
MAESTRO: Orchestrating Predictive Resource Management

in Future Multicore Systems

Sangyeun Cho Socrates Demetriades

Computer Science Department, University of Pittsburgh

{cho,socrates}@cs.pitt.edu

Abstract

In this position paper, we make a case for a novel frame-

work called MAESTRO which predictively manages sys-

tem resources in shared-memory parallel computing plat-

forms built with advanced multicore processors. In such

platforms, effectively coordinating the use of asymmet-

ric shared system resources under complex program ex-

ecution scenarios becomes hard. Current resource man-

agement strategies are mostly reactive and have lim-

ited awareness of an application’s resource usage and

asymmetry in hardware resources. For better resource

management, MAESTRO monitors the program execution

environment (hardware/OS) and application behaviors,

learns useful knowledge from collected information, an-

notates the results of the learning to relevant program and

system control structures, and makes resource manage-

ment decisions such as task mapping and cache partition-

ing in a predictive manner.

1. Introduction
The context of this paper is new shared-memory paral-

lel computing platforms built with advanced multicore

processors. In such platforms, effectively coordinating

the use of asymmetric shared system resources under

complex workload scenarios becomes hard. Most sys-

tem resources in current platforms are considered ho-

mogeneous, making their management relatively simple.

However, future multicore systems present significantly

more asymmetry as: (1) Designers adopt asymmetry to

achieve better performance, power and scalability, e.g.,

single-ISA heterogeneous chip multiprocessors [20], non-

uniform cache architecture (NUCA) [17], switched on-

chip networks [3]; (2) Process variations render processor

cores unintentionally asymmetric in terms of their per-

formance and power consumption [4]; (3) Imperfect re-

source management strategies result in unbalanced and

unfair resource usages, e.g., cache contention, thermal

emergencies; and (4) Growing fragility in process tech-

nology will give rise to intermittent and permanent faults

while a system is operational [30]. The difficulty of tack-

ling significant asymmetry in system resources will only

grow as the amount of such resources increases.

This work was supported in part by the US NSF grants: CCF-1064976,

CCF-1059283, and CCF-0702236.

The currently viable processor design and resource

management practices are not particularly suitable for

handling growing asymmetry in system resources, com-

plex task mixes, and expected parallel applications in the

future. For example, Frachtenberg [12] showed that the

performance of a parallel application is severely affected

by multiprogramming on a multicore system due to con-

tention and the OS scheduler’s lack of adequate support

for parallel applications. Moreover, current OS sched-

ulers are not aware of a program’s thermal behavior or

processors’ heterogeneous power consumption character-

istics. As such, a serious problem of existing multicore

systems is that their resource management strategies do

not consider application behaviors that are critical for in-

formed management decisions and are unaware of the

asymmetry of the underlying execution environment.

1.1. Impact of asymmetry, examples

How will, then, the growing asymmetry in system re-

sources impact the performance of a large-scale multi-

core system, and how can an awareness of such asymme-

try and application behavior help improve the system per-

formance? As an example, consider the processor cores

in a multicore system. There are at least four types of

asymmetry: (1) Function: certain cores may lack native

hardware support for specific operations, e.g., SIMD in-

structions; (2) Geometric location: depending on “where”

a task runs, it experiences disparate latencies to caches

and memory controllers; Mismatching a task may result

in performance degradation; (3) Performance/power: not

all cores have the same performance/power characteris-

tics due to design time decisions or process variations;

and (4) Core state: cores may be in different states (e.g.,

temperature) at the time of task mapping.

Figure 1(a) shows how variations in maximum core

speed affect the outcome of task scheduling in a latency-

oriented system. We compare two conventional task map-

ping schemes, “Random” and “Load Balancing,” with a

variation-aware scheme, “Aware.” Random picks a core

for a task randomly to balance core usage. Load Bal-

ancing chooses a core with the shortest task queue for

new task mapping. Aware uses a policy where the fast

cores are used before slow cores and the task queues are

balanced with the knowledge of a task’s execution time.

