Reducing Coherence Overhead
in Shared-Bus Multiprocessors

SANGYEUN CHO! AND GYUNGHO LEE?

! Dept. of Computer Science
2 Dept. of Electrical Engineering
University of Minnesota, Minneapolis, MN 55455, USA
E-mail: {sycho@cs,ghlee@ee}.umn.edu

Abstract. To reduce the overhead of cache coherence enforcement in
shared-bus multiprocessors, we propose a self-invalidation technique as
an extension to write-invalidate protocols. The technique speculatively
identifies cache blocks to be invalidated and dynamically determines
when to invalidate them locally. We also consider enhancing our self-
invalidation scheme by incorporating read snarfing, to reduce the cache
misses due to incorrect prediction. We evaluate our self-invalidation scheme
by simulating SPLASH-2 benchmark programs that exhibit various ref-
erence patterns, under a realistic shared-bus multiprocessor model. We
discuss the effectiveness and hardware complexity of self-invalidation and
its enhancement with read snarfing in our extended protocol.

1 Introduction

There are at least three types of overhead in enforcing cache coherence in
a shared-bus multiprocessor using a write-invalidate snooping protocol [8, 5].
Firstly, the bus bandwidth is consumed, i.e. invalidations are generated when a
processor writes to a shared block. Secondly, the machine experiences coherence
misses. A coherence miss is a miss due to prior invalidation of the cache block
by a remote processor. Thirdly, coherence actions need to look up the cache
state and tag memory and possibly update it, which can increase the contention
with the local processor. A duplicated state and tag memory can minimize the
contention. With large caches employed in modern shared-bus multiprocessors,
the coherence overhead is a major performance degrading factor, and reducing
invalidations is extremely important.

In this paper, we propose a self-invalidation technique to reduce the invali-
dation traffic. Self-invalidation is a technique to invalidate cache blocks locally
without an explicit invalidation message. Our scheme is a simple hardware-
oriented extension to write-invalidate protocols and can be easily adopted in
current multiprocessor technology with little hardware complexity. Moreover,
it does not change the memory model seen by a programmer. We complement
the self-invalidation scheme with a variant of read smarfing [1] to reduce the
cache misses due to incorrect prediction. Read snarfing has been discussed and
evaluated as an enhancement to snooping cache coherence protocols that takes
advantage of the inherent broadcasting nature of the bus [9, 4, 1].

Reply Assert
State| Event | Request S+ Sharedt New State State | Request | New State] S* Shared* Data
Rmiss Rreq 0 0 E Rreq nochange | 0 1
Rmiss Rreq 1 0 E+ S Wreq | 1 0
Rmiss Rreq 0 1 S Ireq | 0 0
Rmiss Rreq 1 1 S+ Rreq nochange | 1 1
Wmiss Wreq 0 0 M S+ Wreq | 1 0
Wmiss Wreq 1 0 M+ Ireq | 0 0
s Read - no change E Rreq S 0 1
Write Ireq - M Wreq | 1 0
Read - - no change B+ Rreq St 1 1
St Write Ireq - M+ Wreq | 1 0 -
Sync - - | M Rreq St 1 1 Provide
£ Read - - no change Wreq | 1 0 Provide
Write - - M M+ Rreq | 1 0 Provide
Er Read - - no change Wreq | 1 0 Provide
Write - - M+
M Read - - no change
Write - - no change
M+ Regd - - no change
Write - - no change
(a) Local events (b) Bus-induced actions

Fig. 1. State transition table for a self-invalidation technique

2 A Self-Invalidation Technique

The technique we propose has two phases, marking and local invalidation.
Marking. Cache blocks are marked for self-invalidation on specific events. This
marking is incorporated in cache block states as can be seen in Fig. 1, where the
extended protocol is shown. In the figure, SI* and Shared* are special bus lines
that distribute sharing information during bus transactions, the former of which
is introduced in this section and the latter of which is the “shared” line used in
many other shared-bus multiprocessors. The states in bold are from the Illinois
protocol (Modified, Exclusive, Shared, and Invalid) and others (M4, E+, and
S+) mark a cache block for self-invalidation.

