
Figure 1. Definition of four ranges of process variation

A Data-Driven Statistical Approach to Analyzing Process Variation                      
in 65nm SOI Technology 

 
Choongyeun Cho1, Daeik Kim1, Jonghae Kim1, Jean-Olivier Plouchart1, Daihyun Lim2, Sangyeun Cho3, and 

Robert Trzcinski1 
1IBM, 2MIT, 3U. of Pittsburgh 

{cycho,dkim,jonghae,plouchar,rtrzcin}@us.ibm.com, daihyun@mit.edu, cho@cs.pitt.edu 
 

Abstract 
 

This paper presents a simple yet effective method to 
analyze process variations using statistics on 
manufacturing in-line data without assuming any explicit 
underlying model for process variations. Our method is 
based on a variant of principal component analysis and is 
able to reveal systematic variation patterns existing on a 
die-to-die and wafer-to-wafer level individually. The 
separation of die variation from wafer variation can 
enhance the understanding of a nature of the process 
uncertainty. Our case study based on the proposed 
decomposition method shows that the dominating die-to-
die variation and wafer-to-wafer variation represent 31% 
and 25% of the total variance of a large set of in-line 
parameters in 65nm SOI CMOS technology. 
 
1. Introduction 

As the feature size of silicon technology is scaling 
down and the wafer size is getting larger, process 
variation is increasingly difficult to model and control, 
thus becoming a critical limiting factor of the 
performance and yield of integrated circuits [1]. 

 
 
 
For fault detection and device characterization, in-line 

electrical measurements are typically performed off the 
manufacturing floor using a parametric tester. To keep 
track of the performance and DC characteristics of 
devices or other circuit elements, assorted test structures 
and conditions have been employed. For example, FET 
devices of different sizes and layouts are designed and 
fabricated for the purpose of regular monitoring of critical 
electrical parameters such as threshold voltage, drive 
current, and leakage current. However, the holistic view 
of the collection of heterogeneous in-line data has been 
largely neglected thus far. To the best of the authors’ 
knowledge, there has been little research or practice 

exploiting in-line electrical measurement data of a large 
number of variation parameters from multiple wafers/lots 
to extract process variation in wafer-to-wafer and die-to-
die levels, separately. 

In this paper, we first propose a statistical method to 
analyze manufacturing in-line data to separate die 
variation and wafer variation. Using the proposed method 
and a set of pre-production manufacturing in-line data 
collected from test structures built with a 65nm SOI 
CMOS technology, we evaluate the relative amount of 
systematic die-to-die and wafer-to-wafer variations in the 
total in-line measurement data. Along with sensitivity 
analysis of circuit performance to the variation 
parameters, the contributions of systematic die-to-die and 
wafer-to-wafer variation can be evaluated separately. Our 
method also allows us to assess the effect of random 
variation, which is left as residual and cannot be 
explained by systematic variation components. 

2. Proposed method 
In this section, a multivariate statistical analysis 

technique is presented to separately monitor die-level and 
wafer-level systematic variations from the observation of 
in-line measurement data. Due to the complexity of 
semiconductor manufacturing processes and 
environmental factors, die and wafer variations are more 
or less inter-correlated depending on a specific fabrication 
recipe. The rationale to untangle die variation and wafer 
variation is to make it easier to conceptualize and analyze 
a given process variation and its physical mechanism, 
than otherwise leaving it as a lumped variation. 
 
