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Abstract
Architecting today’s embedded processor core faces several
important design challenges: low power, high performance,
and system-on-a-chip considerations. Moreover, support for
high-level language constructs and operating systems
becomes increasingly critical for acceptance to various
applications. CalmRISCTM-32 effectively meets these
challenges by incorporating a carefully designed instruction
set, an energy-efficient pipeline design, debugging support
with trace mode/CalmBreakerTM (an in-circuit debugger),
and a generic, yet efficient coprocessor interface. Using a
0.25µm static CMOS standard cell library and compiled
datapath cells, the first implementation of CalmRISCTM-32
operates at 130MHz (under worst conditions) and consumes
150µA/MHz at 2.5V. This paper presents a brief description
of the instruction set, the overall microarchitecture, and the
coprocessor interface of CalmRISCTM-32.

I. INTRODUCTION

Need for low-power high-performance embedded processor
cores has grown at a very fast pace in recent years.
Proliferation of battery-powered portable electronic devices
and their requirements for more computing performance are
pushing this trend even further. It also becomes more
important to incorporate into a processor core provisions for
efficiently building a highly integrated system (system-on-a-
chip) based on it. Whether or not a processor core satisfies
certain criteria set by such application requirements can
greatly enhance or diminish the core’s usability. On the other
hand, it can be a challenging and time-consuming task to
design a new processor core with all these considerations
well addressed.
Low-power design calls for significant efforts in all the levels
of a design flow – from early architecture design stage down
to target process, including microarchitecture design, logic
design, and circuit/layout implementation. Software tools at
each design stage should provide a projection or hint on
power consumption, and (help) generate a low-power
equivalent of the design. Besides, power-aware software
development is also of growing importance. Recent low-
power MCU cores reportedly consume sub-mA per MHz
[7,9]
Performance-hungry portable devices are emerging rapidly.
Various wireless communication devices like cellular phones,
personal information systems like PDAs, and portable game
stations all get more intelligent and complex, which is

achievable only through a higher operating frequency
(currently up to around 100MHz, or higher for future
applications) or more work done per cycle. In many
situations, the high performance goal conflicts with the low
power requirements.
With the advance of process technology, system-on-a-chip
(SoC) designs have appeared very attractive to system
engineers and ASIC designers, which reduce cost, power, as
well as board size. One of the most conspicuous SoC
approaches is the merge of an MCU core and special-purpose
functional blocks. Especially, when such functional blocks
are programmable, an efficient programming environment
like MDS (Microprocessor Development System) is crucial
for the acceptance of the MCU core. Hence an MCU
architecture in terms of SoC support should be understood
not only from the hardware standpoint, but also from the
software standpoint.
All these aspects motivated us to develop CalmRISCTM-32, a
new 32-bit general-purpose embedded processor core. It was
designed for both low power and high performance: An
initial implementation using a 0.25µm static CMOS standard
cell library and compiled datapath cells operates at 130MHz
under worst conditions, and consumes 150µA/MHz at 2.5V.
Moreover, it features a generic yet efficient interface to
customizable coprocessors, which greatly enhances its
applicability. This paper focuses on introducing the key
aspects of CalmRISCTM-32, by discussing the instruction set
architecture, the microarchitecture, and the coprocessor
interface.
The rest of this paper is organized as follows. First, an
overview of the CalmRISCTM-32 instruction set is given in
Section 2. Then we outline in Section 3 the microarchitecture
of CalmRISCTM-32, i.e., datapath organization, pipeline
design, etc., followed by Section 4, a discussion of the
coprocessor interface upon which a DSP coprocessor and an
FPU coprocessor have been successfully built. Lastly, Section
5 summarizes the paper.

II. INSTRUCTION SET ARCHITECTURE

Three design considerations affected the overall shape of the
CalmRISCTM-32 instruction set, which is a 32-bit Load/Store
RISC architecture. First of all, low power requirements set
important guidelines. Instruction width was determined to be
16 bits, which, compared with a 32-bit equivalent, leads to
much smaller code size with little performance degradation
[4]. A large portion of fetch-related power can be saved as



