High-Level Information — An Approach for Integrating
Front-End and Back-End Compilers

Sangyeun Cho, Jenn-Yuan T'safonghong Song Bixia Zheng, Stephen J. Schwifn
Xin Wang, Qing Zhao, Zhiyuan Ej David J. Lilja, and Pen-Chung Yew

Dept. of Comp. Sci. and Eng. fDept. of Comp. Sci. *Dept. of Comp. Sci “Dept. of Elec. and Comp. Eng.
Univ. of Minnesota Univ. of lllinois Purdue University Univ. of Minnesota
Minneapolis, MN 55455 Urbana, IL 61801 West Lafayette, IN 47907 Minneapolis, MN 55455

http://www.cs.umn.edu/Research/Agassiz

Abstract niques, or user-inserted compiler directives. This front-end
then relies on awptimizing back-endompiler to perform

We propose a new universal High-Level Information the machine-specific instruction-level optimizations, such
(HLI) format to effectively integrate front-end and back-end as instruction scheduling and register allocation.
compilers by passing front-end information to the back-end This front-end/back-end separation is common due to the
compiler. Importing this information into an existing back- complexity of integrating the two, and because of the dif-
end leverages the state-of-the-art analysis and transforma-ferent types of data structures needed in both components.
tion capabilities of existing front-end compilers to allow the For example, the front-end performs high-level program
back-end greater optimization potential than it has when re- analysis to identify dependences among relatively coarse-
lying on only locally-extracted information. A version of the grained program units, such as subroutines and loop iter-
HLI has been implemented in the SUIF parallelizing com- ations, and performs transformations on these larger units.
piler and the GCC back-end compiler. Experimental results Because it operates at this coarse level of parallelism gran-
with the SPEC benchmarks show that HLI can provide GCC ularity, the front-end does not need detailed machine infor-
with substantially more accurate data dependence informa-mation. Not incorporating machine-specific details into the
tion than it can obtain on its own. Our results show that front-end eliminates the time and memory space overhead
the number of dependence edges in GCC can be reduced bgequired to maintain this extensive information. The back-
an average of 48% for the integer benchmark programs andend, however, needs machine details to perform its finer-
an average of 54% for the floating-point benchmark pro- grained optimizations.
grams studied, which provides greater flexibility to GCC's The penalty for this split, though, is that the back-end
code scheduling pass. Even with the scheduling optimiza-misses potential optimization opportunities due to its lack
tion limited to basic blocks, the use of HLI produces mod- of high-level information. For example, optimizations in-
erate speedups compared to using only GCC’s dependencgolving loops, such as scalar promotion or array privati-
tests when the optimized programs are executed on MIPSation [11], are difficult to perform in the back-end since
R4600 and R10000 processors. complex loop structures can be difficult to identify with the
limited information available in the back-end, especially
for nested loops. Furthermore, the scope of the optimiza-
tions the back-end can perform, such as improving instruc-
tion issuing rates through architecture-aware code schedul-
ing [7, 10, 12, 16], is limited to only short-range, local trans-

Existing compilers for automatically parallelizing appli- formations. Another consequence of this splitis that it is not
cation programs are often divided into two relatively in- uncommon for transformations performed in the front-end
dependent components. Tharallelizing front-endof the to be ignored, or even undone, in the back-end.
compiler is often a source-to-source translator that typically ~ The types of high-level information that could be used
is responsible for performing loop-level parallelization op- by the back-end to enhance its optimization capabilities in-
timizations using either automatic program analysis tech- clude the details of loop-carried data dependences, infor-

1 Introduction

mation about the aliasing of variable names, the results of HLI FILE
interprocedural analysis, and knowledge about high-level, ——
coarse-grained parallelization transformations. While this | FUNGTION | | FUNGTION | | FUNGTION |
information could be easily passed from the front-end to

the back-end in a completely integrated compiler, it is un-

fortunately very difficult to build an entire compiler from Hne Tabke Reglon Table
scratch. To be competitive, the new compiler must incorpo- (e | [ne | [Regon | [regon | [regon |
) Line Line Region Region Region
rate the state-of-the-art in both the front-end and the back- [[
end, which is a massive undertaking. fem fem Equivalent Access Alias
. . . item nem
Instead of bwldmg a completely new co'mpller, we note | |iem | | iem e - . .
that the necessary information can be readily extracted from | ™" fem item item dass || class
an existing parallelizing front-end compiler and passed in a fem fem dase J | dese
condensed form to an existing optimizing back-end com-
piler. In this paper, we propose a new univetdajh-Level LCDD Func Call Ref/Mod
Information(HLI) format to pass front-end information to lodd lodd call call
the back-end compiler. Importing this information into an o ooes ool s
existing back-end leverages the state-of-the-art analysis and

transformation capabilities of existing front-end compilers
to allow the back-end greater optimization potential than it
has when relying on only locally-extracted information.

In the remainder of the paper, Section 2 presents the for- 10 reduce the amount of information that must be passed
mal definition of the HLI format, showing what information ~ from the front-end to the back-end, the HLI focuses on only
is extracted from the front-end and how it is condensed to Certain operations, such as memory accesses and function
be passed to the back-end. Section 3 then describes oufalls: These operations are caliéemsin the HLI repre-
implementation of this HLI into the SUIF front-end paral- sentation' In the line table, each line entry corresponds to
lelizing compiler [26] and the GCC back-end optimizing @ source line of the program unit in the source file, and in-
compiler [22]. Experiments with the SPEC benchmark pro- cludes an item list for the line. The front-end also assigns
grams [23] and a GNU utility are presented in Section 4. €ach item a unique identification number (ID) that is used

Related work is discussed in Section 5, with our results andPY the region table to address these items. In the item list,

ID field stores a unique number within the scope of the pro-
gram unit that is used to reference the item. The type field

Figure 1. Top-level layout of an HLI file.

