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Abstract

Lowering power consumption in microprocessors, whether
used in portables or not, has now become one of the most crit-
ical design concerns. On-chip cache memories tend to occupy
dominant chip area in microprocessors, and it becomes increas-
ingly important to design power-efficient cache memories. This
paper describes an experimental low-power on-chip cache system
designed for a 32-bit processor core called CalmRISCTM-32. A
number of architectural optimizations were applied to the instruc-
tion and data caches, which significantly decrease the number of
tag and data memory accesses and the amount of memory traffic
to and from off-chip memory. Implemented in a 0.18�m CMOS
technology, the presented instruction and data caches consume
90�A/MHz and 72�A/MHz at 1.8V, respectively.

1 Introduction

Reducing power consumption in microprocessors has
become a very critical design issue in recent years, and ex-
tensive research efforts are being made toward this goal.
Cache memory, an integral part of most high-performance
and embedded processors, consumes often a significant por-
tion of the power dissipated by an entire processor. For in-
stance, caches in the StrongARM 110 processor consume
more than 40% of the total chip power [11]. As the per-
formance requirements of processors keep increasing, the
trend is expected to continue.

There are a number of approaches to cache power re-
duction: advanced process technology, circuit-level mem-
ory optimization, voltage reduction, and micro-architectural
optimization. All these techniques should be combined
together to design the most competitive product possible.
From the viewpoint of an ASIC (Application-Specific Inte-
grated Circuit) designer with a severe time-to-market con-
straint, however, the available optimization space can be
greatly narrowed due to limited direct access to the mem-
ory circuits, processor technology, and so on. Under such

circumstances, architectural power optimizations can be-
come the only choice for the designer. On the other hand,
the technology-independent cache power optimization tech-
niques are very important in themselves as they allow easy
and quick design reconfiguration and migration.

This paper describes an experimental cache system de-
signed for a 32-bit embedded processor based on the
CalmRISCTM-32 core1 [4]. Several architectural techniques
were applied that result in significant reduction in memory
accesses both on-chip and off-chip. A line buffering tech-
nique was implemented that eliminates both tag and data
memory access for about 80% of all the instruction cache
accesses. Both the caches use small cache lines for reduced
memory traffic, with additional provisions to decrease the
write traffic generated in the data cache. Our design used
only standard library cells and compiled memory macros,
for shorter design time as well as higher portability. Each
of the implemented instruction and data caches occupies
2:4mm

2 on silion, and consumes around 90�A/MHz and
72�A/MHz at 1.8V, respectively.

The rest of this paper is organized as follows. Section 2
provides background for the discussions in the paper, by
describing the rationale of the design decisions made, pre-
vious related works, and the experimental setup. Section 3
presents the details of our cache design, followed by the im-
plementation results in Section 4. Concluding remarks are
given in Section 5.

2 Background

2.1 Architectural techniques for low-power cache
design

Just as we calculate the average memory access time
(AMAT), the average memory access energy (AMAE) of

1CalmRISCTM is a trademark of Samsung Electronics Co.



a single memory access can be calculated as follows:

AMAE = (Hit RateL1 � EnergyL1 hit)

+ (Hit RateL2 � EnergyL2 hit)

+ (Miss Rate� EnergyMiss)

assuming that there is an on-chip level 2 (L2) cache.

From this simple equation and from common knowl-
edge that cache hit rates are typically high ((Hit RateL1 +

Hit RateL2) � Miss Rate) and miss power is much higher
than that of an on-chip cache access (Energy Miss �

EnergyL1;EnergyL2), two important strategies for power op-
timization are derived. First one is to reduce the power or
energy of an access that hits in an on-chip cache. This is
especially important for the instruction cache which is ac-
cessed almost every cycle. Second strategy is to decrease
the miss rate (or in turn increase the on-chip cache hit rate)
to avoid paying high energy penalty of accessing off-chip
memories via high capacitance bus lines.

Previously studied techniques that lower on-chip cache
access power include line buffering and cache subbank-
ing [16, 6, 1]. A line buffer saves one or more cache lines
and behaves as a small, low-power cache. A more general-
ized form of the same idea, called filter cache, was studied
by Kin et al. [8]. Cache subbanking partitions a cache into
a number of banks and activates on an access only a sin-
gle bank, which is smaller and more energy-efficient than a
conventional cache. Another specialized technique to this
end is a loop cache that saves instructions from a program
loop, so that once the program runs in the loop there is no
need to fetch the instructions from cache [10].

