
Reducing Coherence Overhead

in Shared-Bus Multiprocessors

Sangyeun Cho1 and Gyungho Lee2

1 Dept. of Computer Science
2 Dept. of Electrical Engineering

University of Minnesota, Minneapolis, MN 55455, USA

E-mail: fsycho@cs,ghlee@eeg.umn.edu

Abstract. To reduce the overhead of cache coherence enforcement in

shared-bus multiprocessors, we propose a self-invalidation technique as

an extension to write-invalidate protocols. The technique speculatively

identi�es cache blocks to be invalidated and dynamically determines

when to invalidate them locally. We also consider enhancing our self-

invalidation scheme by incorporating read snar�ng, to reduce the cache

misses due to incorrect prediction. We evaluate our self-invalidation scheme

by simulating SPLASH-2 benchmark programs that exhibit various ref-

erence patterns, under a realistic shared-bus multiprocessor model. We

discuss the e�ectiveness and hardware complexity of self-invalidation and

its enhancement with read snar�ng in our extended protocol.

1 Introduction

There are at least three types of overhead in enforcing cache coherence in

a shared-bus multiprocessor using a write-invalidate snooping protocol [8, 5].

Firstly, the bus bandwidth is consumed, i.e. invalidations are generated when a

processor writes to a shared block. Secondly, the machine experiences coherence

misses. A coherence miss is a miss due to prior invalidation of the cache block

by a remote processor. Thirdly, coherence actions need to look up the cache

state and tag memory and possibly update it, which can increase the contention

with the local processor. A duplicated state and tag memory can minimize the

contention. With large caches employed in modern shared-bus multiprocessors,

the coherence overhead is a major performance degrading factor, and reducing

invalidations is extremely important.

In this paper, we propose a self-invalidation technique to reduce the invali-

dation tra�c. Self-invalidation is a technique to invalidate cache blocks locally

without an explicit invalidation message. Our scheme is a simple hardware-

oriented extension to write-invalidate protocols and can be easily adopted in

current multiprocessor technology with little hardware complexity. Moreover,

it does not change the memory model seen by a programmer. We complement

the self-invalidation scheme with a variant of read snar�ng [1] to reduce the

cache misses due to incorrect prediction. Read snar�ng has been discussed and

evaluated as an enhancement to snooping cache coherence protocols that takes

advantage of the inherent broadcasting nature of the bus [9, 4, 1].

Ireq

no change 1

0

1

Rreq

Wreq

Wreq

Rreq

Rreq

Rreq

Rreq

1

0

0

0

0

1

1

1

1

1

1

1

1Wreq

E+

S+

E+

Rreq

Wreq

M+

no change

no change

M+

no change
M+

I

Ireq -

-

-

S

Wreq

Wreq

0

no change 0

1

1

0

0

1

S

M

(a) Local events (b) Bus-induced actions

Reply

E

I

I

I

I

I

M

Shared*
DataRequestEventState State

Shared*SI*
New State Request New State

Assert
SI*

S+

Provide

Provide

-

-

-

Provide

0

0

01

0

Provide

-

I

I

I

I

S

S+
E+

-

-

-

S+

E

M+
no change

Rreq

Rreq

Rreq

Rreq

Wmiss

Rmiss

Rmiss

Rmiss

Rmiss

Write

Read

Write

Read

Write

Read

Read

Write

Read

Write

Read

Write

Wmiss

-

-

-

-

-

-

Ireq

-

-

-

-

-

-

-

-

M

no change

no change

no change

-

-

-

-

-

-

-

Sync

1

11

0 0

0

Wreq

Wreq

0 0

1 0

0

S+

M

M+

no change

M

I
S

1

-

Ireq

-

-

E

Fig. 1. State transition table for a self-invalidation technique

2 A Self-Invalidation Technique

The technique we propose has two phases, marking and local invalidation.

Marking. Cache blocks are marked for self-invalidation on speci�c events. This

marking is incorporated in cache block states as can be seen in Fig. 1, where the

extended protocol is shown. In the �gure, SI* and Shared* are special bus lines

that distribute sharing information during bus transactions, the former of which

is introduced in this section and the latter of which is the \shared" line used in

many other shared-bus multiprocessors. The states in bold are from the Illinois

protocol (Modi�ed, Exclusive, Shared, and Invalid) and others (M+, E+, and

S+) mark a cache block for self-invalidation.