2 High-Level Information Definition stores the access type of the item, such as load, store, func-
tion call, etc.
A High-Level Information (HLI) file for a program in- Groups of items from the front-end are mapped to the

cludes information that is important for back-end optimiza- back-end instructions by matching their source line num-
tions, but is only available or computable in the front- bers. However, this mapping information may not be pre-
end [24]. As shown in Figure 1, an HLI file contains a Cise enough to map items inside a groug. @ single source

number of HLI entries. Each HLI entry corresponds to a line) from the front-end to the back-end. To perform precise
program unit in the source file and contains two major ta- mapping, the front-end needs to know the instruction gener-

bles — dine tableand aregion table as described below. ation rules of the back-end and the order of items associated
with each source line. Specifically, the order of items listed
2.1 Line table in the line table must match the order of the items appearing

in the instruction list in the back-end.

The purpose of the line table is to build a connection be- .
tween the front-end and the back-end representations. Afterz'2 Region table
generating the intermediate representation (IR), such as ex- o) . :
pression trees or instructions from the source program, a . To S|.mpl|fy' thg rgpresen'tatlon of the h|gh-levgl '”form?"
compiler usually annotates the IR with the corresponding tion while maintaining precise data} dependgnce mfo_rmann
source line numbers. If both the front-end and the back-endfor each Ioop, we represent th? high-level !nformatlon of a
read the program from the same source file, the source lindProgram unit with scopes akgions A region can be a
numbers can be used to match the expression trees in the 14 item may also represent an equivalent access class or a whole re-
front-end with the instructions in the back-end. gion, as discussed in Section 2.2.

program unit or a loop and can include sub-regions. The 2 mohof
. . - - . . iy 3: intsum;
basic idea of using region scopes in the HLI is to partition & 00 rregon e
. foo * region 1%
all of the memory access items in a region iefguivalent & o
access classemnd then describe data dependences and alias lor(i=0:1<10; i+4) I region 2
relationships among those equivalent access classes with re- 2 ageo

(1[) J*item 1%/
[il =i
{2}
}

spect to the region.
The region table of a program unit stores the high-level
information for every region in the program unit. Each re-

i
4

e
ahw

sum =0;

L S '
for (i = 0; i <10; i++) /* region 3 */

gion entry has a region header describing the ID, type, and 1
. . . 18: a[i] = a[i] + b[0];
scope of the region. In addition to the region header, each o 5 B gona
region entry holds four sub-tables: (1) an equivalent access A S,
table, (2) an alias table, (3) a loop-carried data dependence o1 L
(LCDD) table, and (4) a function call REF/MOD table. In gy OB O
the following subsections, we describe each of these tables -) W e 1y
associated with each region. 26')

2.2.1 Equivalent access table

A region can contain a large number of memory access
items. Recording all of the data dependences and alias rela-

egion 3: \

tionships between every pair of memory access items would for ty \/
result in a huge amount of data. In fact, many memory ac- : f_ VA M -
cess items in a region may refer to the same memory lo- 2ls,)‘ ’ & ‘ PO Eaey |
cation since the same variable may be referenced multiple ~ ——————=- e e
times in a region. Such memory access items can thus be [\
grouped into a single equivalent access class. ol ON I R

The equivalent access table of a region partitions all eq_acc_class I afy bii o1 ||

. (definitely) Iloiy | | 7812 | | {0y }
memory access items inside the region, including those eq_acc_class === T
(maybe) >

items enclosed by its sub-regions, into equivalent access
classes. The region table includes a number of different
equivalent access classes. Each equivalent access class has
a unique item ID, which can be used to represent all of the Figure 2. The structure of the regions and
memory access items belonging to the class. The members equivalent access classes for an example
of an equivalent access class can be either memory access program.

items immediately enclosed by the region that are not en-

closed by any sub-region, or the equivalent access classegquivalent access tydeld, whose value can beefinitely
of its immediate Sub—reglons. Equwalent access classes Oéquiva|ent0r maybe equi\/a|entThe property of “maybe

immediate sub—regions are usedto represent the memory a(‘equiva|ence" will propagate a|ong the Corresponding equiv-
cess items that are enclosed by the Sub-regions. The eqUiVEb|ent access classes in enc|osing regions_

lent access classes defined in a region must be mutually ex- it . | it valent tabl |
clusive so that every memory access item inside the region, ' & r€gion s a loop, 1S equivaient access tabie only

including those enclosed by its sub-regions, is represented€SCribes the equivalent access relationships among mem-
by exactly one equivalent access class in the region. ory access items or sub-region equivalent access classes

Typically, the memory access items of an equivalent ac- WITHIN a single loop iteration. Also, when referred to

cess class are considered to be definitely equivalent. How-by the alias table and by the LCDD table of the region, an

ever, the front-end compiler might want to group memory equivalent class represents only the memory locations ac-

. . ; . in one | iteration. However, when referr
access items from different equivalent access classes in SUbgisiﬁ?er rg ﬁ)nootﬂeteeafjic\)/alen? cli;lses,re reeseentes ;ld gf) t?1ye
regions that may access the same memory location into a gion, q P

emory locations that will be accessed by the whole loop.