well. Accordingly many recent embedded cores implement a
16-bit instruction set or a special mode in which a 16-bit
instruction format is used (on top of an existing 32-bit
instruction set) [1,6,8,10]. A caveat is that the expressive
power of instructions is inevitably impaired and so is the
orthogonality of the instruction encoding, thus making the
instruction decoder possibly have longer latency. Instruction
grouping and placement on the instruction map was done in
a way that facilitates easy pre-decoding (See Section III) and
lowers bit transitions between consecutive instructions.
Second, it was assumed that the users would mainly use
high-level languages, such as C or C++, to program
CalmRISCTM-32. Among others, the addressing modes of
memory access instructions were made powerful. Lastly,
controller-oriented instructions and some other features
unique to previous CalmRISCTM cores [7,5] were again
included in the instruction set to minimize the users’ effort
of migrating to this newer core and to ease software porting.
Register View  There are two logical general-purpose
register banks, each containing sixteen 32-bit registers (from
r0 to r15). In user mode, only one bank is accessible. In
privileged mode, however, all 32 registers in two banks can
be accessed, by properly setting register selection bits in the
processor status register or sr. Two registers, namely r14
and r15, are reserved for saving the return address on
procedure calls and for the stack pointer, respectively. There
is a separate special register file used for saving the program
counter (PC) and sr on various asynchronous exceptional
conditions. Transferring data to and from the special
registers is a privileged operation and can not be performed
in user mode.
Use of “T” Bit  “T” (test) bit is a bit stored in sr that is set
or reset by compare instructions and certain arithmetic
instructions. A conditional branch refers to this bit to
determine whether or not it is taken and change the control
flow of the program. Some arithmetic instructions take this
bit as an implicit input, e.g., adc (add with carry) and sbc
(sub with carry) use the T bit as the carry-in. This bit is also
used to execute or cancel conditional instructions, such as
inct (increment if true) and dect (decrement if true).
Memory Access Instructions  Two addressing modes are
supported for 32-bit word, 16-bit half-word, and byte
accesses: register-displacement (scaled) and register-register.
There are separate stack-access instructions, push, pop,
pushq, and popq. pushq and popq are used to push or
pop four registers in sequence. Besides, program memory can
be accessed with a single register pointer.
Arithmetic and Compare Instructions  Various ALU
operations, like add, sub, adc (add with carry), sbc (sub
with carry), and (logical AND), or (logical OR), xor
(logical XOR), tst (bit test), and div1 (single-step
division), are provided. Barrel shifter instructions include sl
(shift left), sr (shift right), sra (shift right arithmetic), rr
(rotate right), rl (rotate left), and rrc (rotate right with
carry). For efficient multiplication, a pipelined, 2-cycle
latency 16x16 multiply instruction is offered. Compare
instructions, such as cmp eq/ge/gt (equal/greater than or
equal to/greater than) or cmpu (compare unsigned) ge/gt

set or reset the T bit according to the result of comparing two
signed or unsigned numbers.
Control Instructions  Control-changing instructions jump
to a program location whose address is either computed
using the current PC (called “PC-relative”) or assigned with
a value stored in a register. Conditional branches look at the
T bit to determine if the branch is taken. Similarly, brec
(branch on external condition) is taken if the specified
external condition is true. There are four external condition
signals fed into the CalmRISCTM-32 core, typically driven by
a coprocessor. Branches by default have a single delay slot
following them. For most frequently executed short
conditional branches, a non-delayed version is also provided
to save the code size in case no instructions are available to
fill a delay slot. Some other branches, especially related to
exception handling, are also devoid of a delay slot due to
different reasons.
Controller-Oriented Instructions  There are instructions
that directly manipulate a bit in a memory location: bits
(bit set), bitr (bit reset), bitc (bit complement), and
bitt (bit test). After executing these instructions, the
specified bit in memory is set, reset, or complemented
accordingly. In addition, they update the T bit based on the
original value of the specified bit, and thus can be used as
test-and-set (bits) and test-and-reset (bitr) primitives in
order to implement semaphores. A byte-access instruction
with a large, 8-bit displacement is provided so that access to
a group of memory-mapped ports can be made efficiently
using a single base register.
Coprocessor and System Instructions  For coprocessor
instructions, 13 bits (on the 16-bit instruction map) were
allocated. Except for the data transfer instructions, these
instructions are not executed in the core. Fetched coprocessor
instructions are passed to the coprocessor via COPIR core
pins. See Section 4 for detailed explanation. There is a
privileged system instruction called sys, to issue a 5-bit
system command, e.g., to shut down the system clock.
Other Data Transfer Instructions  Instructions are
provided to transfer a value in a register to and from another
general-purpose register, a special-purpose register, and the
current PC. Also provided are instructions to assign an
immediate value to specific bits in sr.