2.1 Principal component analysis 

The principal component analysis (PCA) is a linear 
transformation of a set of random vectors to a new set of 
vectors, referred to as principal components (PC’s) [2].  
PC’s are uncorrelated and are ordered so that a first few 
retain most of the variation present in all the original 
variables. The first PC is visualized as the direction on 
which the variance of the projection of the original vector 
is maximized as expressed in (1). Here, x is the original 
data vector, and wi is the PC. The subsequent PC’s are 
defined in the same way except that they need to be 
orthogonal to all the previous PC’s. 
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In reality, PCA is often implemented with the singular 
value decomposition (SVD) of a covariance matrix of a 
given data set. If the covariance matrix is not known a 
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priori, it is often estimated based on ensemble of data 
samples. The PCA is a useful multivariate tool to reduce 
the dimension of data set, to reduce noise, or to visualize 
the representative features of the given multidimensional 
data. There has been a growing interest in PCA in 
semiconductor manufacturing industry for process failure 
analysis [3,4]; however, to the authors’ knowledge, there 
was no previous work to treat die-to-die or wafer-to-
wafer variations separately using PCA. 

2.2 Constrained principal component analysis 
The constrained principal component analysis (CPCA) 

is a method to extract constrained principal components 
(CPC’s) which have the same properties with the original 
PC’s but are constrained to a predefined subspace [5]. 
Similar to the ordinary PCA, the CPCA finds CPC’s in a 
sequence of significance. It is useful to extract the PC’s of 
die-to-die or wafer-to-wafer variations separately for 
better understanding. In the CPCA, PC’s can vary only in 
a guided dimension which is consistent with the die-to-
die or wafer-to-wafer variation.  
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Figure 2. Comparison of the concept of the ordinary PCA (a) 
with the proposed CPCA (b): The ordinary PCA decomposes 
a vector into orthogonal spaces without considering die-to-
die or wafer-to-wafer variations. The proposed CPCA finds 
orthogonal spaces that also coincide with either die-to-die or 
wafer-to-wafer variation. 

Figure 2 visualizes the difference between the 
proposed CPCA in the right panel and the traditional PCA 
in the left panel. Conceptually, the PCA finds orthogonal 
coordinates which do not generally coincide with die and 
wafer variations. Therefore, understanding process 
variation using the ordinary PC’s would be perceptually 
difficult. On the other hand, the CPCA guides the PC’s to 
the die and wafer directions, leading to direct 
visualization of the variation in the die-to-die and wafer-
to-wafer ranges. Only a few CPC’s may be examined for 
this purpose because only a fraction of all the CPC’s are 
sufficient to capture the most of the information as with 
the case of PC’s. 

2.3 Algorithm 
Figure 3 illustrates how the CPC’s can be iteratively 

obtained. Because the variability of the data is scale-
dependent, the PCA is sensitive to the scaling of the data 
to which it is applied. Thus, at the preprocessing stage, 
the data set of each inline parameter is standardized to be 
zero-mean and unit-variance. The rationale for this 
standardization is to treat each in-line test parameter 
insensitive to arbitrary scaling (e.g., different units) and 
bias (e.g., systematic offset). 

Subsequently, the data is screened for anomalies and 
insignificant values. In our implementation, all the in-line 
parameters which contain meaningless data points (e.g., 

system default values for failed measurement) are filtered 
out. 

Also, a simple Gaussianity test such as kurtosis 
analysis for the ensemble of each parameter can be 
applied to ensure the validity of the data set [6]. Kurtosis 
(the ratio of the fourth central moment to the square of the 
variance) is a measure of peakedness of a distribution.  In 
our case, the parameters with the kurtosis, greater than 8 
(having much fatter tail than the normal distribution 
which has kurtosis of 3) or less than -2 (having much 
thinner tail than the normal distribution) are flagged 
unusable. In the next step, PCA is performed to find the 
first PC for die and wafer variation. The PC of larger 
variance is selected. The data set is, then, transformed to 
be orthogonal to the space spanned by the selected PC. 
This routine is iterated for the residual data set until a 
given criterion is satisfied. This is a valid constrained 
PCA because the zero-mean die variation and wafer 
variation are orthogonal to each other. 
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Figure 3. The flow of the proposed CPCA algorithm 

The resulting PC is constrained to represent either 
wafer variation or die variation. A PC representing the 
die-to-die variation may serve as a snapshot of a given 
technology. Based on this systematic die-to-die pattern, 
the characteristic of a given lot(s), or generally a given 
technology can be monitored, thus allowing fast and 
critical feedback to manufacturing and technology. A PC 
for the wafer variation is also indicative of the technology 
and manufacturing used. 