single equivalent access class to reduce the amount of high[n
level information that must be passed to the back-end. In Figure 2 demonstrates the region structure of a procedure
this case, the memory access items of an equivalent accesand its equivalent access tables. The outermost region of
class may not always access the same memory location. Tahe procedure is Region 1, which represents the whole pro-
distinguish this case, every equivalent access class has aoedure. Region 1 has two immediate sub-regions (Regions

lcdd
dist =1

2 and 3) that represent the twdoops in the procedure. 2.2.4 Function call REF/MOD table

The second loop (Region 3) has an inng¢toop, which is)])
represented by Region 4. In the equivalent access table ofl n€function call REF/MOD tablef a region describes the
Region 1, all memory access items in the procedure are par_S|de effects caused by.functlon call; on thel eguwale.nt ac-
titioned into three equivalent access classasn a[0..9], cess classes of the region. If a funcuon call is immediately
andb[0..9]. From the viewpoint of Region 1, every mem- epclosed by the'reglon,'the functhn ca]l REF{MOD table
ory access item inside the procedure is represented by exWill use the funct!on call item IQ dgflned in thg line table to
actly one of those equivalent access classes. For example, ifgfer to the function call and will list the equivalent access
Region 1, item 114[i]) inside thej loop is represented by class.es that may .be refer_enc_:ed or mOdIfI.ed by the cglled
the equivalent access classaid..9]. As mentioned above, function. For function c_alls inside asub-r_eg|on, the function
equivalent access classes use the IDs of sub-regions’ equive@ll REF/MOD table will use the sub-region ID to represent
alent access classes to refer to the items residing in thei@!! Of the function calls and will list the equivalent access
sub-regions. For example, the equivalent access class oflasses that may be referenced or modified by the function

sumin Region 1 uses the equivalent access classiofde- calls inside the sub-region. With this table, the front-end
fined in Region 3 to refer to memory access items 13 and 14¢an pass interprocedural data-flow information to the back-
enclosed by Region 3. end to enable the back-end to move instructions around a

function call, for instance.

2.2.2 Aliastable

The alias table describes the possible alias relationships3 Implementation Issues

among the equivalent access classes of a region. Two or
more equivalent access classes are said aiasedif they A version of the HLI described in the previous sec-
may access the same memory location at run time. If twotion has been implemented in the SUIF parallelizing com-
equivalent access classes are aliased, all of the memory adiler [26] and the GCC back-end compiler [22]. This sec-
cess items represented by the two equivalent access classé@n discusses some of the implementation detailéote,

are also aliased. Each alias entry in the alias table consist§iowever, that the HLI format is platform-independent, and
of a set of equivalent access classes that the front-end hagany of the implemented functions are portable to other
determined to be aliased. The equivalent access classes igompilers [21]. Figure 3 shows an overview of our HLI
the alias table must be equivalent access classes that are démplementation in the SUIF compiler and GCC.

fined at the current region. Since the alias table only de-

scribes the alias relationships among the equivalent accesg,1 Front-end implementation

classes within a loop iteration, data dependences caused by
equivalent access classes in different loop iterations will be

described in the LCDD table. . . :
jor phases -memory access item generatiirtEMGEN)

In. Figure 2, equivalent access clasbif} andk?[O..Q] n andHLI table construction(TBLCONST). The TEMGEN
Region 3 may access the same memory location. Thus, the

alias table of Region 3 will include an entry indicating that phase generates memory access items and assigns a unique
these two equivalent access classes are aliased. number (ID) to each item. The memory access items for a

source line, ordered by the ID, can be one-to-one matched to
) the memory reference instructions in the GCC RTL chain
2.2.3 Loop-carried data dependence (LCDD) table for the same line. These items are annotated in the SUIF

If the region is identified as a loop, the LCDD table will €Xpression nodes to be passed to tbe CONST phase.

list all of the LCDDs caused by the loop. Loop-carried data ~ The TBLCONST phase first collects the memory access
dependences are represented by pairs of equivalent acced§€m information from the SUIF annotation to produce the
classes defined at the region. Each pair specifies a data ddine table for each program unit. It then generates informa-
pendence arc caused by the loop. The data dependence tyg#on for the equivalent access table, alias table, and LCDD
can bedefiniteor maybe In addition, each dependence pair table for each region. Because it is both back-end compiler
includes a distance field. To simplify the representation of @ahd machine dependent, separating the HLI generation into
the dependence distance, the direction of a dependence if1€se two phases allows us to reuse the codedoiICONST
always normalized to bes*” (forward), that is, from an ear- ~ @cross different back-end compilers or target machines.

lier iteration to a later iteration. Troad ferred o [ete descriot
; ; ; eaders are referred to [4] for a more complete description.
For the example shown in Figure 2, the Only LCDD is SRTL (Register Transfer Language) is an intermediate representation

between equivalent access clagsigisandb[j-1] in Region seq by GCC that resembles Lisp lists [22]. An RTL chain is the linked
4. The distance of the LCDD is one. list of low-level instructions in the RTL format.

The HLI generation in the front-end contains two ma-

Source code HLI file

foo.c . SUIF o foo.hli ~

foo.f ? Compiler | foo.opt.c/

|
Optimized C source

Object file

GCC * fooo

Figure 3. Overview of the HLI implementation using the SUIF front-end and GCC back-end compilers.