III. MICROARCHITECTURE

CalmRISCTM-32 is a pipelined processor that follows the
Harvard architecture. With separate instruction and data
memory interfaces, most instructions are executed in a single
cycle, except for a few multi-cycle instructions such as
pushq/popq, 16-/32-bit immediate load instructions, and
the controller-oriented bit* operations. Classical five stages
constitute the pipeline: Fetch (instruction fetching) – Decode
(instruction decoding and operand reading) – Execute
(instruction execution and address calculation) – Memory
(memory access) – Writeback (writing result to register file).
Data dependencies between instructions in the pipeline are
automatically enforced by the hardware interlock and
forwarding mechanism.
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Figure 3.1 CalmRISCTM-32 Datapath.

Figure 3.1 briefly shows the CalmRISCTM-32 datapath. The
datapath contains a 32-bit adder, a 32-bit barrel shifter, and a
16x16 multiplier for various computations. In our first
prototype implementation, these datapath macro blocks were
compiled, and all the other logic blocks used standard cells
based on a 0.25µm technology [2].
The general-purpose register file contains thirty-two 32-bit
registers, divided into four sets of eight registers.
Depending on the current processor mode (user or
privileged) and the register selection bits in sr, two out of
the four sets (thus 16 registers) are selected for use. This
hardware structure allows the previously described logical
register view.
Two-Phase Clocking  We used the two-phase clocking
scheme for low-power circuit implementation. ICLK, the
internal clock that drives the core, is first distributed to each
pipeline stage via a buffered clock tree. Then each stage
locally generates phase-1 and phase-2 clocks. Most local
clocks are gated clocks, and they are activated only if the
downstream logic needs re-evaluation, preventing
unnecessary bit transitions to propagate downwards. We have
also applied slack borrowing [3] to secure an enough timing
margin in certain cases, especially in the Decode and
Execute stages. Due to this clocking scheme, much care was
paid to ensuring that signals that stem from a phase would
not cause timing violations in the next phase registers. All
the pipeline registers are implemented with latches rather
than flip-flops.
Pre-Decoding of Instructions  Fetched instructions are pre-
decoded before they are latched in the IR (Instruction
Register) in the Decode stage. The pre-decoder looks at three
most significant bits of a fetched instruction, and decides if it
is a coprocessor instruction, a branch, or else. Depending on
the result, the instruction is processed by distinct decoders.
For example, if the instruction is a branch, it is not latched in

the IR, but in a separate latch in PAGU (see below).
Program Address Generation Unit (PAGU)  Spanning
from the Fetch stage to the Decode stage, PAGU contains a
set of registers and adders to store and compute the next
program address. When it is known that a branch instruction
is fetched, the instruction is not latched and processed in the
Decoder Unit (DU), but in PAGU. This separate processing
of branch instructions saves much decoding power as
branches appear frequently in a typical program. Another
low-power technique used in PAGU is to use dual clocks for
PC registers [7]. The technique is based on the observation
that upper bits of PC are less frequently updated than lower
bits as a sequence of instructions are executed. Therefore, the
clock signal used for these upper bits can be held most of the
time without causing any harm.
Decoder Unit (DU)  DU forms the major part of the second
pipeline stage. Instructions are decoded, and necessary
control signals are generated and propagated to PCU, PAGU,
and the Execution stage. Moreover, the necessary operands
are read from the register file, or obtained from EU or MU
through the forwarding mechanism if the most up-to-date
operand values are found there.
Execution Unit (EU)  EU implements the Execute stage of
the pipeline. Most instructions are executed in this unit.
Results are produced and passed to the Memory stage, and
bypassed to DU if the result is to be used immediately by the
following instruction in DU. To save power consumption,
large datapath cells, namely adder, shifter, and multiplier,
are driven by separate input latches. If the instruction in EU
is a memory store operation, the operand to be stored is read
in this stage.
Memory Unit (MU)  MU interfaces to the data memory. It
issues the data address and the related indication signals,
such as NDMCS (data memory chip select), DMWR (data write)
DSIZE (data size), etc. Processing of bit* operations is



also done in MU.
Pipeline Control Unit (PCU)  PCU receives various
pipeline status signals from each pipeline stage and from
outside the core, and generates pipeline control signals. Each
pipeline stage, using the control signals, decides to either
proceed or stall.
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Figure 4.1 CalmRISCTM-32 Coprocessor Interface.

