
IEEE TRANSACTIONS ON COMPUTERS 1

Refresh Now and Then
Seungjae Baek, Member, IEEE, Sangyeun Cho, Senior Member, IEEE, and

Rami Melhem, Fellow, IEEE

Abstract—DRAM stores information in electric charge. Because DRAM cells lose stored charge over time due to leakage,
they have to be “refreshed” in a periodic manner to retain the stored information. This refresh activity is a source of increased
energy consumption as the DRAM density grows. It also incurs non-trivial performance loss due to the unavailability of memory
arrays during refresh. This paper first presents a comprehensive measurement based characterization study of the cell-level data
retention behavior of modern low-power DRAM chips. 99.7% of the cells could retain the stored information for longer than 1
second at a high temperature. This average cell retention behavior strongly indicates that we can deeply reduce the energy and
performance penalty of DRAM refreshing with proper system support. The second part of this paper, accordingly, develops two
practical techniques to reduce the frequency of DRAM refresh operations by excluding a few leaky memory cells from use and
by skipping refreshing of unused DRAM regions. We have implemented the proposed techniques completely in the Linux OS
for experimentation, and measured performance improvement of up to 17.2% with the refresh operation reduction of 93.8% on
smartphone like low-power platforms.

Index Terms—SDRAM, refresh operation, power consumption, performance improvement.

✦

1 INTRODUCTION

DRAM is commonly used in a computer system’s main
memory. Its low bit cost, excellent manufacturability

and high performance have been unmatched by other mem-
ory types. DRAM cells have a simple structure with only
one access transistor and one capacitor, allowing for high
bit density and continued scaling with each new technology
generation. In DRAM, information (‘1’ or ‘0’) is stored as
charge in the capacitor of a bit cell. To write ‘1’ to a bit
cell, charge is injected to the cell. To write ‘0’, charge in
the corresponding cell is drained.1 Retrieval of the stored
information from a bit cell is done by sensing the amount
of charge shared between the cell and the pre-charged bit
line.

The charge in a DRAM cell decays slowly over time via
mechanisms like junction leakage and gate-induced drain
leakage [1], [2]. The problem is that, if the charge in a
cell decreases below a certain level, the previously stored
information is lost (e.g., ‘1’ was written and ‘0’ is read).
Accordingly, in order to retain the stored information, each
DRAM cell has to be “refreshed” periodically. The process
of refreshing is similar to a regular read operation. All
stored data in a particular DRAM row (comprised of all bit
cells tapping a common wordline) are sensed and fed back
into the bit cells before the row is “closed” (to make the
memory array ready for subsequent accesses). Because all
DRAM cells have to be refreshed periodically, this process
is repeated for all DRAM rows in sequence over and over

• S. Baek and R. Melhem are with the Department of Computer Science,
University of Pittsburgh, 210 S. Bouquet, Pittsburgh, PA 15260.
E-mail: {baeksj, cho, melhem}@cs.pitt.edu

• S. Cho is with the Memory Division of Samsung Electronics Co.while
on leave of absence from the University of Pittsburgh.

1. Depending on the cell polarity assignment, the charged state may
correspond to the logic value of ‘0’.

again. Refresh period, the time interval within which we
must walk through all rows once, is typically 32ms or
64 ms for modern low-power DRAM implementations [3],
[4].

The mandatory refresh activities come at both perfor-
mance and energy costs. First, DRAM becomes unavailable
when it is being refreshed, blocking any read or write
operation during the refresh. Stuecheli et al. report the av-
erage performance degradation of over 10% due to refresh
when running integer benchmarks [5]. The performance hit
increases with the growing DRAM density because more
rows have to be refreshed within the refresh period. Second,
the proportion of DRAM energy consumption in a system
can grow rapidly (40% or more), close to or even exceeding
that of the CPU [6]. The impact of DRAM refresh is as
large as over 25% of the DRAM energy consumption [7].
Notably, in systems where standby periods dominate the
usage (e.g., smartphones), DRAM refreshing is a major
consumer of the system energy [8].