There are a variety of techniques to increase the on-chip
cache hit rate. Multi-level caches and set-associative caches
are good examples. Victim caching [5] effectively reduces
conflict misses in a direct-mapped cache and can help de-
crease the power consumption due to miss handling. Ef-
fective compiler techniques have been developed, to reduce
cache miss rates by restructuring a given program and its
data structures [12]. It is noted however that achieving high
cache hit rates with constrained silicon without adversely
affecting access time is a challenging design goal.

In case of the data cache, a cache miss is not the only
cause of generating off-chip memory traffic. Write traf-
fic can be of significant quantity if the cache is not suffi-
ciently large or set-associative. Therefore, it is also one
of our prime concerns to decrease the write traffic of the
data cache. To reduce the energy associated with off-chip
accesses, researches have investigated techniques such as
compressing instructions to decrease the amount of mem-
ory traffic [2] and encoding bus signals in a way that lowers
the bit transition rates [14].

2.2 Experimental setup

For cache simulation with varied configurations, we used
the SimpleScalar tool set [3]. We derived our cache simu-
lator from the sim-cache simulator. Benchmark programs
used in the study are selected from the SPEC95 integer
suite [15] and the Mediabench suite [9], which are summa-
rized in Table 1. For power analysis, we used CubicPower,
an in-house gate-level power estimation tool. Inputs to Cu-
bicPower include the gate netlist, capacitance informatation
for the netlist, power characterization information (part of
the library), and toggle counts from a gate-level simulator.

3 Caches for CalmRISCTM

3.1 Chip overview

The chip for which the caches were designed is a
portable digital audio encoding and decoding chip. A 32-
bit low-power processor core called CalmRISCTM [4] and
a 24-bit digital signal processor (DSP) as a coprocessor [7]
form the main processing block of the chip. The processor
core is a 5-stage pipelined RISC processor, which can run
at up to 180 MHz (under worst conditions). An in-circuit
debugger unit is also implemented that communicates with
programmers or programming tools via JTAG or UART.

Equipped with various on-chip peripherals and memo-
ries, the total gate count reaches 1.4 million gates or 5.6
million transistors. On-chip memories comprise a 8-KByte
mask ROM, an 32-KByte program RAM, and 96 KBytes of
data RAM. On-chip pheripherals include timers, interrupt
controllers, smart media interface, USB interface, I2C, I2S,
and so on. Clocks are drawn from three PLLs. The chip is
packaged in a 208-QFP package.

3.2 Determining basic cache parameters

While determining important cache parameters such as
cache size, set associativity, and line size, simulation results
provided valuable hints.
Cache size. Determining the cache size was more a ques-
tion of the silicon availability. Initially, we were between
8-KByte and 16-KByte caches, and their sizes were around
50% different – far less than 100% – due to the mem-
ory implementation. We chose 16 KBytes since there was
more than negligible performance/power degradation with
8 KBytes (over 1% of miss rate) in some of the large bench-
mark programs such as compress, go, and perl.
Set associativity. Since we were unable to optimize the
memory modules at circuit level, simple direct-mapped
caches were preferred to set-associative caches. Further-
more, a direct-mapped cache is considered faster and cooler,
as detailed in the following subsections.



Benchmark Description Input Inst. Count Load/Store (%)

go [Spec95] A go game. train 554M 21.4/7.9
compress [Spec95] A UNIX utility. ref 503M 21.2/12.4

li [Spec95] A lisp interpreter. ref 537M 27.4/19.2
perl [Spec95] A perl interpreter. ref 525M 27.4/17.3

jpeg.c [Media] A jpeg coder. monalisa.ppm 339M 23.9/7.6
jpeg.d [Media] A jpeg decoder. monalisa.jpg 579M 18.8/7.2
mpeg [Media] An mpeg decoder mei16v2.m2v 171M 15.5/3.8
gsm.c [Media] A gsm coder. s 16 44.pcm 370M 17.3/4.9
gsm.d [Media] A gsm decoder. s 16 44.gsm 116M 7.3/4.0
g721.c [Media] A g.721 coder. s 16 44.pcm 439M 13.3/4.1
g721.d [Media] A g.721 decoder. s 16 44.g721 407M 13.8/4.7
rasta [Media] A noise/distortion filter. A sample wave file 504M 20.1/9.8

Table 1. Summary of the benchmark programs used. Input, dynamic instruction count, and percentage of dynamic load and

store instructions in each benchmark program are presented. Percentage of load or store instructions is relative to the total

instruction count.