Aware is shown to outperform both Random and Load

Re
lat

ive
 Pe

rfo
rm

an
ce

0

50

100

150

200

250

300

350

400

450

p
ag

es
 m

ap
pe

d

program location

X
Y

(a) (b)

tile 15

tile 0

0
0.5

1
1.5

2
2.5

3

SH
R

PR
V-
Pr
of

SH
R-
Pr
of

XY
-A
w
ar
e

L2 slice=256kB
1.00 1.03

1.18

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

RND BAL Aware

1.00 1.03
1.35

RND BAL Aware

av
g.

pro
gra

m
pe

rfo
rm

an
ce

(1/
tim

e),
 re

lat
ive

 to
 RN

D

σ/μ=0.08 σ/μ=0.16

pe
rfo

rm
an

ce
, re

lat
ive

 to
 SH

R

Figure 1. (a) Random (RND), Load Balancing (BAL), and Variation-Aware (Aware) task mapping schemes. Core speed variations

were injected into a 32-core processor using Gaussian distribution with standard deviation σ and average µ. We ran a multiprogrammed

workload where jobs arrive to maintain a 4% system load. The right graph shows the same test with higher variation. (b) Shared (SHR),

Private with Profiling (PRV-Prof), Shared with Profiling (SHR-Prof), and XY Location-Aware (XY-Aware) data mapping schemes [15].

We run mcf (SPEC2k) on a 16-core machine using a 2D mesh network. The right figure shows the distribution of page mappings

made by XY-Aware.

Balancing. It is also shown that performance difference

grows as the speed variation among cores increases.

Last-level cache memory is an important shared re-

source in a multicore system. Figure 1(b) illustrates

how mapping pages to be physically closer to the core

using them can improve performance over conventional

schemes. Shared (“SHR”) distributes cache blocks to all

cache slices [29]. Private with Profiling (“PRV-Prof”)

always maps cache blocks to the same core as the pro-

gram, enhanced with profile-based page coloring. Shared

with Profiling (“SHR-Prof”) is same as SHR but is en-

hanced with page coloring. A location aware scheme

(“XY-Aware”) has knowledge of the network and cache

organization, as well as an application’s page access be-

havior [15]. It places pages on or near the tile running the

application to reduce cache latency and cache misses.

We presented only two motivating examples; however,

it is not hard to find other system management scenarios

that will benefit from the knowledge of applications and

execution environment. We will discuss more examples

in Section 2.2 and 3.

1.2. Our approach and vision

We envision a multicore system where the complex task of

coordinating resource usage among multiple applications

is dealt with predictively based on application and system

knowledge; the knowledge is produced and maintained

automatically. We propose a framework to enable such a

system and call it MAESTRO.

In MAESTRO, (1) Program execution environment

(hardware and the OS) and application behaviors are

opportunistically monitored; (2) Useful knowledge is

learned from the collected information; the results of the

learning are then annotated to relevant program and sys-

tem control structures; and (3) System resource manage-

ment decisions such as task scheduling and cache parti-

tioning are made in a predictive manner by exploiting the

accumulated knowledge. MAESTRO sits in the conven-

tional system resource management layer (OS and virtual

machine monitor (VMM)) and orchestrates the actions in-

volved in the process. Another property of MAESTRO is

its transparency—it requires little-to-no human interven-

tion and will not interfere with the user’s regular computer

usage. For instance, when the system becomes idle (e.g.,

the user is at lunch or off duty), MAESTRO may initiate

“proactive” profiling by test-running an application with

different input sets generated automatically.

1.3. Paper organization

In what follows, we will first describe our proposed

framework in Section 2. In this section, after giving an

overview of how MAESTRO operates, we will briefly dis-

cuss example problems and detail our ongoing research

tasks that must be undertaken before a practical MAE-

STRO system can be realized. To put our proposal in per-

spective, Section 3 presents a case study that explores dy-

namically adjusting voltage and frequency of a proces-

sor’s on-chip network. After summarizing related work

in Section 4, conclusions will be drawn in Section 5.

2. MAESTRO

2.1. Overview

MAESTRO’s key components are Application Profiler,

Environment Profiler, Profile Analyzer, Annotations, Re-

source Manager, and Conductor as depicted in Figure 2.

Important functional requirements of each MAESTRO

component are as follows. Application Profiler gathers

detailed information about an application’s run-time be-

havior. Data are collected with three different levels:

…

applications

execution environment

w/ asymmetric resources

…

(Annotation)

Resource

Manager

Profile

Analyzer

App.

Profiler

Env.

Profiler

app. annotation ref.

and update
env. annotation ref.

and update

app. raw profile data

profiling

control

env. raw profile data

microbenchConductorprogram run

program run

(Annotation)

Figure 2. Conceptual diagram of MAESTRO components (in solid boxes) and their interactions: Application Profiler, Environment

Profiler, Profile Analyzer, Annotations, Resource Manager, and Conductor. Solid arrows represent information flow and dotted arrows

show control flow. Actions above the horizontal dotted line are for profiling.

the whole program, program phases, and individual in-

structions. Application Profiler should operate with mini-

mal intrusiveness to the application being profiled by tak-

ing advantage of hardware-based instrumentation facili-

ties such as performance counters and other idle cores.