3.1.1 Memory access item generatiol tEMGEN) ory write to store the return value to the memory location
indicated by the value return register. If the return value is a

The ITEMGEN phase traverses the SUIF internal represen- scalar, the value return register directly carries the value, so

tation (IR) to generate memory access items. It passes thisio memory access is generated.

memory access item information to theJCONST phase

by annotating the SUIF IR. To guarantee that the mappings 1 2 HL| table construction (TBLCONST)

between the generated memory access items and the GCC

RTL instructions is correct, the RTL generation rules in The HLI table construction phase traverses the SUIF IR

GCC must be considered in the HLI generation by SUIF. twice. The first traversal creates a line table for each rou-

Most of the memory access items correspond to variabletine by collecting the memory access item information from

accesses in the source program. However, when the Opti_the SUIF annotations. It also creates a hierarchical region

mization level is above -00, GCC assigns a pseudo-register?tr“cu,”e for gach routine.and groups all the memory access
for a local scalar variable or a variable used for temporary [f€MS in aregion into equivalent access classes.
computation results. An access to this type of variable does 1 N€ second traversal of the IR visits the hierarchical re-
not generate a memory access item. Since GCC does not adion structure of each routine in a depth-first fashion. At
sign pseudo-registers to global variables and aggregate vari€ach node, it gathers the LCDD information for each pair
ables, they generate memory access items. of equivalent access classes and calculates the alias relation-

Th it duced in GC ship between each pair of equivalent access classes. All of
€re are some memary access items produced in Qhe information propagates from the bottom up. If the SUIF

that do not correspond to any actual variable accesses in th%ata dependence test for a pair of array equivalent access

source program. These memory accesses are used for P3jasses in a region returns zero distance, the two equivalent

rameter and return value passing in subroutine calls. The :
P 9 X . .—access classes are merged. Otherwise, the test results are
actual number of parameter registers available is machine

) red into the LCDD table. Then, all th inter referen
dependent. For each subroutine, GCC uses the paramet stored into the LCDD table. Then, all the pointer references

registers 1o DAss as Many parameters as possible. and thzhatmay refer to multiple locations are determined. An alias
9 P y param P ' felationship is created between the equivalent access class
uses the stack to pass the remaining parameters. Hence, a

tfgr each pointer reference and the equivalent access class to

fgﬁtﬁﬁgtag ;a”;;i']gtzrng]s?;y VraeluiztlsrpZsriee?ntgrthreengi_s\'vhiCh the pointer reference may refer. Next, the equivalent
P TP g reg ' -mory . —access class information and alias information is propagated
used to load the value into the register. If a register value is

dto th broutine via the stack. however. a mem rto the immediate parent region. At the completion of these
passed o the subroutin€ via the stack, NOWEVEr, a memory,, phases, the HLI is ready to be exported to the back-end.
write is generated to store the value to the stack. Similarly,

at a subroutine entry point, if a memory value is passed into
the subroutine via a register, a memory write is generated to
store the value. If a register value is passed into the subrou-

tine via the stack, though, a memory read is again used to3-2-1 Importing and mapping HLI into GCC

load the value from the memory to the register. The HLI file is read on demand as GCC compiles a program
A subroutine return value can also generate memory ac-function by function. This approach eliminates the need to
cesses that do not correspond to any variable accesses in tHeeep all of the HLI in memory at the same time, reliev-
source program. One register is available to handle returning the memory space requirements on the back-end. The
values. When the returned value is a structure, the addresgnported information is stored in a separate, generic data
of the structure is stored in that register at the subroutinestructure to enhance portability. Mapping the items listed
call site. In this case, the return statement generates a memn the line table onto memory references in the GCC RTL

3.2 Back-end implementation

chain is straightforward since the@MGEN phase in the pass, subexpressions are stored in a table as the program
front-end (Section 3.1.1) follows the GCC rules for mem- is compiled, and, when they appear again in the code, the
ory reference generation. A hash table is constructed as thalready calculated value in the table can directly replace the
mapping procedure proceeds to allow GCC quick access tosubexpression. Without interprocedural information, how-
the HLI. A memory reference in GCC, or other back-end ever, all the subexpressions containing a memory reference
compilers, can be represented as a 2-tudlRInén, Ref- will be purged from the table when a function call appears in
Spec), wherelRInsn specifies an RTL instruction aritef- the code since GCC pessimistically assumes that the func-
Spec identifies a specific memory access among possiblytion can change any memory location. In Figure 4, an HLI
several memory accesses in the instruction. The hash tablguery function to obtain call REF/MOD information is used
forms a mapping between each item and the correspondindo remedy the situation by selectively purging the subex-
(IRInsn, RefSpec) pair. pressions on a function call.

The example in Figure 5 shows how the HLI provides
memory dependence information to the instruction sched-
uler. It is used in Section 4.2 to measure the effectiveness
of using HLI to improve the code scheduling pass.

/* remove from the hash table all the expressions with a mem. ref.
clobbered by a function call (call, call_spec) */
static void invalidate_memory_clobbered (call, call_spec)

for (i = 0; i < NBUCKETS; i++)
for (p = table[i]; p; p = next) {

next = p->next_same_hash;
for each mem. ref. (mem, mem_spec) in p {

/* given a mem. write A and a mem. read B, add a dependence
edge if there is a true dependence from A to B */

switch (HLI_GetCallAcc (mem, mem_spec, call, call_spec) {
case HLI_CALL_MOD:
case HLI_CALL_REFMOD:
remove_from_table (mem, mem_spec);

int gcc_value, hli_value, final_value;
HLI_EquivAccType hli_gresult;

gcc_value = true_dependence (A, B); /* GCC query function */

o hli_gresult = HLI_GetEquivAcc (A, B); /* HLI query function */
) hii_value = (hli_gresult != HLI_NONE);
b final_value = flag_use_hli ? gcc_value * hli_value : gcc_value;
if (final_value)
add_dependence (A, B, DEP_TRUE);
Figure 4. Using call REF/MOD information to ¥

aid GCC’s CSE optimization.