IV. COPROCESSOR INTERFACE

The CalmRISCTM-32 coprocessor interface is for a passive
coprocessor, which brings instructions from the core
instead of fetching them from memory with its own program
counter. Coprocessor instructions are fetched and pre-
decoded by the core, and passed to the coprocessor via
COPIR[12:0] signals with a notification NCOPID. 13-bit
coprocessor instructions, denoted “cop imm:13” in a
generic form, are not executed in the core except coprocessor
load/store instructions named cld. They can be categorized
into two types of operations: (i) data transfer between the
core and the coprocessor, and (ii) data transfer between the
coprocessor and memory, managed by the core. In the former,
transfer is between general-purpose registers in word. In the
latter, also word transfer, three addressing modes are
supported: register-displacement, register-register, and
register pre-/post-increment/decrement. These cld
instructions use global data bus as shown in Figure 4.1.
CalmRISCTM-32 core generates necessary data memory
signals and bus requests.
A CalmRISCTM-32 coprocessor accesses memory at the same
pipeline stage as the core does, with help from a set of
pipeline synchronization signals. CalmRISCTM-32 and a
coprocessor may be stalled for any reason, and two
processors should be synchronized for the cld instructions

or on exceptions. Two processors communicate their pipeline
status with each other via the signals STXEN, STMEN,
STWEN (from core to coprocessor), COPXEN, COPMEN, and
COPWEN (from coprocessor to core). Each processor decides
if a pipeline stage will advance to the next stage after
consulting these signals. Figure 4.2 shows how a stall in the
core causes a stall in CalmFPUTM, an FPU coprocessor.
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Figure 4.2 Pipeline Synchronization on Stalls.

When CalmRISCTM-32 gets a data abort exception, e.g., TLB
miss, it is required that both the core and the coprocessor
flush the instructions from the aborting instruction. EXPTAG
and STEXP signals are used to ensure that this flushing
action is taken correctly and to maintain the precise
exception model. EXPTAG indicates that an instruction,
which may cause an exception, is now entering the execution
stage, and STEXP indicates that an exception actually
occurred. On the other hand, if the coprocessor generates an
exception, e.g., floating-point overflow, underflow, and
inexact exception, the core should save the PC of the faulting
instruction and flush the following instructions. In this case,
a coprocessor uses the COPMEN signal to stall the instruction
in the core that corresponds to the potentially faulting
instruction in the coprocessor. Figure 4.3 shows the situation.
After stalling the core with COPMEN, the coprocessor asserts
the COPEXP signal to flag a real exception.
Lastly, it is noted that the core always controls the program
flow. For the core to branch based on the coprocessor state,
e.g., after an FPU instruction generates an outcome, a branch
instruction called brec directly refers to the value of
EC[3:0] signals driven by the coprocessor, as described in
Section 2.
Besides the FPU coprocessor used as an example in this
section, a DSP coprocessor called CalmMACTM-2424 has
been designed and successfully integrated with CalmRISCTM

[5]. They were then used to build a low-power digital music
player chip, running MP3 decoder codes as an application.
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V. CONCLUDING REMARKS

CalmRISCTM-32 is a RISC-style Load/Store architecture,
implemented with various low-power techniques. In order to
minimize the CPI (Clocks Per Instruction), the Harvard
architecture is adopted. Its instruction width is set to be 16
bits, which alleviates the code density problem inherent in
the RISC architecture. All the instructions are a single 16-bit
word, except a few instructions with long immediates.
Furthermore, most frequently executed branch instructions
come both with and without a delay slot.
To better support SoC (system-on-a-chip) design,
CalmRISCTM-32 provides a generic, yet powerful coprocessor
interface. With the inter-processor synchronization support,
the core and a coprocessor efficiently communicate data and
control.
An initial implementation of CalmRISCTM-32 using a
0.25µm process runs at 130MHz under worst conditions and
consumes about 150µA/MHz. The gate count of the core is
around 31,000, and the die size is about 1.02mm2.
Currently, we are designing customized datapath cells to
replace the current compiled datapath cells for more speed.
The design will be migrated to a more advanced 0.18µm
process technology in a near future to offer more
performance at even lower power consumption. Extensive
software infrastructure, including development environment
such as compilers, debuggers, and various libraries, and real-
time operating systems are under development at the same
time.
Thanks to its low power, high performance, and SoC support
with various coprocessors, CalmRISCTM-32 is poised to be an
ideal MCU core for current and future mobile applications as
well as general applications.
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