Environment Profiler characterizes the execution envi-

ronment by observing the behavior of the system using

both system-level and hardware-level metrics. Data are

collected with regard to specific system structures such

as processor core, last-level shared cache and memory

controller. Profile data are obtained from running and

monitoring real applications or specially designed micro-

benchmarks. As with Application Profiler, we want to

minimize the performance impact by utilizing idle CPU

cycles and hardware monitoring facilities.

Profile Analyzer analyzes raw profile data produced by

Application Profiler and Environment Profiler. The out-

come of Profile Analyzer is useful knowledge of an appli-

cation’s resource usage and the execution environment’s

characteristics. Profile Analyzer uses machine learning

techniques such as clustering and supervised learning

to efficiently handle potentially large multi-dimensional

data. Machine learning is also used when we have partial,

incomplete information. Profile Analyzer works off-line

and does not interfere with normal system operations.

Annotations collectively form the knowledge of a sys-

tem learned over time. Conceptually, there are annota-

tions for each application and annotations for each allo-

catable resource. Annotation data structures must support

efficient retrieval of information.

Resource Manager makes resource management de-

cisions using the knowledge obtained from Annotations.

For example, it could minimize system energy consump-

tion subject to quality-of-service (QoS) requirements.

Conductor controls the actions of other agents. It can

initiate profiling applications or the use of a specific re-

source. Conductor needs to track day-to-day and user-to-

user system usage patterns and recognize idle CPU cy-

cles to automatically initiate proactive profiling. It may

also function as an interface to the user, setting abstract

goals for Resource Manager like optimizing energy, per-

formance, maintaining target QoS; the degree of profiling

for a program; or disk space for profiling.

Among the MAESTRO components, Application and

Environment Profiler will benefit greatly from special ar-

chitectural support to track run-time events and processor

states. Other agents do not require special support.

2.2. Example resource management problems

Let us present three example resource management prob-

lems to highlight how the knowledge of individual pro-

grams and an execution environment can help.

Intelligent initial task mapping. In a conventional sys-

tem, a new task is mapped to a processor based on a sim-

ple policy, e.g., random, round-robin, or where task queue

length is the shortest. Conventional schemes do not per-

form well in the presence of core speed variations (as il-

lustrated in Figure 1(a)) or when cores exhibit functional

discrepancies [21]. With the knowledge of applications

and the characteristics of available processor cores, one

will be able to define an objective function that gives a

“score” for each possible task-core mapping, with which

we can determine the best target core. The objective func-

tion takes the annotations of a core and a task to compute

the corresponding score. The annotation for a task may

include a vector comprised of the usage count of avail-

able compute resources (e.g., FP multiplier, MMX unit).

The annotation for a core can feature a vector comprised

of the cost of each compute resource usage. In this case,

the score could be the inner product of the two vectors.

Likewise, we can define a scoring function that incorpo-

rates power and performance ratings of individual cores.

Last-level cache management. The two key problems

in the last-level shared cache management are overcom-

ing non-uniform cache latencies and controlling capacity

allocation and inter-task contention. A MAESTRO sys-

tem could learn an application’s input-dependent work-

ing set and spatial/temporal cache access behavior, and

predictively coordinate data mappings and data migration

when the application runs. The collected information will

be useful also for achieving intelligent initial task map-

ping and resource provisioning on clustered cache archi-

tectures and multi-socket systems.

Power and energy management. We can utilize cores’

different power consumption rates; in this case, low-

power cores will be selected to run a task first as long

as the task’s QoS is met. Benefits of such per-core power

awareness will be high when the processor cores see large

variations and the workload is heterogeneous. Applica-

tion awareness can also help. For instance, if we have an

accurate prediction of an application’s run time and phase

behavior, we can utilize DVFS in a predictive manner (by

pre-computing per-core voltages and frequencies) to save

energy while still meeting its performance goal. Previous

DVFS work for multithreaded workloads [7] unrealisti-

cally assume a priori knowledge of the workload; with

the prediction capabilities of MAESTRO, the ideas of the

prior work can have sizable practical benefits.

2.3. Research tasks

2.3.1. Characterizing resource asymmetry

Our first research task is to characterize the impact of re-

source asymmetry on programs’ run-time behavior and

to extract key architecture and system control parameters

for each management problem. We can then formulate

our target resource management problems using the pa-

rameters we will have identified. The types of interesting

asymmetry are processor performance and power, on-chip

cache access latency, and off-chip memory access latency.