CPCA can be regarded as a source coding of the 
complex yet redundant data set: only a few PC’s are 
sufficient to capture the most of the information contained 
in the whole data. Any lot or lots can be represented by 
the weighted sum of a few CPC’s within some accuracy, 
thus effectively compressing all technology parameters 
into a handful of weighting factors. Hence, the CPCA can 
serve as a simple and effective way to keep track of the 
metrology of a given lot(s) or technology generations. 

3. A case study: in-line parameters in 65nm 
SOI technology 
3.1 The data set 

For this study, 1109 in-line parameters in a pre-
production 65nm SOI CMOS technology are used. A data 
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(b) (a)

set of each in-line parameter contains 520 samples (40 
dies per wafer for 13 wafers) for each in-line parameter. 
Wafers used are 300mm, and belong to a same lot. There 
are various measurements from FET test structures (e.g., 
Vt, Ion, Ioff), ring oscillators, SRAM’s and capacitance 
as listed in Table 1. 

Type FET Ring 
Oscillator SRAM Capacitance Total 

Number of 
parameters 759 83 159 108 1109 

Table 1. The categories of in-line parameters used in the 
CPCA analysis 

3.2 The CPCA results 
Both the ordinary PCA and CPCA were performed on 

a given data set for the sake of comparison. The 
computation time was not more than one minute to obtain 
all the CPC’s for this 1109-by-520 in-line data matrix 
using an ordinary PC. Figure 4 shows the variance which 
can be explained by the first 20 PC’s and CPC’s for the 
ordinary PCA and CPCA, respectively. A variance for 
each PC is shown as well as the cumulative variance. The 
first PC’s in both the methods account for 31~34% of the 
total variance of the original data set. Using the first two 
CPC’s, 57% can be explained, slightly less than 61% for 
the unconstrained PC’s. 
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Figure 4. Cumulative variance of PCA and CPCA 

It is also noted that the CPC’s do not reach 100% 
asymptotically because the die or wafer variation alone 
cannot fully represent some intertwined relationship 
between the two. Nonetheless, the advantage of 
separating the die and wafer components of systematic 
variation justifies the slightly less coverage of variance by 
the same number of CPC’s compared to the ordinary PC’s. 

 
Die-to-

die 
Wafer-

to-wafer 
Variance 
explained 

Cumulative 
Variance 
explained 

1st CPC √  31.0% 31.0% 
2nd CPC  √ 25.2% 56.2% 
3rd CPC √  4.5% 60.7% 
4th CPC  √ 4.2% 64.9% 
5th CPC  √ 2.4% 67.3% 
6th CPC  √ 1.5% 68.8% 

Table 2. The type and variance of the first 6 CPC’s 

Table 2 lists the type (either die-to-die or wafer-to-
wafer) and variance of the first six CPC’s. This table also 
shows that the first and second CPC’s capture the die and 
wafer variation, respectively. The die variation and wafer 
variation often alternate along the progression of CPCA 
iteration as expected: after one type of variation is 
subtracted, the other type is likely to be predominant in 
the residual data at the next CPCA iteration. 
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Figure 5. The first CPC (die variation) shown as a wafer map 
(a) and die-to-die plot (b) 

Figure 5(a) shows the first CPC (die variation) image, 
fitted by the 2nd order polynomials on the 40 available 
values of the first CPC. The polynomial fitting was done 
to interpolate the missing values in some chip sites for the 
purpose of visualization. The slightly off-centered radial 
pattern is clearly visible in this PC. Figure 5(b) plots the 
first CPC with respect to a die index. This is the most 
prominent systematic variation by far, explaining about 
31% of the variance of the whole data set.  
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Figure 6. Second, fourth and fifth CPC which correspond to 
the first three wafer variations 

Figure 6 exhibits the wafer variation captured by the 
second, fourth and fifth CPC corresponding to the first 
three wafer variations. The second CPC alone represents 
25% of the total variance of the whole data set. It is 
observed that the dominant die variation (31%) is larger 
than the dominant wafer variation (25%), which is 
consistent with the recent trend that a die variation is 
increasingly important due to the larger wafer size 
(300mm) than before. 