Cache blocks which have been written in a shared state are marked for elim-
inating future invalidations. A typical example of such blocks is the one having
a migratory object. A migratory object is in many cases guarded by lock-unlock
synchronizations and exclusive access is observed, giving us an opportunity for
eliminating explicit invalidations. Our marking will detect migratory objects like
Cox and Fowler’s adaptive protocol [3] does; an example of such a case is shown
in Fig. 2 (a). Unlike their scheme which pays attention to strictly migratory ob-
jects, however, we aggressively classify shared blocks that have a history of being
written as self-invalidation candidates. This history is passed on to a requesting
processor through SI* and Shared* lines when a read request is seen on the bus.
Local invalidation. A Cache block in M+ state is locally invalidated when
another processor requests the block. The requesting processor will have the
block in E4 state so that a later write will not generate an invalidation, and the
state carries with it a speculation that the block will be locally invalidated as
it becomes shared by multiple processors. Typical migratory objects will carry

Processor i Processor j Processor k

block state State ‘ Encoding
of cache block N | 1010 00
which contains A E ReadA i E) 30 01
M Write A ! time E+| 00 1 1
I ! I
data v s |i0l010
St————= St ReadA st| 110 00
| =———— M+WiiteA M|iol110
explicit invalidation Vo
| — . E+ ReadA M+ 10111
local invalidation M+ WriteA *
with data provision Column Reset at Barriers

(@ (b)

Fig. 2. An example of (a) a migratory block, and (b) state encoding

E+4+ or M+ state as depicted in Fig. 2 (a). Cache blocks in S+ state are all
invalidated at a barrier synchronization point, since barriers give a good hint
that the sharing pattern will change across them. Our experimental results with
Ocean and Radix from the SPLASH-2 benchmark suite support this observation.
Implementation. For the marking phase of the scheme, a special bus line, ST*,
is needed. SI* is asserted by the owner of a requested cache block, which gives
a hint to the requesting node in deciding the state of the incoming block.

For the timing of local invalidation, the memory system should be able to see
the synchronizations. This is not hard, and many optimizations such as release
consistency [6] assume that lock, unlock, and barrier synchronizations are seen
by the memory system. We consider barrier synchronizations in this paper. To
efficiently perform local invalidation at barriers, a column-reset circuit and a
redundant encoding of cache block states are needed. An example of such an
encoding is shown in Fig. 2 (b). Although 3 bits suffice to encode 7 states, we
add 1 more bit for efficient state change at barriers. Resetting this bit column
will force all blocks in S+ state into I state at the same time. With a 40-bit
address and 32-Byte block size, a four-way set-associative 1-MB cache will have
an additional 0.714% (32X8+(4035713)+2)) of memory overhead, compared to a
2-bit encoding of 4 states.

Enhancing with read snarfing. We investigate the potential of combining
read snarfing with our self-invalidation scheme. The two techniques have contra-
dicting properties in that self-invalidation tries to keep the degree of sharing low
for shared cache blocks, whereas snarfing tries to maximize the sharing at all
read requests. Read snarfing hence cannot directly mix with the self-invalidation
technique. We modify read snarfing so that processors will read-snarf only when
a read request results in a block cached in at least two caches. In other words,
read snarfing becomes conservative, and it waits until the second read miss oc-
curs for the same cache block without an intervening write. This is illustrated
in Fig. 3. The rationale behind the conservative read snarfing is the observa-
tion made by Eggers and Katz [4] that most invalidation misses are caused by
a re-read by a single processor. For migratory objects, the conservative read
snarfing does not hinder self-invalidation. The conservative read snarfing can be
easily implemented by using Shared* line as a hint for snarfing. If the line is not

Processor i Processor j Processor k Processor x Processor y

M+ | |

| E+ Read A
data provision,
read snarfing suppressed

time

S+ S+ S+ Read A S+ S+

/ / / /

read snarfing,
data provided from memory

Fig. 3. An example of conservative read snarfing

asserted, snarfing action is simply suppressed, and if the line is asserted, read
snarfing is performed and the resulting state will be S+ for all cached copies.