An important issue that has not been studied thor-

oughly is the dependency of one parameter on another.

For example, when a program runs on a fast core, it

will generate L2 cache accesses at a faster rate than on

a slow core. Hence, one will have to allocate more mem-

ory bandwidth to the program to fully expose the bene-

fit of the fast core. On the other hand, if we allocate a

large L2 cache capacity to a program, memory bandwidth

consumed by the program will be reduced with fewer

L2 misses, and thus, allocating more cache capacity and

memory bandwidth together to favor a program may lead

to wasting memory bandwidth.

2.3.2. Learning an application

The two important questions for this task are “what do we

learn from an application?” and “how do we learn?” The

former depends on what knowledge is useful for Resource

Manager and the latter on the accuracy and efficiency of

the learning methods under consideration.

We take into account three levels for learning and

associating information with: the whole program, pro-

gram phases, and individual instructions. Whole program

knowledge includes execution time and working set as a

function of program input. A program’s working set, typ-

ically represented as a miss rate curve against memory

capacity, will be essential for predicting memory system

performance and intelligent cache partitioning. In addi-

tion, a program might be labeled with whether it is a real-

time program (and its requirements) or a multithreaded

application (and its communication behavior). Per-phase

knowledge can include phase boundaries, resource needs,

and inter-thread communication patterns. Instruction-

oriented knowledge provides hints about functional unit

usages and how trends of fine-grained architectural events

like cache misses and synchronization actions change at

specific program points.

Let us consider predicting a program’s execution time.

Existing estimation methods consider program execution

history such as job submission time, job owner, and run

times of similar programs [13]. In principle, however, a

program’s resource-unconstrained run time is determined

by the input to the program. We propose to directly learn

a program’s execution time function—a function of pro-

gram input—over a series of profiling during program

runs either mandated by the system user or orchestrated

by Conductor with carefully synthesized program input

sets. The complexity of this task depends on the number

of inputs, the number of distinct values each input can as-

sume, and the algorithmic nature of the program. While

the task of learning a program execution time function

sounds daunting, our preliminary examination of popular

benchmarks suggests that program execution times de-

pend on a relatively small number of (typically one or

two) inputs independently and the functions tend to be

quite simple, e.g., linear. As an example, Figure 3(a) de-

picts the trend of gcc’s run time against input source code

size. It is shown the run time is linear to source code size

despite higher optimization levels add variations. We ex-

pect that in practice, approximate predictions are helpful

to many resource allocation decisions.

For the phase-oriented profiling, resource usage of a

program can be thought of as a time-varying function

R(t). Given K resource types and an unconstrained pro-

gram run time of T , the combined resource usage is:

~R(t) = (R1(t), R2(t), ..., RK(t))t=0∼T (1)

If a program run is a series of phases and resource usage is

relatively unchanging within each phase, resource usage

of a phase (~Ri) and of a program (~R) can be written:

L2 $=1MB

L2 $=512kB

L2 $=256kB

L2 $=128kB

IPC

time (sec)
2.5 50

(b)

0

0.2

0.4

0.6

0.8

0 200000 400000

0

1

2

3

0 200000 400000

0

1

2

3

4

0 200000 400000

co
mp

ile
 tim

e (
se

c)

source code size (bytes)
(a)

-O0 -O2 -O4 gcc (SPEC2k)

Figure 3. (a) Run time of gcc (v3.4.6) as a function of source file size, measured on a Linux box. Input files are 65 C files of gcc

in SPEC2k. (b) Phase lengths change differently as L2 cache size is varied.

~Ri = (ri1, ri2, ..., riK) (2)

~R = < ~R1 | ~R2 | ... | ~RM > (3)

where i is a phase number and M is the number of phases.

When actual resource allocation is described by ~A =<
~A1 | ~A2 | ... | ~AM > where ~Ai and ~A are similarly de-

fined as (2) and (3), the execution time of the application

(i.e., the sum of all phase execution times) will be deter-

mined by the mismatch of ~R and ~A. This observation

forms the basis for Application Profiler to perform phase-

oriented profiling. By monitoring an application multiple

(say N) times using ~Ai (i = 1...N), one will be able

to effectively profile resource sensitivity of all observed

phases. Figure 3(b) shows how phase lengths change dif-

ferently as L2 cache size is changed from 1MB down to

128kB. While program phase detection algorithms have

been researched extensively (e.g., [25–28]), low-cost dy-

namic phase detection methods using multiple observa-

tions and OS-visible resource usage oriented characteri-

zation have not been studied well, especially for antici-

pated multithreaded workloads. Hence, we will explore

new frameworks and algorithms to efficiently detect and

characterize phases in multithreaded applications.

