 kB, 16-way 5 (20) 5 (22) 7 (22) 10 (35)
4 kB, 32-way 4 (15) 5 (21) 4 (12) 10 (36)
8 kB, 8-way 12 (26) 11 (22) 14 (29) 18 (39)
8 kB, 16-way 13 (29) 11 (25) 15 (32) 24 (54)
8 kB, 32-way 11 (22) 12 (18) 11 (18) 26 (55)
16 kB, 8-way 7 (28) 9 (34) 9 (33) 9 (35)
16 kB, 16-way 5 (15) 10 (31) 11 (34) 8 (23)
16 kB, 32-way 4 (8) 5 (18) 7 (33) 6 (23)

Fig. 4. Performance difference relative to FIFO. Results for three cache sizes (4 kB, 8 kB and
16 kB from left) and the associativity of 32 are shown.

Figure 3 shows the average energy per access under various replacement poli-
cies using a 32-way cache configuration. It is clearly shown that the reduced misses
using an augmented FIFO scheme translate into reduced energy consumption. The
maximum energy reduction was achieved for rijndaeld (34%) when a 16 kB 8-way
cache was used and for rijndaele (34%) when a 16 kB 16-way cache was used. Table 5
shows the maximum and the average energy savings evidenced in each cache con-
figuration.

4.2.3. Performance impact

Because of the very low miss rates of the studied programs even with small cache
sizes, the performance impact of different replacement policies, in terms of program
execution time, is fairly limited. Figure 4 presents the result, showing that the
augmented FIFO schemes are robust in improving the program performance.

5. Conclusions

This paper proposed and studied a family of augmented FIFO cache replacement
schemes: MH-FIFO, SH-FIFO and CB-FIFO. The proposed schemes build on the
conventional FIFO scheme that has been extensively used in recent low-power
embedded processor caches having high associativity. Our study shows that the
miss rate of the FIFO scheme can be improved at a slight hardware cost, which
leads to sizable data memory access energy savings. As the relative energy con-
sumption difference between a cache hit and a miss becomes larger as low-power
technologies are deployed, tuning and augmenting the existing cache policies to cut

August 18, 2009 8:59 WSPC/123-JCSC 00555

1092 S. Cho & L. A. Moakar

on cache misses will be highly beneficial. Finally, our experiments demonstrate that
the studied schemes are amenable to implementation and can be easily integrated
in a FIFO-based cache memory controller without impacting the cache’s critical
path. When the “golden” LRU scheme is not feasible, the proposed schemes can
become an attractive replacement policy choice for a highly set-associative cache
design.

References

1. D. H. Albonesi, Selective cache ways: On-demand cache resource allocation, MICRO,
December 1999.

2. H. Al-Zoubi et al., Performance evaluation of cache replacement policies for the SPEC
CPU2000 benchmark suite, ACM Southeast Regional Conf., April 2004.

3. E. R. Altman, V. K. Agarwal and G. R. Gao, A novel methodology using genetic
algorithms for the design of caches and cache replacement policy, ICGA (1993).

4. ARM Ltd, ARM920T Tech. Ref. Manual, DDI 0151C, 2000, 2001.
5. T. Austin, E. Larson and D. Ernst, SimpleScalar: An infrastructure for computer

system modeling, IEEE Comput. 35 (2002) 59–67.
6. C. Berg, PLRU cache domino effects, WCET, July 2006.
7. CACTI 4.2, http://quid.hpl.hp.com:9081/cacti/
8. Y. Deville, A low-cost usage-based replacement algorithm for cache memories,

SIGARCH Newsletter, December 1990.
9. Y. Deville and J. Gobert, A class of replacement policies for medium and high-

associativity structures, SIGARCH Newsletter, March 1992.
10. M. R. Guthaus et al., MiBench: A free, commercially representative embedded bench-

mark suite, WWC, December 2001.
11. Intel Corp, Intel XScale Microarchitecture, technical summary (2000).
12. Y. Joo et al., Energy exploration and reduction of SDRAM memory systems, DAC,

June 2002.
13. H. Khalid, A new cache replacement scheme based on backpropagation neural net-

works, SIGARCH Comput. Archit. News, March 1997.
14. M. Kampe et al., Self-correcting LRU replacement policies, ACM Comput. Frontiers,

April 2004.
15. M. A. Manzoul, Fuzzy management of cache memories, Fuzzy Control Systems, CRC

Press, 1994.
16. J. Montanaro et al., A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor, IEEE

JSSC 31 (1996) 1703–1714.
17. Samsung Semiconductor, K4S280832B 128Mbit SDRAM datasheet, http://www.

samsungsemi.com.
18. NXP Semiconductor, Nexperia PNX1300 series, product brochure (2002).
19. A. J. Smith, Cache memories, ACM Comput. Surveys 14 (1982) 473–530.
20. Texas Instruments, TMS320C6211 fixed-point digital signal processors, SPRS073L.

1998, 2005.
21. A. Veidenbaum and D. Nicolaescu, Low energy, highly-associative cache design for

embedded processors, ICCD, October 2004.
22. C. Zhang et al., A highly configurable cache for low energy embedded systems, ACM

TECS 4 (2005) 363–387.
23. M. Zhang and K. Asanović, Highly-associative caches for low-power processors, Kool

Chips Workshop, December 2000.