Cache blocks which have been written in a shared state are marked for elim-

inating future invalidations. A typical example of such blocks is the one having

a migratory object. A migratory object is in many cases guarded by lock-unlock

synchronizations and exclusive access is observed, giving us an opportunity for

eliminating explicit invalidations. Our marking will detect migratory objects like

Cox and Fowler's adaptive protocol [3] does; an example of such a case is shown

in Fig. 2 (a). Unlike their scheme which pays attention to strictly migratory ob-

jects, however, we aggressively classify shared blocks that have a history of being

written as self-invalidation candidates. This history is passed on to a requesting

processor through SI* and Shared* lines when a read request is seen on the bus.

Local invalidation. A Cache block in M+ state is locally invalidated when

another processor requests the block. The requesting processor will have the

block in E+ state so that a later write will not generate an invalidation, and the

state carries with it a speculation that the block will be locally invalidated as

it becomes shared by multiple processors. Typical migratory objects will carry

E
M

Read A

Write A

Processor i

which contains A
of cache block

block state EncodingState

11

Column Reset at Barriers

Processor j

Read A
data

S+
I

explicit invalidation

(b)(a)

with data provision
local invalidation

S+

M+

Write A

time

Processor k

E+

M+

Write A

Read AI 1

I

E

E+

S

0

0

000

S+

M

M+

0

0001

0

0

011

1

00

10

0 00

11

Fig. 2. An example of (a) a migratory block, and (b) state encoding

E+ or M+ state as depicted in Fig. 2 (a). Cache blocks in S+ state are all

invalidated at a barrier synchronization point, since barriers give a good hint

that the sharing pattern will change across them. Our experimental results with

Ocean and Radix from the SPLASH-2 benchmark suite support this observation.

Implementation. For the marking phase of the scheme, a special bus line, SI*,

is needed. SI* is asserted by the owner of a requested cache block, which gives

a hint to the requesting node in deciding the state of the incoming block.

For the timing of local invalidation, the memory system should be able to see

the synchronizations. This is not hard, and many optimizations such as release

consistency [6] assume that lock, unlock, and barrier synchronizations are seen

by the memory system. We consider barrier synchronizations in this paper. To

e�ciently perform local invalidation at barriers, a column-reset circuit and a

redundant encoding of cache block states are needed. An example of such an

encoding is shown in Fig. 2 (b). Although 3 bits su�ce to encode 7 states, we

add 1 more bit for e�cient state change at barriers. Resetting this bit column

will force all blocks in S+ state into I state at the same time. With a 40-bit

address and 32-Byte block size, a four-way set-associative 1-MB cache will have

an additional 0.714% (2
32�8+(40�5�13)+2)) of memory overhead, compared to a

2-bit encoding of 4 states.

Enhancing with read snar�ng. We investigate the potential of combining

read snar�ng with our self-invalidation scheme. The two techniques have contra-

dicting properties in that self-invalidation tries to keep the degree of sharing low

for shared cache blocks, whereas snar�ng tries to maximize the sharing at all

read requests. Read snar�ng hence cannot directly mix with the self-invalidation

technique. We modify read snar�ng so that processors will read-snarf only when

a read request results in a block cached in at least two caches. In other words,

read snar�ng becomes conservative, and it waits until the second read miss oc-

curs for the same cache block without an intervening write. This is illustrated

in Fig. 3. The rationale behind the conservative read snar�ng is the observa-

tion made by Eggers and Katz [4] that most invalidation misses are caused by

a re-read by a single processor. For migratory objects, the conservative read

snar�ng does not hinder self-invalidation. The conservative read snar�ng can be

easily implemented by using Shared* line as a hint for snar�ng. If the line is not

data provided from memory
read snarfing,

S+S+S+ S+ S+

time

Processor yProcessor xProcessor kProcessor jProcessor i

Read A

M+

read snarfing suppressed
data provision,

Read AE+I

II

Fig. 3. An example of conservative read snar�ng

asserted, snar�ng action is simply suppressed, and if the line is asserted, read

snar�ng is performed and the resulting state will be S+ for all cached copies.