Instruction-oriented profiling is used to characterize

the usage of the processor’s functional units and to detect

fine-grained program behaviors that are not dependent on

program inputs or the amount of resources allocated. For

instance, if a particular store is always followed by a load

from another thread, indicating a producer/consumer in-

struction, we can preemptively send the data to the con-

sumer thread’s core to avoid a load miss in that core. An-

other example is the functional unit usage by instructions.

Application Profiler has two operation modes, passive

and proactive. Passive profiling is performed when a user

launches an application, enough resources are available

for profiling, and Conductor determines profiling is ac-

tually needed (e.g., the quality of current annotations is

low). Proactive profiling is triggered by Conductor, which

opportunistically exploits idle CPU cycles. Under proac-

tive profiling, an application will be run multiple times on

deliberately different input sets and on differently config-

ured system resources.

2.3.3. Learning an execution environment

This research task will study how to profile an execu-

tion environment from the viewpoint of intelligent re-

source management. First of all, we will learn asym-

metry present in system resources. Much of the design-

time information can be made conveniently available in a

MAESTRO system. For example, at boot time, the OS

can retrieve the processor type/version and look up in

its pre-compiled database desired hardware information.

Further, to consider “unintentional asymmetry,” we must

dynamically characterize processor cores’ native support

for specific operations, non-uniform cache/memory ac-

cess latency, performance, and power characteristics.

Recently, there is an increased amount of low-level

fault and degradation information made available to the

system. For example, common NAND flash devices

come with initial “bad block markings” from the manu-

facturer [24]. IBM Power series processors [29] imple-

ment built-in self test logic that checks cache memories

after power on. Researchers have even developed special

area-efficient sensors to directly measure circuit perfor-

mance degradation [16]. Our focus in this task will be to

develop architectural and software strategies that collabo-

rate with such circuit-level support.

For profiling, data obtained during regular user-

initiated application runs (i.e., passive profiling) will be

useful. However, we expect profile data obtained from

running micro-benchmarks (i.e., proactive profiling) will

be more accurate. For example, a micro-benchmark can

exercise a specific processor core at a parameterized rate

and measure how quickly the core gets hot.

Finally, execution environment profiling is not a fre-

quent activity and new profiling is invoked only once in a

while, e.g., every month, to adapt to any changes in sys-

tem environments.

2.3.4. Architectural support

While today’s microprocessors provide hardware perfor-

mance counters, MAESTRO will benefit from new ef-

ficient instrumentation facilities that can capture more

complex and informative events. Specifically, the follow-

ing four types of monitoring support appear especially

helpful: (1) fine-grained processor functional unit usage

counters, (2) specific instruction tracking, (3) power me-

ter, and (4) monitoring data sampling, analysis, capturing

and storing support.

The fine-grained processor functional unit usage coun-

ters can quickly characterize an application’s resource us-

age behavior at the instruction level. The specific instruc-

tion tracking support will help characterize an applica-

tion’s instruction- and phase-level behaviors by identify-

ing specific instructions present in the application, such

as synchronization and transaction primitives. The power

meter, together with other performance counters, will al-

low us to characterize the compute cores in terms of their

power and performance. With the modern processor’s ca-

pability to turn off individual cores, it is sufficient to have

a coarse-grained (off-chip) power meter that reports the

total chip power. By selectively turning on/off cores and

running microbenchmarks, one would be able to charac-

terize individual cores. To reduce the amount of data to

collect, flexible sampling support is desirable. Moreover,

rather than obtaining simple event counts, one may desire

more sophisticated information such as when a counter

matches a pre-defined value or when a large change in

event frequency is detected. Lastly, the captured events

could be logged automatically (to a designated memory

buffer or persistent storage).

3. A Case Study

This case study evaluates the effectiveness of a predictive

energy and performance management scheme by a MAE-

STRO system. In this system, application phases are ob-

served at the “epoch” granularity, which is a time interval

between global synchronization points [8]. Management

decisions are taken predictively based on epoch profile in-

formation that is collected either during profile runs or at

actual run time. The scheme aims to optimize the energy

and performance trade-off in a chip multiprocessor using

the DVFS capability of the NoC. We consider a simple

NoC DVFS configuration in which all the routers of the

network comply to the same voltage/frequency setting at

a given time.

We note that the purpose of this case study is not to

propose a complete solution for the energy/performance

management of the NoC; rather, we aim to demonstrate

the applicability of our proposed approach in the context

of dynamic adaptation.