Discussion. Cox and Fowler’s scheme [3] identifies migratory objects at run
time and tries to eliminate invalidations for such objects. Once a cache block
is deemed to be migratory, further read requests will obtain the block in an
exclusive state. Compiler algorithms to identify and optimize for the migratory
sharing pattern were also studied by Skeppstedt and Stenstrom [10]. They use
a data-flow analysis to recognize uninterrupted read-modify-write sequences to
the same address. Dynamic Self-Invalidation techniques were studied by Lebeck
and Wood [7]. They identify blocks for self-invalidation by associating a version
number with each block in the cache and with each entry in the directory. On
responding to a read request, the directory compares the version number of the
entry with that of the cache block, and provides the block with a marking if
the two numbers mismatch. Since they assumed a directory-based coherence
protocol, their technique needs a special sequencing circuit to regenerate the
cache block addresses and send acknowledgements at each synchronization point.

3 Performance

Experimental setup. We use a program-driven simulation to simulate a shared-
bus multiprocessor model with 16 processors. Our simulator consists of two parts:
a front end, MINT [11], which simulates the execution of the processors, and
a back end that simulates the memory system and the bus. The shared bus is
closely modeled after the POWERpath-2 bus [5]. It is clocked at 50 MHz and has
a 40-bit address bus and a 64-bit data bus, which are arbitrated independently.
Each bus transaction consumes five bus cycles, and a cache block can be trans-
ferred in one bus transaction. Our simulator is capable of capturing contention
within the bus and in the state and tag memory due to conflicting accesses
from the processor and the bus. A processor node contains a high-performance
microprocessor and two levels of data caches: a small direct-mapped first-level
(L1) cache and a set-associative second-level (L2) cache. The block size of the
caches is 32 Bytes. Write-through policy is used between the L1 and L2 caches,
and write-back policy is used between the L2 caches and the main memory. We

ﬁwomH.NE Description _ Input _

Cholesky Cholesky factorization of a sparse matrix bcsstk14
LU LU decomposition of a dense matrix 300300 matrix, 16 x16 block
FFT Complex 1-D version of radix-v/N six-step FFT 256 K points
Ocean Ocean basin simulator 130x130 ocean, 10~ 7 tolerance
Radix Radix sorting 200,000 integers
Water |Simulates evolution of a system of Water molecules| 512 molecules, 3 time steps

Table 1. Summary of benchmark programs

2120
®
ﬂ 100101 0099 100100100100 100 100 100 99 100 10099 100 100
nw 94 94 91
4 Invalidations
5 8 79
<
.m —
N
3 Others
£ 47 48
20 L]]
g4=2% #3%% B3%% B3%% B=2% 837%
BMS& 0BG nadhG BMS& BMS& na® G
ol esky m_n._. Am. Ccean Radi x <ﬁ~ er

Fig. 4. Bus traffic (Base: base Illinois, AD-M: adaptive protocol for migratory
object [3], SI-S: self-invalidation with conservative snarfing, Snarf: snarfing)

assume no stalls for instruction fetching, and an instruction can be executed in
a processor clock cycle (pclock). The L1 cache is 2 KBytes and the access time is
hidden if an access hits in the cache. It has a 4-pclock block fill time. The 4-way
set-associative L2 cache is 128 KBytes with a 40-ns cycle time. We assume a
fully interleaved main memory with an access time of 120 ns.

We use 6 programs from the SPLASH-2 benchmark suite [12] to drive our
simulator. Program descriptions and inputs are summarized in Table 1. The LU
program we use is LU-C (contiguous block allocation version). For measurement,
we gather statistics during the parallel sections only.