Figure 5. Using equivalent access and
alias information for dependence analysis in

) GCC'’s instruction scheduling pass.
3.2.2 Using HLI

Information in the HLI can be utilized by a back-end com-
piler in various ways. Accurate data dependence informa-
tion allows aggressive scheduling of a memory reference
across other memory references, for example. Additionally, As GCC performs various optimizations, some memory ref-
LCDD information is indispensable for a cyclic scheduling erences can be deleted, moved, or generated. These changes
algorithm such as software pipelining [15]. In loop invari- break the links between HLI items and GCC memory ref-
ant code removal, a memory reference can be moved out okrences set up at the mapping stage, requiring appropriate
aloop only when there remains no other memory referenceactions to reestablish the mapping to respond to the change.
in the loop that can possibly alias the memory reference. Further, some of the HLI tables may need updating to main-
High-level program structure information, such as the line tain the integrity of the information. Typical examples of
type and the parent line, may provide hints to guide heuris- such optimizations include:

tics for efficient code scheduling.

To provide a common interface across different back-
ends, the stored HLI can be retrieved only via a set of query] . o)
functions. There are five basic query functions that can be ® In the loop invariant removal optimization, an item
used to construct more complex query functions [5]. There ~ May be moved to an outer region. The HLI item must
are another set aftility functionsthat simplify the imple- be deleted and inserted in the outer region. All the HLI
mentation of the query and maintenance functions (Sec- tables must be updated accordingly.
tion 3.2.3) by hiding the low-level details of the target com- e In loop unrolling, the loop body is duplicated and pre-
piler. Two examples are given in this section to show how conditioning code is generated. The entire HLI com-
the query functions can be used in GCC. ponents (tables) must be reconstructed using old infor-

In GCC’s Common Subexpression Eliminati¢@SE) mation, and the old information must be discarded.

3.2.3 Maintaining HLI

e The CSE pass, where an item may be deleted. The
corresponding HLI must then be deleted.

J* construct LCDD info. for the unrolled loop A, based on Code size | HLIsize HLI per
the info. about the original loop A */ Benchmark Suite (# of lines) (KB) line (bytes)
for each LCDD [item i, item j, d, t] between item i and j with
distance d and type tin A { wc GNU 972 11 12
/* K is the unroll factor */ 008.espresso CINT92 37074 613 17
/* item[a] b is the item b in the a'th unrolled loop */ 023.eqntott | CINT92 6269 99 16
forallu (0 <=u<K){
if (floor ((u+d)/K) == 0) 129.compresg CINT95 2235 21 10
HLI_MergeEquivAcc (item[u] i, item[(u+d)%K] j); mean — — — 13
else
015.doduc CFP92 25228 1310 53
HLI_AddLCDD (it i, it d)%K] j, fl d)/K), t); -
y o (ttemfu] |, ltem{{Lr+d)2%k] J, floor({ur+d)/K). 1) 034.mdijdp2 | CFP92 6905 121 18
} 048.ora CFP92 1249 29 24
052.alvinn CFP92 475 7 15
. .]) 077.mdljsp2 | CFP92 4865 109 23
Figure 6. Updating the LCDD information for 101.tomcatv | CFP95 780 17 22
loop unrolling. 102.swim | CFP95 1124 76 69
103.su2cor | CFP95 6759 239 36
107.mgrid CFP95 1725 35 21
The HLI maintenance functions have been written to 141.apsi CFP95 21921 442 21
provide a means to update the HLI in response to these mean - - - 27

changes [5]. The functions allow a back-end compiler to
generate or delete items, inherit the attributes of one item Table 1. Benchmark program characteristics.
to another, insert an item into a region, and update the HLI

tables. Changes suc_h as the CSE or loop |nvar.|ant code rermplying that the former tends to have more memory ref-
moval call for a relatively simple treatment — either delet- o .ances per line. The relatively large HLI size per source

ing an item, or generating, inheriting, moving, and deleting ¢, e jine in015.doducand 102.swimis mainly due to a

an item. Loop unrolling, however, requires more complex 5146 number of items in nested loops, which cause the alias
steps to update the HLI. First, new items need be gener{,ple and the LCDD table to grow substantially.
ated as the target loop body is duplicated multiple times.

The generated items are inserted in different regions, based . .

on whether they belong to the new (unrolled) loop body or 4-2 ~Aiding GCC dependence analysis

the preconditioning code. Data dependence relationships

between the new items are then computed using the infor- Instruction scheduling is an important code optimization
mation from the original loop. An example of updating the in a back-end compiler. With this optimization, instructions
HLI tables for the loop unrolling pass is given in Figure 6. in a code segment are reordered to minimize the overall ex-
ecution time. A crucial step in instruction scheduling is
to determine if there is a dependence between two mem-
ory references when at least one is a memory write. Accu-
rately identifying such dependences can reduce the number
of edges in the data dependence graph, thereby giving the
scheduler more freedom to move instructions around to im-

Table 1 lists all of the benchmark programs, both integer Prove the quality of the scheduled code.
and floating-point, showing the number of lines of source HLI can potentially enhance the GCC instruction
code, the HLI size in KBytes, and the ratio of the HLI size Scheduling optimization by providing more accurate mem-
to the code size. This ratio shows the average number ofory dependence information when GCC would otherwise
bytes needed for the HLI for each source code line. We havehave to make a conservative assumption due to its simple
only a few integer programs due to current implementation dependence analysis algorithm. For the programs tested,
limitations of the SUIF front-end tools. Table 2 shows the total number of dependence querees (