CAPTION FREQUENCY VOLTAGE

f100% 3 GHz 0.8 V

f75% 2.25 GHz 0.65 V

f50% 1.5 GHz 0.5 V

f25% 0.75 GHz 0.35V

Table 1. Frequency/voltage levels.

3.1. Epoch-based adaptation

We have two different implementations of epoch-based

adaptation. In the first one, off-line profiling determines

the frequency/voltage setting best suited for each epoch

of the application (“static scheme”). We perform a profile

run for each NoC voltage/frequency setting to record the

execution time (Df) and energy consumed (Ef) by each

epoch (the sum of all its dynamic instances). Then, we

pick, for each epoch, the frequency/voltage level fx for

which Efx
× Dfx

is minimized.

In the second implementation, the epoch table and the

decision signatures are determined dynamically at run

time (“dynamic scheme”). A search for the best fre-

quency level is triggered at the first instance of each

epoch. During this period, all possible NoC volt-

age/frequency settings are examined by switching to a

different frequency on a fixed time interval basis within

the epoch instance. Because the energy and performance

measurements for each frequency have to be taken from

different time intervals, we measure energy per instruc-

tion (EPI) and cycles per instruction (CPI). Thus, the best

frequency fx for each epoch becomes the one that mini-

mizes CPIfx
× EPIfx

.

Clearly, the static scheme is more effective than the

dynamic scheme since optimal decisions will be readily

available at run time. However, the dynamic scheme is

more general and is applicable to a wider range of envi-

ronments. We note that even in dynamic environments,

users often tend to execute a limited number of appli-

cations frequently, possibly solving similar problems re-

peatedly. MAESTRO’s capability to capture the knowl-

edge of the applications will be effective in both cases.

3.2. Experimental setup

The experiments are performed using a detailed multi-

core processor simulator on Simics [23]. In our simula-

tor, the NoC models a wormhole-switched network with

deterministic X-Y routing and ACK/NACK flow control.

Data packets consist of six 128-bit flits and control mes-

sages one flit. Each router models a two-stage router

pipeline and has five physical channels (PCs) and two Vir-

tual Channels (VCs) multiplexed on each PC.

For NoC DVFS, we assume four possible clock fre-

quency and voltage levels, as shown in Table 1. f100%

represents the maximum operating frequency of the NoC,

which we consider as the baseline frequency (no en-

ergy savings). DVFS policies are triggered during epoch

-37.74%
-32.85% -44.67% -48.70% -35.49% -36.85% -46.01%

-20%

0%

20%

40%

bodytrack fluidanimate streamcluster barnes fmm ocenan radiosity water-ns

E
n

e
rg

y
 S

a
v

in
g

s
(%

)

f-75% f-50% f-25% f-DVFS dyn f-DVFS stat

Figure 4. Energy savings (relative to the baseline fixed

scheme f100%): Reducing the frequency/voltage of NoC can re-

sult in overall energy savings.

transitions; assuming on-chip voltage regulators, we ac-

count 100 cycles for switching overhead. For the dy-

namic implementation, we use 100k sampling intervals

and thus the per-epoch monitoring period lasts at least

500K cycles—100k for warm-up + 100k (one sample)

per frequency level. During this period, we keep high

voltage and we switch only frequency, therefore we ac-

count zero switching overhead, while the energy con-

sumption for the corresponding frequency level is esti-

mated.

Power consumption is modeled with dynamic, leak-

age, and background components. The background power

represents the cores and the rest of the system and is not in

the same clock domain. The dynamic and leakage power

numbers are extracted based on the assumption that at

1 GHz, the leakage power consumption is twice that of the

dynamic power, which is consistent with estimates from

Kim et al. [18]. The background power is constant and

is computed assuming that a loaded NoC at 1 GHz con-

sumes 30% of the total system power [19].

3.3. Results

Figure 4 and 5 each shows the total energy savings and

execution slowdowns of the studied epoch-based adap-

tation schemes, as well as non-adaptive fixed frequency

schemes. Results are normalized to the baseline case,

where the NoC operates at f100%. As the NoC frequency

decreases, the power consumed in the NoC is reduced and

the overall on-chip energy savings is expected to grow.

On the other hand, more time is needed for the application

to complete execution, which makes it unclear whether

the power benefits gained in the NoC will result in energy

savings during the whole execution. For example, the re-

sults show that when the NoC operates at f25%, the slow-

down is large enough to adverse the power savings into

significant energy loss. The same also happens in some

f50% cases. All other cases show energy savings at the

cost of performance. Note that for all benchmarks, the

epoch-based adaptive schemes show energy reductions

for the least performance degradation compared with the

fixed schemes.