Line size. The question was to employ a 16-Byte or a 32-
Byte line. In terms of the average memory access time
(AMAT), an instruction cache with 32-Byte lines outper-
formed one with 16-Byte lines by less than 2%, while a
16-Byte line data cache had a better AMAT than a 32-Byte
line data cache, again by around 2%. If one looks at the av-
erage memory transfer rate (AMTR), a metric more closely
related with energy consumption, adopting a 16-Byte line
size gives much better results: 50% and 80% less traffic
in the instruction and data caches (0.07 Bytes/access ver-
sus 0.11 Bytes/access and 0.28 Bytes/access versus 0.51
Bytes/access), respectively. The line size of 16 Bytes was
selected accordingly. One thing to note here is that lowering
the high AMTR of the data cache (0.28 Bytes/access com-
pared to the instruction cache’s 0.07 Bytes/access) will be
very beneficial in saving power.

3.3 Instruction cache design

Instead of a set-associative cache that can lead to higher
hit rates, we implemented the simplest direct-mapped in-
struction cache for several reasons, first of which being its
lower power consumption. A normal cache access incurs in
a direct-mapped cache an access to data array, an access to
tag array, and a tag comparison; On the other hand, multiple
memory arrays are accessed, and a number of tag compar-
isons are done in parallel in a set-associative cache. Further-
more, a direct-mapped cache usually has a shorter access
time due to its simpler datapath, in turn providing an oppor-
tunity for further power optimization, given a tight timing
margin in the target system. It is well-known, however, that
a direct-mapped cache suffers from conflict misses unless it
is large enough. Experiments showed us that at least 50%
of overall instruction cache misses are due to conflicts in

programs having relatively high miss rates, such as go, lisp,
perl, and rasta. To remedy this situation, we implemented a
32-entry miss cache that saves replaced cache lines, similar
to the victim cache [5]. At lease 40% and on average 70%
of the conflict misses are removed by this addition in the
above programs.

Unlike the original victim cache, the implemented miss
cache is looked up only after detecting a cache miss in the
first cache access cycle. The tag of the fully-associative
miss cache is implemented using a content-addressable
memory (CAM), and accessing it every cycle (thus disspat-
ing power) to save a single cycle penalty on a CAM hit is
deemed prohibitive. When the access hits in the miss cache,
data is accessed in the next cycle, further saving power on
miss cache misses. As a result, an access that hits in the
miss cache becomes a 3-cycle access. Considering the sub-
1% average miss rate of a 16-KByte instruction cache, this
access latency is acceptable.

The largest power savings in the instruction cache is
coming from line reuse buffer (LRB, Figure 1). The LRB is
a small buffer that keeps a single cache line so that when
the line is accessed the next time, data is provided from
this buffer while the actual cache is disabled. Unlike pre-
vious works on line buffering [6, 1], our implementation
of the LRB eliminates both the tag and data accesses on
an LRB hit, by utilizing the sequential access information
that comes one cycle early from the CalmRISCTM-32 core.
When it is known that the LRB provides the data to the pro-
cessor, the cache stays in a stand-by mode, and clocking to
the cache is blocked. The LRB does not change the timing
of a normal cache access and is hidden from software and
other hardware components. Hit rates of the LRB reach up
to around 85% with an average of 80%.

For short and predictable response time of critical pro-



Figure 1. Line Reuse Buffer (LRB) operations. Sequen-

tial access information is provided from the processor

to the cache control logic, which then determines which

of the two, the LRB or the cache, provides the data.

While the LRB services the processor, the cache is in

the stand-by mode.

gram areas, cache line locking mechanism is provided.
Locked lines survive being replaced on conflicting cache
accesses. In order not to continuously penalize the con-
flicting accesses due to already locked cache entries, the
cache lines corresponding to those accesses are allocated
in the miss cache on their introduction. With help from the
LRB, sequential accesses to a line in the miss cache become
single-cycle accesses after paying the one-time fee of 3 cy-
cles.

For cache management, means to perform the whole
cache invalidation or single line invalidation is provided. In
order not to lose performance during miss handling, hot-
half-word-first linefill is done with an early processor start
capability.