In general, this table shows that a floating-point program d0 A and B refer to the same memory location?) made in

requires more space for the HLI than an integer program,the first mstrucyon scheduling pass of QCC, the average

number of queries for each source code line, the number of

40ur implementation uses the SUIF parser twice (see Figure 3). After times the GCC analyzer answers yes (meaning that it must

the progranfoo.c is compiled and optimized by SUIF, the optimized Cfile gssume there is dependence), the number of times HLI an-
foo.opt.c is generated. This code is then used as the input to the HLI gen- :

eration and GCC. Wheioo.opt.c is fed into the SUIF parser again for the SWETS yes, and Ias';ly, the number Qf times both GCC and

HLI generation, it causes unrecoverable errors in some cases. We are curtiL] @answer yes. Since the values in the table correspond

rently developing a front-end compiler that will eliminate such difficulties. to the number of dependence edges inserted into the DDG,

4 Benchmark Results

4.1 Program characteristics

Total # | # of tests GCC HLI “Combined” | Reduction Speedups
Benchmark of tests | per line result result result (on R4600) (on R10000
WC 113 0.12 40 (35%) 20 (18%) 20 (18%) 50% 1.00 1.00
008.espresso|| 4166 0.11 | 2615 (63%)| 1316 (32%)| 1006 (24%) 62% 1.00 1.00
023.eqntott 399 0.06 249 (62%)| 191 (48%)| 120 (30%) 52% 1.01 1.05
129.compresy 274 0.12 56 (20%) 39 (14%) 37 (14%) 34% 1.06 1.07
mean - 0.10 — (41%) — (25%) — (21%) 48% 1.00 1.03
015.doduc 10992 0.44 | 7712 (70%)| 3293 (30%)| 2855 (26%) 63% 1.00 1.03
034.mdljdp2 3013 0.44 | 1753 (58%)| 393 (13%) 265 (9%) 85% 1.08 1.42
048.ora 363 0.29 52 (14%) 79 (22%) 34 (9%) 35% 1.00 1.00
052.alvinn 48 0.10 47 (98%) 20 (42%) 20 (42%) 57% 1.01 1.02
077.mdljsp2 2854 0.59 | 1765 (62%)| 413 (14%) 271 (9%) 85% 1.19 1.59
101.tomcatv 286 0.37 191 (67%) 29 (10%) 14 (5%) 93% 1.00 1.01
102.swim 872 0.78 833 (96%) 83 (10%) 80 (9%) 90% 1.03 1.04
103.su2cor 4192 0.62 | 3549 (85%)| 1602 (38%)| 1453 (35%) 59% 1.02 1.08
107.mgrid 517 0.30 368 (71%) | 330 (64%)| 311 (60%) 15% 1.00 1.01
141.apsi 22347 1.02 | 8031 (36%)| 6375 (29%) | 5399 (24%) 33% 1.00 1.01
mean - 0.42 — (59%) — (26%) — (19%) 54% 1.03 1.11

Table 2. Using the HLI in GCC'’s dependence checking routines can substantially reduce the number
of dependence arcs that must be inserted into the DDG. The resulting speedups on MIPS R4600 and
MIPS R10000 are also shown.

the smaller the number, the more accurate the correspond4.3 Impact on program execution times
ing analyzer. The “Reduction” column shows the reduction
in the number of dependence edges for each programdue to T study the performance improvement attributable to
the use of the HLI. using HLI in GCC'’s instruction scheduling optimization
pass, execution times of the benchmark programs, compiled
The result shows that using HLI can reduce the num- both with and without HLI, were measured on two real ma-
ber of dependence edges, by an average of 48% for thechines. One machine uses a pipelined MIPS R4600 proces-
integer programs and 54% for the floating-point programs. sor with 64 MB of main memory. The other is a MIPS
Four floating-point programs 834.mdljdp2 077.mdljsp2 R10000 superscalar processor that contains a 32 KB on-
101.tomcatyand102.swim- exhibited a reduction of over chip data cache, a 32 KB on-chip instruction cache, a 2 MB
80% in the number of dependence edges. These results conmified off-chip second-level cache, and 512 MB of inter-
firm that the data dependence information extracted by theleaved main memory. All the programs were compiled with
front-end analysis is very effective in disambiguating mem- GCC version 2.7.2.2 with the -O2 optimization flag. Each

ory references in the back-end compiler. program execution used the “reference” input. The input to
the programwc is 62 MB of C source codes. The last two
Note that the numbers in théL | resultand“Combined” columns in Table 2 summarize the results.

resultcolumns in Table 2 are not the same in most of the Three programs achieved a noticeable speedup of 5% or
cases. This difference means that there is room for addi-more on the R4600, with five programs (including the pre-
tional improvement in the HLI. Current shortcomings in vious three) achieving similar results on the R10000. Two
generating the HLI include — (1) the implemented front- programs034.mdljdp2and077.mdijsp2obtained remark-
end algorithms, such as the array data dependence analyable speedups of over 40% on the R10000. Note that a large
sis and the pointer analysis, are not as aggressive as possieduction in dependence edges, as shown in Table 2, does
ble, and (2) there are miscellaneous GCC code generatiomot always result in a large execution time speedup, as can
rules that the current HLI implementation has not consid- be seen inl01.tomcatyfor instance. This is partly due to
ered. Ignoring these rules produagsknowndependence a limitation of the GCC instruction scheduler which sched-
types between some memory references. The values of thelles instructions only within basic blocks.