Since our optimization target is to hit the en-

46.43%
44.33% 54.13% 58.70% 46.52% 47.65% 55.24%

-20%

0%

20%

40%

bodytrack fluidanimate streamcluster barnes fmm ocenan radiosity water-ns

E
x
e

cu
ti

o
n

 S
lo

w
d

o
w

n
 (

%
)

f-75% f-50% f-25% f-DVFS dyn f-DVFS stat

Figure 5. Execution slowdown (relative to the baseline

f100%): Reducing the NoC frequency can lower performance.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

bodytrack fluidanimate streamcluster barnes fmm ocenan radiosity water-ns

E
ff
ic
ie
n
cy

Figure 6. Efficiency: The efficiency is the product of the en-

ergy savings and performance degradation, normalized to the

baseline f100%.

ergy/performance trade-off, we show in Figure 6 the

product between the energy savings and the execution

slowdown (always as a ratio to the f100%). The results

illustrate the effectiveness of both static and dynamic

schemes, in adapting the system into a more efficient

state. The static scheme represents a bound on what the

dynamic scheme can achieve with the current experimen-

tal setting. We find that the results with the dynamic

scheme follow closely and consistently those of the static

scheme, indicating the strength of the proposed approach

in capturing the changes in program behavior. In barnes

and radiosity where a single epoch is dominating the exe-

cution, the efficiency is directly affected by the frequency

applied to that specific epoch. As the results show, both

schemes reach the same decision and successfully pick

the optimal frequency.

In summary, our case study strongly suggests that

learning an application to optimize energy-performance

efficiency can achieve sizable benefits (up to 20% in our

study). The learning process was quite simple, given

proper support to partition the program execution into

meaningful intervals (epochs in our study). We examined

and showed the promise of relatively short-range predic-

tive adaptation (dynamic scheme, within an execution)

and long-range adaptation (static scheme, across execu-

tions) that are enabled by a MAESTRO system. The asym-

metry we addressed in this case study includes: different

execution time contributions from different program in-

tervals, different, non-linear sensitivity of program inter-

vals to performance/power characteristics of the NoC, and

the non-linear performance/power behavior of the under-

lying architecture when the NoC DVFS is applied.

4. Related Work

Due to space limitations, this section focuses only on re-

cent feedback-directed automatic program optimization

techniques and their frameworks. Traditionally, program

profiling has provided detailed information on a pro-

gram’s dynamic behavior to a static compiler for informed

code optimizations. For example, code scheduling struc-

tures such as traces and superblocks are formed with path

profiling information [10, 14]. Classic code optimiza-

tions such as function inlining, dead code elimination,

and loop invariant removal become more effective with

profiling [6]. Dynamic code optimization frameworks in-

corporate monitoring and analysis of program behavior

seamlessly with code optimizations at run time [1, 2, 22].

Recently, Ding et al. [9] presented a profile-driven op-

timization framework where application profile is used to

detect phases, then the profile and phase change infor-

mation is exploited to optimize application performance.

Their suggested optimizations are array regrouping and

structure splitting, I/O prefetching and multitasking con-

trol, adaptive memory management (e.g., garbage collec-

tion), and software-hardware cooperative memory disam-

biguation. They further suggested that a program’s phase

behavior can be used to load-balance a multithreaded

multicore processor, e.g., as in [11]; this work however

focuses only on mapping already co-scheduled threads

to available hardware contexts. However, much of their

work focuses on improving a single program with the

knowledge of pre-detected phases.

Another closely related project to our research is

IBM’s continuous program optimization (CPO) frame-

work [5,31]. Like MAESTRO, it uses comprehensive sys-

tem monitoring (called performance- and environment-

monitoring or PEM) to learn the behavior of a target ap-

plication, and statically or dynamically improve the appli-

cation and its execution environment (e.g., JVM). While

CPO monitors the execution environment, their goal has

been to improve a single application. Their execution en-

vironment is rather abstract, e.g., object pool.

5. Conclusions

This paper advocated a self-adaptive multicore system

framework called MAESTRO. With the growing asym-

metry in system resources and the anticipated (heteroge-

neous) multithreaded workload, we argue that intelligent,

predictive resource management will remain increasingly

important. To enable predictive resource management,

MAESTRO coordinates learning processes for applica-

tions and the execution environment that they will run on.