Discussion. Cox and Fowler's scheme [3] identi�es migratory objects at run

time and tries to eliminate invalidations for such objects. Once a cache block

is deemed to be migratory, further read requests will obtain the block in an

exclusive state. Compiler algorithms to identify and optimize for the migratory

sharing pattern were also studied by Skeppstedt and Stenstr�om [10]. They use

a data-ow analysis to recognize uninterrupted read-modify-write sequences to

the same address. Dynamic Self-Invalidation techniques were studied by Lebeck

and Wood [7]. They identify blocks for self-invalidation by associating a version

number with each block in the cache and with each entry in the directory. On

responding to a read request, the directory compares the version number of the

entry with that of the cache block, and provides the block with a marking if

the two numbers mismatch. Since they assumed a directory-based coherence

protocol, their technique needs a special sequencing circuit to regenerate the

cache block addresses and send acknowledgements at each synchronization point.

3 Performance

Experimental setup.We use a program-driven simulation to simulate a shared-

bus multiprocessor model with 16 processors. Our simulator consists of two parts:

a front end, MINT [11], which simulates the execution of the processors, and

a back end that simulates the memory system and the bus. The shared bus is

closely modeled after the POWERpath-2 bus [5]. It is clocked at 50 MHz and has

a 40-bit address bus and a 64-bit data bus, which are arbitrated independently.

Each bus transaction consumes �ve bus cycles, and a cache block can be trans-

ferred in one bus transaction. Our simulator is capable of capturing contention

within the bus and in the state and tag memory due to conicting accesses

from the processor and the bus. A processor node contains a high-performance

microprocessor and two levels of data caches: a small direct-mapped �rst-level

(L1) cache and a set-associative second-level (L2) cache. The block size of the

caches is 32 Bytes. Write-through policy is used between the L1 and L2 caches,

and write-back policy is used between the L2 caches and the main memory. We

P
ro
g
ra
m

D
e
sc
rip

tio
n

In
p
u
t

C
h
o
l
e
s
k
y

C
h
o
le
sk
y
fa
c
to
riz

a
tio

n
o
f
a
sp
a
rse

m
a
trix

b
c
s
s
t
k
1
4

L
U

L
U
d
e
c
o
m
p
o
sitio

n
o
f
a
d
e
n
se

m
a
trix

3
0
0�

3
0
0
m
a
trix

,
1
6�

1
6
b
lo
c
k

F
F
T

C
o
m
p
le
x
1
-D

v
e
rsio

n
o
f
ra
d
ix
- p
N

six
-ste

p
F
F
T

2
5
6
K

p
o
in
ts

O
c
e
a
n

O
c
e
a
n
b
a
sin

sim
u
la
to
r

1
3
0�

1
3
0
o
c
e
a
n
,
1
0
�
7
to
le
ra
n
c
e

R
a
d
i
x

R
a
d
ix

so
rtin

g
2
0
0
,0
0
0
in
te
g
e
rs

W
a
t
e
r

S
im

u
la
te
s
e
v
o
lu
tio

n
o
f
a
sy
ste

m
o
f
W
a
te
r
m
o
le
c
u
le
s

5
1
2
m
o
le
c
u
le
s,
3
tim

e
ste

p
s

T
a
b
le
1
.
S
u
m
m
a
ry

o
f
b
en
ch
m
a
rk

p
ro
g
ra
m
s

Base
AD-M

SI-S
Snarf

Base
AD-M

SI-S
Snarf

Base
AD-M

SI-S
Snarf

Base
AD-M

SI-S
Snarf

Base
AD-M

SI-S
Snarf

Base
AD-M

SI-S
Snarf

40 60 80

100

120

Normalized Address Bus Traffic

Invalidations

C
h
o
l
e
s
k
y

F
F
T

L
U

R
a
d
i
x

O
c
e
a
n

W
a
t
e
r

O
thers

100
101

98
99

100

47
48

94

85
79

91

100
100

100
100

100
100

100
100

100

94

100
99

99

F
ig
.
4
.
B
u
s
tra

�
c
(
B
a
s
e:

b
a
se

Illin
o
is,

A
D
-M

:
a
d
a
p
tiv

e
p
ro
to
co
l
fo
r
m
ig
ra
to
ry

o
b
ject

[3
],
S
I
-S
:
self-in

va
lid

a
tio

n
w
ith

co
n
serv

a
tiv

e
sn
a
r�
n
g
,
S
n
a
r
f:
sn
a
r�
n
g
)