HLI resultare expected to become smaller as more aggres- The integer programs achieved relatively small speedups
sive front-end algorithms are developed and the current im-compared to the floating-point programs. It is known that
plementation limitations are overcome. the basic blocks in integer programs are usually very small,

containing only 5 — 6 instructions on average, and itis likely constructs for array data dependence and pointer-structure
that each basic block contains few memory references. Thisanalysis.
is indirectly evidenced by comparing the number of depen- With the increased demand for ILP, the importance of
dence queries made per line (Table 2). Typically, an integerincorporating high-level analysis into uniprocessor compil-
program requires fewer than half the number of dependenceers has been generally recognized. Recent work on pointer
tests needed by a floating-point program. and structure analysis aims at accurate recognition of aliases
Comparing the different processor types, the R10000 due to pointer dereferences and pointer arguments [8, 27].
produces speedups equal to or higher than the correspondexperimental results in this area have been limited to re-
ing speedup on the R4600 since the R10000, a four-issueporting the accuracy of recognizing aliases. Compared with
superscalar processor, is more sensitive to the memory perthese studies, this paper presents new data showing how
formance, and a load instruction in the load/store queue will high-level array and pointer analysis can improve data de-
not be issued to the memory system until all the precedingpendence analysis in a common uniprocessor compiler.
stores in the queue are known to be independent of the load. There have been continued efforts to incorporate unipro-
As a result, the impact of compile-time scheduling is more cessor parameters and knowledge about low-level code gen-

pronounced in the R10000 than the R4600. eration strategies into the high-level decisions about pro-
gram transformations. The ASTI optimizer for the IBM XL
5 Related Work Fortran compilers [20] is a good example. Nonetheless, the

register allocator and instruction scheduler of the uniproces-
sor compiler still lacks direct information about data depen-

Traditionally, parallelizing compilers and optimizing dences concerning complex memory references.

compilers for unipracessors have been largely two sepa- New efforts on integrating parallelizing compilers with

rate efforts. Parallelizing compilers perform extensive ar'.uniprocessor compilers also have emerged recently. The
ray data de'pend.ence analysis anql array data flow anaIySI%UIF tool [26], for instance, maintains a high-level inter-
Isn I(t)srdzr ;Z 'd(;:?.gl pféalrlgnoF;e:?;r(])sr}i'rmi%s.encioog th;;ﬁélmediate representation that is close to the source program
lrJO ;am cc?:ta'nl'n P rc? raml constructs s clh as D%ALL to support high-level analysis and transformations. It also
program ining prog nstru >uch " maintains a low-level intermediate representation that is
Alternat|yely, the cqmpﬂer may insert a directive before a close to the machine code. As another example, the Polaris
sequential loop 1o indicate that the loop can be exeCUtedparallelizing compiler has recently incorporated a low-level

in parallel. Several research parallelizing Fortran compil- . . :
i i representation to enable low-level compiler techniques [2].
ers, including Parafrase [14], PFC [1], Parafrase-2 [18], Po- Nonetheless, results showing how high-level analysis bene-

laris [3], Panorama [11], and PTRAN [19], and commercial fi . L
. its the low-level analysis and optimizations are largely un-
Fortran compilers, such as KAP [13] and VAST [25], have available today. Our effort has taken a different approach

takce:n SUCT a sou:jce-to-sourclei appro%cht.h . i by providing a mechanism to transport high-level analysis
omputer vendors generally provice their own compi - qq 11 10 uniprocessor compilers using a format that is rel-

grs to take a sourcebprogram,"vvlhul:h b be'(l-)n parzllellze tively independent of the particular parallelizing compiler
Y programmers or by a paraflelizing complier, and gen- 5, ype particular uniprocessor compiler.

erate multithreaded machine code,, machine code em-
bedded with thread library calls. These compilers usually .
spend their primary effort on enhancing the efficiency of the 6 Conclusions and Future Work
machine code for individual processors. Once the thread as-
signment to individual processors has been determined, par- Instead of integrating the front-end and back-end into a
allelizing compilers have little control over the execution of single compiler, this paper proposes an approach that pro-
the code by each processor. vides a mechanism to export the results of high-level pro-
Over the past years, bothachine independeandma- gram analysis from the front-end to a standard back-end
chine specificompiler techniques have been developed to compiler. This high-level information is transferred using
enhance the performance of uniprocessors [17, 6, 12, 7, 16]a well-defined format (HLI) that condenses the high-level
These compiler techniques rely primarily on dataflow anal- information to reduce the total amount of data that must be
ysis for symbolic registers or simple scalars that are nottransferred. Additionally, this format is relatively indepen-
aliased. Advanced data dependence analysis and data flowent of the particular front-end and back-end compilers.
analysis regarding array references and pointer dereferences We have demonstrated the effectiveness of this approach
are generally not available to current uniprocessor compil- by implementing it into the SUIF front-end and the GCC
ers. The publically available GCC [22] and LCC [9] com- back-end compilers. Our experiments with the SPEC
pilers exemplify the situation. They both maintain low-level benchmarks show that using this information in the code
IRs of the input programs, keeping no high-level program scheduling pass of GCC substantially reduces the number

of dependence arcs that must be inserted into the data def9] C. Fraser and D. Hansod Retargetable C Compiler: Design
pendence graph. The increased flexibility provided by this and ImplementatignBenjamin/Cummings Publishing Com-
reduction allowed the code scheduler to improve execution ~ pany, Inc., Redwood City, CA, 1995.

time performance by up to 59% compared to using only the [10] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures,

low-level information normally available to the back-end. MIT Press, Cambridge, Mass., 1986.