We have identified and described the key research tasks

necessary for building the overall framework in this pa-

per. Finally, we design and present a case study that high-

lights the effectiveness of a predictive power-performance

optimization strategy in the context of a multicore system.

References

[1] S. V. Adve et al. “Changing Interaction of Compiler and Architec-

ture,” IEEE Computer, Dec. 1997.

[2] V. Bala et al. “Dynamo: A Transparent Dynamic Optimization

System,” PLDI, June 2000.

[3] L. Benini and G. De Micheli. “Networks on chips: a new SoC

paradigm,” IEEE Computer, Jan. 2002.

[4] S. Borkar. “Microarchitecture and Design Challenges for Gigas-

cale Integration,” keynote speech at MICRO, Dec. 2004.

[5] C. Cascaval et al. “Performance and environment monitoring for

continuous program optimization,” IBM J. Res. & Dev., Mar./May

2006.

[6] P. P. Chang et al. “Using Profile Information to Assist Classic Code

Optimizations,” SPE, Dec. 1991.

[7] S. Cho and R. Melhem. “On the Interplay of Parallelization, Pro-

gram Performance and Energy Consumption,” TPDS, Mar. 2010.

[8] S. Demetriades and S. Cho. “BarrierWatch: Characterizing Multi-

threaded Workloads across and within Program-Defined Epochs,”

Computing Frontiers, May 2011.

[9] C. Ding et al. “Program Phase Detection and Exploitation,”

IPDPS, Apr. 2006.

[10] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures, MIT

Press, Apr. 1986.

[11] A. El-Moursy et al. “Compatible Phase Co-Scheduling on a CMP

of Multi-Threaded Processors,” IPDPS, Apr. 2006.

[12] E. Frachtenberg and Y. Etsion. “Hardware Parallelism: Are Oper-

ating Systems Ready?” WIOSCA, June 2006.

[13] R. Gibbons. “A Historical Application Profiler for Use by Paral-

lel Schedulers,” Job Scheduling Strategies for Parallel Processing,

Eds. D. G. Feitelson and L. Rudolph. 1997.

[14] W.-M Hwu et al. “The Superblock: An Effective Technique for

VLIW and Superscalar Compilation,” JSC, June 1993.

[15] L. Jin and S. Cho. “Taming Single-Thread Program Performance

on Many Distributed On-Chip L2 Caches,” ICPP, Sep. 2008.

[16] E. Karl et al. “Compact In-Situ Sensors for Monitoring

Negative-Bias Temperature-Instability Effect and Oxide Degrada-

tion,” ISSCC, Feb. 2008.

[17] C. Kim et al. “An Adaptive, Non-Uniform Cache Structure for

Wire-Delay Dominated On-Chip Caches,” ASPLOS, Oct. 2002.

[18] N. S. Kim et al. “Leakage current: Moore’s law meets static

power,” IEEE Computer, 2003.

[19] J. S. Kim et al. “Energy characterization of a tiled arch. processor

with on-chip networks,” ISLPED, 2003.

[20] R. Kumar et al. “Single-ISA Heterogeneous Multi-core Archi-

tectures: The Potential for Processor Power Reduction,” MICRO,

Dec. 2003.

[21] T. Li et al. “Operating System Support for Shared-ISA Asymmet-

ric Multi-core Architectures,” WIOSCA, June 2008.

[22] C.-K. Luk et al. “Pin: Building Customized Program Analysis

Tools with Dynamic Instrumentation,” PLDI, June 2005.

[23] P. S. Magnusson et al. “Simics: A Full System Simulation Plat-

form,” IEEE Computer, Feb. 2002.

[24] Micron. Design and Use Considerations for NAND Flash Mem-

ory, TN-29-17, 2006.

[25] P. Nagpurkar et al. “Online Phase Detection Algorithms,” CGO,

Mar. 2006.

[26] E. Perelman et al. “Detecting Phases in Parallel Applications on

Shared Memory Architectures,” IPDPS, Apr. 2006.

[27] T. Sherwood et al. “Automatically Characterizing Large Scale Pro-

gram Behavior,” ASPLOS, Oct. 2002.

[28] T. Sherwood et al. “Phase Tracking and Prediction,” ISCA, 2003.

[29] B. Sinharoy et al. “POWER5 system microarchitecture,” IBM J.

Res. & Dev., July/Sep. 2005.

[30] J. Srinivasan et al. “The Impact of Technology Scaling on Lifetime

Reliability,” DSN, June 2004.

[31] R. W. Wisniewski et al. “Performance and Environment Monitor-

ing for Whole-System Characterization and Optimization,” PAC2,

Oct. 2004.