a
ssu

m
e
n
o
sta

lls
fo
r
in
stru

ctio
n
fetch

in
g
,
a
n
d
a
n
in
stru

ctio
n
ca
n
b
e
ex
ecu

ted
in

a
p
ro
cesso

r
clo

ck
cy
cle

(p
clo

ck
).
T
h
e
L
1
ca
ch
e
is
2
K
B
y
tes

a
n
d
th
e
a
ccess

tim
e
is

h
id
d
en

if
a
n
a
ccess

h
its

in
th
e
ca
ch
e.
It
h
a
s
a
4
-p
clo

ck
b
lo
ck

�
ll
tim

e.
T
h
e
4
-w
a
y

set-a
sso

cia
tiv

e
L
2
ca
ch
e
is

1
2
8
K
B
y
tes

w
ith

a
4
0
-n
s
cy
cle

tim
e.

W
e
a
ssu

m
e
a

fu
lly

in
terlea

v
ed

m
a
in

m
em

o
ry

w
ith

a
n
a
ccess

tim
e
o
f
1
2
0
n
s.

W
e
u
se

6
p
ro
g
ra
m
s
fro

m
th
e
S
P
L
A
S
H
-2

b
en
ch
m
a
rk

su
ite

[1
2
]
to

d
riv

e
o
u
r

sim
u
la
to
r.
P
ro
g
ra
m

d
escrip

tio
n
s
a
n
d
in
p
u
ts

a
re

su
m
m
a
rized

in
T
a
b
le
1
.
T
h
e
L
U

p
ro
g
ra
m

w
e
u
se

is
L
U
-
C
(co

n
tig

u
o
u
s
b
lo
ck

a
llo

ca
tio

n
v
ersio

n
).
F
o
r
m
ea
su
rem

en
t,

w
e
g
a
th
er

sta
tistics

d
u
rin

g
th
e
p
a
ra
llel

sectio
n
s
o
n
ly.

T
r
a
�
c
r
e
d
u
c
tio

n
.
3
F
ig
.
4
sh
o
w
s
th
e
b
u
s
tra

�
c
o
f
4
d
i�
eren

t
sch

em
es.

A
s
ca
n

b
e
seen

,
b
o
th

A
D
-M

a
n
d
S
I
-S

sch
em

es
co
u
ld
red

u
ce

th
e
in
v
lid

a
tio

n
s
co
n
sid

era
b
ly.

In
L
U
,
in
va
lid

a
tio

n
s
w
ere

elim
in
a
ted

a
lm

o
st
co
m
p
letely.

T
w
o
p
ro
g
ra
m
s,
h
o
w
ev
er,

ex
h
ib
it

so
m
e
d
i�
eren

ce
b
etw

een
th
e
tw
o
sch

em
es:

O
c
e
a
n
a
n
d
R
a
d
i
x
.
O
c
e
a
n
is

k
n
o
w
n
to

h
a
v
e
little

m
ig
ra
to
ry

sh
a
rin

g
,
a
n
d
it
h
a
s
a
lo
t
o
f
b
a
rrier

sy
n
ch
ro
n
iza

-

tio
n
s
[1
2
].
R
a
d
i
x
a
lso

co
n
ta
in
s
m
o
re

b
a
rriers

th
a
n
lo
ck
s.
A
D
-M

d
id

n
o
t
red

u
ce

m
u
ch

tra
�
c
in

th
ese

tw
o
p
ro
g
ra
m
s
d
u
e
to

few
strictly

m
ig
ra
to
ry

d
a
ta

a
ccesses,

w
h
erea

s
S
I
-S

red
u
ced

a
la
rg
e
p
o
rtio

n
,
b
y
in
va
lid

a
tin

g
m
a
rk
ed

ca
ch
e
b
lo
ck
s
a
t

b
a
rriers.