We believe that the HLI mechanism proposed in this pa- (11} j. Gu, z. Li, and G. Lee. “Experience with Efficient Array
per makes it relatively easy to integrate any existing front- Data Flow Analysis for Array PrivatizationProc. of the 6th
end parallelizing compiler with any existing back-end com- ACM SIGPLAN Symp. on PPOPPune 1997.
piler. In' f'act, we are CU”e”“Y developing a new fron.t-end [12] W. W. Hwuet al. “The Superblock: An Effective Technique
parallelizing compilet that will use the HLI mechanism for VLIW and Superscalar Compilation,J. of Supercomput-

to export high-level program information to the same GCC ing, 7(1/2): 229 — 248, 1993.

back-end implementation used in these experiments. [13] KAP User's Guide Tech. Report (Doc. No. 881100Huck
& Associates, Inc.

ACkn0W|edgment [14] D. J. Kucket al. “The Structure of an Advanced Vectorizer

for Pipelined Processors,Proc. of the 4th Int'l Computer

This work was supported in part by the National Science Foun- Software and Application Confpp. 709 — 715, Oct. 1980.
dation under grant nos. MIP-9610379 and CDA-9502979; by the
U.S. Army Intelligence Center and Fort Huachuca under contract . -
DABT63-95-C-0127 and ARPA order no. D346, and a gift from Technique for VLIW Machines,Proc. of the ACM SIGPLAN

. . - . . 88 Conf. on PLD] June 1988.

the Intel Corporation. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessat16] P. G. Lowneyet al. “The Multiflow Trace Scheduling Com-
ily representing the official policies or endorsements, either ex- piler,” J. of Supercomputing7(1/2): 51 — 142, 1993.
pressed or implied, of the U.S. Army Intelligence Center and Fort [17] S. S. Muchnick.Advanced Compiler Design and Implemen-
Huachuca, or the U.S. Government. Stephen Schwinn is currently tation Morgan Kaufmann Publishers, 1997.
with the IBM Corp., Rochester, MN.

[15] M. Lam. “Software Pipelining: An Effective Scheduling

[18] C.D. Polychronopoulost al. “Parafrase-2: An Environment
for Parallelizing, Partitioning, Synchronizing and Scheduling

References Programs on Multiprocessor$roc. of the ICPR Aug. 1989.

_) [19] V. Sarkar. The PTRAN Parallel Programming Systefay-

[1] J. R. Allen and K. Kennedy. “Automatic Translation of FOR- allel Functional Programming Languages and CompilBts
TRAN Programs to Vector Form,” ACM Trans. on Prog. Szymanski, Ed., ACM Press, pp. 309 — 391, 1991.

Lang. 9(4): 491 — 542 .1987.
ang. and Sys.9(4): 49) 542, Oct. 198) [20] V. Sarkar. “Automatic Selection of High-Order Transforma-
[2] E. Ayguadeet al. “A Uniform Internal Representation for tions in the IBM XL FORTRAN Compilers,”IBM J. of Re-
High-Level and Instruction-Level Transformations,” TR search and Development1(3): 233 — 264, May 1997.

1434 CSRD, Univ. of lllinois at Urbana-Ch i 1994.
4 » UiV oF Tlinois at Urbana-L hampaign, [21] S. J. Schwinn. “The HLI Interface Specification for Back-

[3] W. Blumeet al. “Parallel Programming with PolarisJEEE End Compilers (v0.1),”Agassiz Project Internal Document
Computey pp. 78 — 82, Dec. 1996. Sept. 1997.

[4] S.Cho, J.-Y. Tsai, Y. Song, B. Zheng, S. J‘-l Schwinn, X.Wang, 22] R. M. Stallman. Using and Porting GNU CC (version 2.7),
Q. Zhao, Z. Li, D. J. Liljia, and P.-C. Yew. “High-Level Infor- Free Software Foundation, Cambridge, MA, June 1995.

mation — An Approach for Integrating Front-End and Back- . .
End Compilers,” TR #98-008 Dept. of Computer Sci. and [23] The Standard Performance Evaluation Corporation,

Eng., Univ. of Minnesota, Feb. 1998. http://www.specbench.org.
[5] S.Choand Y. Song. “The HLI Implementor's Guide (v0.1)," [24] J.-Y. Tsai. “High-Level Informa_tion Format for I_ntegrr_ﬂing
Agassiz Project Internal DocumerSept. 1997. Front-End and Back-End Compilers (v0.2gassiz Project

)) Internal DocumentMarch 1997.
[6] F. C. Chow. A Portable Machine-Independent Global Opti- , . .
mizer — Design and Measurement&h.D. ThesisStanford [25] VAST-2for XL FORTRAN, User’s Guide, Edition 1.Zech.

Univ.. Dec. 1983. Report (Doc. No. VAO61)Pacific-Sierra Research Co., 1994.
[7] J. C. Dehnert and R. A. Towle. ucompi”ng for the Cydra 5 [26] R. P. Wilsonet al. “SUIF: An Infrastructure for Research
J. of Supercomputing?(1/2): 181 — 227, 1993. on Parallelizing and Optimizing Compilers®CM SIGPLAN

) . . Notices 29 (12): 31 — 37, Dec. 1994.
[8] M. Emami, R. Ghiya and L. J. Hendren. “Context-Sensitive

Interprocedural Points-to Analysis in the Presence of Func- [27] R. P. Wilson and M. S. Lam. “Efficient Context-Sensitive
tion Pointers,” Proc. of the ACM SIGPLAN ‘94 Conf. on Pointer Analysis for C Programs,Proc. of the ACM SIG-
PLDI, pp. 242 — 256, June 1994. PLAN ‘95 Conf. on PLDIpp. 1 —12, June 1995.

5Seehttp://www.cs.umn.edu/Research/Agassiz/.