Traffic reduction.? Fig. 4 shows the bus traffic of 4 different schemes. As can
be seen, both AD-M and SI-S schemes could reduce the invlidations considerably.
In LU, invalidations were eliminated almost completely. Two programs, however,
exhibit some difference between the two schemes: Ocean and Radix. Ocean is
known to have little migratory sharing, and it has a lot of barrier synchroniza-
tions [12]. Radix also contains more barriers than locks. AD-M did not reduce
much traffic in these two programs due to few strictly migratory data accesses,
whereas SI-S reduced a large portion, by invalidating marked cache blocks at
barriers. Notice that Snarf did not reduce coherence traffic, although it reduced
other traffic (mostly memory requests) in Ocean and Water. In Cholesky, AD-
M and SI-S generated more memory request traffic than Base, due to a slight
increase in the cache miss rate from incorrect prediction, which was not covered

8 We focus only on the bus traffic in this paper. Detailed results including execution
time are found in [2].

by the conservative read snarfing. On average, AD-M, SI-S, and Snarf reduced
11.1%, 13.6%, and 2.7% of the bus traffic respectively.

4 Summary

Considering the current trend of adopting large (multi-megabyte) caches, the
coherence overhead becomes a more dominant factor degrading performance.
Reducing the coherence overhead, which in turn reduces the bandwidth require-
ment on the bus, is very important for future shared-bus multiprocessors.

We propose a simple hardware-oriented self-invalidation technique to reduce
the coherence traffic. Using a program-driven simulation of six programs from the
SPLASH-2 benchmark suite, we observed a reduction of coherence traffic averag-
ing 71.6%. We modified read snarfing to be combined with our self-invalidation
scheme to reduce the cache misses. We observed that the combined scheme re-
duced the bus traffic by 13.6% on average, which promises potential improvement
of execution time if coherence traffic dominates the bus traffic of a program. The
proposed scheme adds little to the hardware complexity.

References

1. ANDERSON, C. AND BAER, J.-L.: Two Techniques for Improving Performance on
Bus-Based Multiprocessors. Proc. of HPCA-1, pp. 256 — 275, Jan., 1995.

2. CHO, S. AND LEE, G.: Reducing Coherence Overhead in Shared-Bus Multiproces-
sors, DICE Project TR No. 16, Dept. of Elec. Eng., Univ. of Minn., Feb. 1996.

3. Cox, A. AND FowLER, R.: Adaptive Cache Coherency for Detecting Migratory
Shared Data, Proc. of 20th ISCA, pp. 98 — 107, May, 1993.

4. EGGERS, S. J. AND KaTz, R. H.: Evaluating the Performance of Four Snooping
Cache Coherency Protocols, Proc. of 16th ISCA| pp. 2 — 15, June, 1989.

5. GALLEs, M. AND WILLIAMS, E.: Performance Optimizations, Implementation, and
Verification of the SGI Challenge Multiprocessor, Proc. of 27th Hawaii Int’l Conf.
on System Sci., Vol. 1, pp. 134 — 143, 1994.

6. GHARACHORLOO, K., et al.: Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors, Proc. of 17th ISCA, pp. 15 — 26, June, 1990.

7. LEBECK, A. AND WooD, D.: Dynamic Self-Invalidation: Reducing Coherence
Overhead in Shared-Memory Multiprocessors, Proc. of 22nd ISCA, June, 1995.

8. LovETT, T. AND THAKKAR, S.: The Symmetry Multiprocessor System, Proc. of
17th ICPP, pp. 303 — 310, Aug., 1988.

9. RupoLpH, L. AND SEGALL, Z.: Dynamic Decentralized Cache Schemes for MIMD
Parallel Processors, Proc. of 11th ISCA, pp. 340 — 347, 1984.

10. SKEPPSTEDT, J. AND STENSTROM P.: Simple Compiler Algorithms to Reduce
Ownership Overhead in Cache Coherence Protocols, Proc. of 6th ASPLOS, pp.
286 — 296, Oct., 1994.

11. VEENSTRA, J. AND FOWLER, R.: Mint: A Front-End for Efficient Simulation of
Shared-Memory Multiprocessors, Proc. of 2nd MASCOTS, Jan. — Feb., 1994.

12. Woo, S., et al.: The SPLASH-2 Programs: Characterization and Methodological
Considerations, Proc. of 22nd ISCA, pp. 24 — 36, June, 1995.

This article was processed using the ITEX macro package with LLNCS style