3.4 Data cache design

From the same design considerations, the data cache is
also direct-mapped and has 16-Byte lines. A cache line
is allocated on any type of misses, read and write. Either
write-back or write-through policy is activated by memory
management unit (MMU) for each memory page accessed,
or by setting a control bit in the data cache control register
(DCCR). To reduce the cache miss latency, the missed word
(also called hot word) is fetched first regardless of its loca-
tion in the line to be brought in, and the processor starts on
arrival of the hot word without waiting for the whole cache
line to fill the cache.

Unlike an instruction cache, a data cache generates write
traffic toward off-chip memories. Write-back caches usu-
ally have less write traffic than a write-through cache in a

similar configuration. To further reduce the write-back traf-
fic, each line in our data cache is associated with two dirty
bits, one per each half line. Figure 2 shows that this addi-
tion of a single bit, together with help from the miss cache,
could reduce the off-chip traffic due to write back by 54%
on average. For smooth write traffic generation, a 2-entry
write-back buffer and a 4-entry write-through buffer are im-
plemented.

For data cache management, invalidation, synchroniza-
tion, and flushing are done at the whole cache or at each
cache line. Cache line locking is provided as in the instruc-
tion cache.

4 Results

4.1 Implementation

We implemented the described cache system in a
0.18�m CMOS technology. In doing so, we only used a
standard cell library (i.e., no custom cells) and compiled
SRAM modules [13]. Although there is room for further
space/time optimization, we took this approach for shorter
design time as well as for higher portability. Each cache oc-
cupies around 2:4mm

2 on silicon. Under worst conditions,
the chip with these caches turned on runs at 130 MHz.

The performance of the caches, represented by the aver-
age memory access time (AMAT) calculated for the bench-
mark programs, is 1.003 for the instruction cache and 1.176
for the data cache. This sub-ideal (1-cycle access is ideal)
cache performance causes about 6% of the execution delay
(CPI is 1.06) if there is no other source for additional exe-
cution delay.

4.2 Power consumption

We calculated the average energy consumption of a
cache hit and a miss cache hit from the results of running
several evaluation programs generating memory accesses
that always hit in the cache or in the miss cache. An in-
struction access that hits in the L1 cache consumes on av-
erage 2:8 � 10�10J . A miss cache hit followed by the L1
instruction cache miss altogether burns 23:0� 10�10J . In
case of the data cache, 7:3� 10�10J (13:7� 10�10J) and
23:4� 10�10J (24:5� 10�10J) were consumed for a read
(write) access that hits in the L1 cache or in the miss cache.

Figure 3 shows the average memory access energy
(AMAE) consumed for each memory access toward the
instruction and data caches. It is shown that the average
AMAE for instructions is only about 10% larger than the
cache hit energy thanks to high hit rates. Some programs,
such as go, compress, li, and perl, exhibit higher data miss
rates than others, attributing larger portions of the AMAE



Figure 2. Write-back traffic in data cache. Numbers are relative to a baseline 16-KByte data cache with no miss cache.

Employing a 32-entry miss cache reduced the traffic by 17% on average (see right bars). Addition of a second dirty bit to each

line cuts the traffic by another 37% (left bars).

to the miss energy. g721.c has a lower AMAE than g721.d
since it has a relatively smaller number of store instructions.

We also measured the currents flowing in the
CalmRISCTM-32 core, the instruction cache, and the data
cache, while running a compiled quicksort code. After a
short warm-up time, the code and the data of the program
reside completely in the caches, leaving the processor in a
state that observes high power consumption. Measured cur-
rents are 82�A/MHz, 90�A/MHz, and 72�A/MHz, from
the respective blocks.

5 Concluding Remarks

On-chip cache memory with a low energy-delay product
is key to building an efficient low-power system on a chip.
This paper describes an experimental on-chip cache system
designed for a 32-bit embedded processor. Considerations
for low power consumption led us to design rather simple
direct-mapped instruction and data caches, each backed up
by a small fully-associative miss cache. To decrease the
power consumed by frequent accesses that hit in the instruc-
tion cache, line reuse buffer is devised and implemented,
which eliminates both the tag and data accesses in the cache
for around 80% of all the accesses. In the case of data cache,
efforts were made to decrease the amount of traffic between
the cache and off-chip memory, by employing a small cache
line and dual dirty bits per line.

Implemented in a 0.18�m technology, each cache oc-
cupies on silicon around 2:4mm

2 of space. Only standard
library cells and compiled memories were used for shorter
design time and greater portability, at the inevitable expense

of a moderate loss in area and operating speed. Gate-level
power simulations show that the designed caches consume
90�A/MHz and 72�A/MHz at 1.8V, respectively.
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