In Figure 6, the order of wafer indices is arbitrary, but 
the systematic pattern and the spread of wafer variations 
can be fed back to the technology development in order to 
further analyze the source of the this variation. 



4. Applications 
4.1 Process variation analysis on a new data set 

CPC decomposition can be applied to a new data set of 
a totally different nature. For this study, we used a bench-
tested RF self-oscillation frequency (Fso) for a static 
CML frequency divider. Fso was measured from the same 
dies and wafers on which the previous in-line parameters 
used for the CPCA reside. Figure 7 illustrates the 
sequence of CPCA in 3 dimensions to visualize how Fso 
can be reconstructed by adding one component at a time 
using an offset and the first four CPC’s.  
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Figure 7. Self-oscillation frequency of a divider (bottom) 
represented by a global offset and the first four CPC’s 

The bottom surface shows Fso (z-axis) from different 
dies and wafers. A global offset shown on the top is an 
average of Fso over all dies and wafers, thus a constant. 
The second image is the first CPC plus the offset, having 
only die variation. The next image displays the added 
contribution of the second CPC (wafer variation) on top 
of the previous image. This figure demonstrates how 
original data can be successively reconstructed from or, 
equivalently, decomposed into a few CPC’s. Note that 
these CPC’s are calculated from the previous in-line DC 
test data and not from this Fso which is being analyzed. A 
weight for each CPC is obtained by projecting Fso data 
on to each CPC space. The first four PC’s retain 66% of 
all the information of Fso variation, which is a significant 
amount especially because the test data (frequency of RF 
circuit) and the training data for CPC calculation (in-line 
DC measurement data) are quite different in nature. The 
physical mechanism of how each in-line device-level 
parameter affects complex RF circuitry such as the 
frequency divider is elusive and challenging to analyze. 
However, the proposed algorithm and experimental data 
show that the process variation is substantially systematic, 

and therefore, the CPC’s obtained from in-line 
measurement can explain a significant portion of the 
process variation in complex RF circuits. 

4.2 Efficient sampling for measurement and yield 
analysis 

The most dominant die variation, the first CPC in our 
case, contains the most information (31%) about 
systematic within-wafer variations. Therefore, an 
intelligent sampling scheme can be proposed for cost-
effective measurement and quick yield analysis, based on 
the first CPC; for example, if only two chips per wafer 
are allowed for measurement, it would be reasonable to 
sample the minimum and maximum points in first die-to-
die CPC. One can also selectively measure some sensitive 
sites to effectively evaluate how much a wafer is 
compatible to the die variation pattern(s) without 
sacrificing a great deal of accuracy. 

5. Conclusion 
A statistical framework is proposed to separate die-to-

die and wafer-to-wafer variations. Major advantages of 
the proposed method are as follows: 
• This method allows effective visualization and 

analysis of systematic die-to-die and wafer-to-wafer 
variations using only an ensemble of manufacturing 
in-line data. 

• This analysis can be implemented in near real-time to 
give rapid feedback to technology development. It 
can effectively complement the analytic or numerical 
modeling of process variation. 

Our future work includes: 
• Extending this framework to accommodate a within-

die or lot-to-lot variation as another constraint in the 
CPCA algorithm. 

• Relaxation of the Gaussian assumption for the in-line 
parameters and the usage of independent components 
in place of principal components which are 
uncorrelated but not necessarily independent. 
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