N
o
tice

th
a
t
S
n
a
r
f
d
id

n
o
t
red

u
ce

co
h
eren

ce
tra

�
c,
a
lth

o
u
g
h
it
red

u
ced

o
th
er

tra
�
c
(m

o
stly

m
em

o
ry

req
u
ests)

in
O
c
e
a
n
a
n
d
W
a
t
e
r
.
In

C
h
o
l
e
s
k
y
,
A
D
-

M
a
n
d
S
I
-S

g
en
era

ted
m
o
re

m
em

o
ry

req
u
est

tra
�
c
th
a
n
B
a
s
e,

d
u
e
to

a
slig

h
t

in
crea

se
in

th
e
ca
ch
e
m
iss

ra
te

fro
m

in
co
rrect

p
red

ictio
n
,
w
h
ich

w
a
s
n
o
t
co
v
ered

3
W
e
fo
cu
s
o
n
ly

o
n
th
e
b
u
s
tra

�
c
in

th
is
p
a
p
er.

D
eta

iled
resu

lts
in
clu

d
in
g
ex
ecu

tio
n

tim
e
a
re

fo
u
n
d
in

[2
].

by the conservative read snar�ng. On average, AD-M, SI-S, and Snarf reduced

11.1%, 13.6%, and 2.7% of the bus tra�c respectively.

4 Summary

Considering the current trend of adopting large (multi-megabyte) caches, the

coherence overhead becomes a more dominant factor degrading performance.

Reducing the coherence overhead, which in turn reduces the bandwidth require-

ment on the bus, is very important for future shared-bus multiprocessors.

We propose a simple hardware-oriented self-invalidation technique to reduce

the coherence tra�c. Using a program-driven simulation of six programs from the

SPLASH-2 benchmark suite, we observed a reduction of coherence tra�c averag-

ing 71.6%. We modi�ed read snar�ng to be combined with our self-invalidation

scheme to reduce the cache misses. We observed that the combined scheme re-

duced the bus tra�c by 13.6% on average, which promises potential improvement

of execution time if coherence tra�c dominates the bus tra�c of a program. The

proposed scheme adds little to the hardware complexity.

References

1. Anderson, C. and Baer, J.-L.: Two Techniques for Improving Performance on

Bus-Based Multiprocessors. Proc. of HPCA-1, pp. 256 { 275, Jan., 1995.

2. Cho, S. and Lee, G.: Reducing Coherence Overhead in Shared-Bus Multiproces-

sors, DICE Project TR No. 16, Dept. of Elec. Eng., Univ. of Minn., Feb. 1996.

3. Cox, A. and Fowler, R.: Adaptive Cache Coherency for Detecting Migratory

Shared Data, Proc. of 20th ISCA, pp. 98 { 107, May, 1993.

4. Eggers, S. J. and Katz, R. H.: Evaluating the Performance of Four Snooping

Cache Coherency Protocols, Proc. of 16th ISCA, pp. 2 { 15, June, 1989.

5. Galles, M. and Williams, E.: Performance Optimizations, Implementation, and

Veri�cation of the SGI Challenge Multiprocessor, Proc. of 27th Hawaii Int'l Conf.

on System Sci., Vol. 1, pp. 134 { 143, 1994.

6. Gharachorloo, K., et al.: Memory Consistency and Event Ordering in Scalable

Shared-Memory Multiprocessors, Proc. of 17th ISCA, pp. 15 { 26, June, 1990.

7. Lebeck, A. and Wood, D.: Dynamic Self-Invalidation: Reducing Coherence

Overhead in Shared-Memory Multiprocessors, Proc. of 22nd ISCA, June, 1995.

8. Lovett, T. and Thakkar, S.: The Symmetry Multiprocessor System, Proc. of

17th ICPP, pp. 303 { 310, Aug., 1988.

9. Rudolph, L. and Segall, Z.: Dynamic Decentralized Cache Schemes for MIMD

Parallel Processors, Proc. of 11th ISCA, pp. 340 { 347, 1984.

10. Skeppstedt, J. and Stenstr�om P.: Simple Compiler Algorithms to Reduce

Ownership Overhead in Cache Coherence Protocols, Proc. of 6th ASPLOS, pp.

286 { 296, Oct., 1994.

11. Veenstra, J. and Fowler, R.: Mint: A Front-End for E�cient Simulation of

Shared-Memory Multiprocessors, Proc. of 2nd MASCOTS, Jan. { Feb., 1994.

12. Woo, S., et al.: The SPLASH-2 Programs: Characterization and Methodological

Considerations, Proc. of 22nd ISCA, pp. 24 { 36, June, 1995.

This article was processed using the LATEX macro package with LLNCS style