Much prior work explored techniques to reduce the
frequency and overhead of DRAM refreshing. For example,
Flikker [9] slows down refresh operation for DRAM regions
that store error-tolerant data. RAPID [10] allocates page
frames with a long retention time first and aggressively
extends the DRAM refresh period to match the shortest
retention time of currently allocated pages. ESKIMO [11]
exposes memory allocation and deallocation events to track
DRAM regions that are not currently utilized and selec-
tively skips refreshing. While these techniques were shown
to be effective, they require programmer annotations [9], a
non-trivial overhaul of OS-level memory management [10]
and ISA modification [11].

In this work, we propose, implement and evaluate two
software-oriented techniques to significantly reduce DRAM
refresh activities without such requirements. Our first tech-
nique,RIO (Refresh Incessantly but Occasionally), utilizes

IEEE TRANSACTIONS ON COMPUTERS 2

the page level data retention profile information to “delete”
a very small number of weak pages (having relatively
short retention time) and push the DRAM refresh rate to
realize the near-maximum energy savings and performance
improvement. Our second technique,PARIS (Placement-
Aware Refresh In Situ), makes use of the free memory
pool information within the OS to identify unused memory
regions and skip refreshing for those regions. These tech-
niques are completely transparent to the programmers and
the applications, and do not require disruptive modifications
to the DRAM controller and off-the-shelf DRAM. We make
the following fundamental and applied contributions in this
paper:
• Characterizing the data retention time of modern low-
power DRAM. We comprehensively measure and charac-
terize the data retention times of LPDDR (low-power dou-
ble data rate) and LPDDR2 DRAM cells on a real hardware
platform that resembles a high-end smartphone. The studied
DRAM cells are found to retain the stored information for
longer than 256ms, eight times the specified refresh period
of 32 ms at a normal temperature (45◦C). Moreover, the
majority of the DRAM cells (99.7%) show a retention time
that is longer than 1 second, even at a high temperature
(85◦C). Cells showing short retention times are distributed
randomly. We also find that there are a tiny fraction of
DRAM cells that are relatively weak, motivating us to
develop RIO; by identifying and excluding the pages that
contain these weak cells, RIO can safely push the nominal
refresh period by 2× to 16×.
• Measuring the impact of DRAM refresh period. We
measure and characterize the impact of DRAM refresh
on performance and power consumption as a function of
refresh period. When the nominal (32ms) and an 8×
extended refresh period (256ms) were used, the per-
formance differentials were up to 8.9% and the refresh
frequency is cut by 87.5%. We also found that practically,
extending the refresh period beyond 256ms gives very little
additional benefit. At a high temperature (85◦C and higher),
the DRAM chips must be refreshed at 8ms according to
the LPDDR/LPDDR2 specification, and the performance
differential between this period and 64ms (8× the required
refresh period) widens to 17.2% (maximum).
• Design, implementation and evaluation of RIO and
PARIS. Based on the above empirical study, we motivate
RIO and PARIS, as well as their specific design strategies.
Core ideas of RIO and PARIS are simple enough for
realization in common OS’es. To prove their concepts, we
fully implement both RIO and PARIS in a Linux kernel
and evaluate them on the low-power hardware platforms
we used in the characterization study. Furthermore, our
system implementation includes a completely flexible
software DRAM refresher calledpseudo-refresherthat
runs on a separate processor core of the studied hardware
platform. Pseudo-refresher allows us to study the impact
of PARIS without a real hardware. Employing RIO and
PARIS, we measured the refresh reduction of 93.8% under
medium memory usage (50%).

In the remainder of this paper, we will first discuss how
the DRAM refresh interface has evolved and review prior
related work in Section 2. Section 3 will then present
a detailed characterization study of DRAM cell retention
behavior. Based on the findings, Section 4 will introduce
RIO and PARIS and describe in detail how we implement
them in the Linux kernel. We evaluate RIO and PARIS on
a real hardware platform in Section 5. Finally, Section 6
will conclude.

2 BACKGROUND

2.1 Evolution of DRAM refresh interface
DRAM’s commoditization has been promoted primarily by
standards [14]. Because refreshing is essential for DRAM,
the interface for it—how DRAM must be refreshed—has
been an integral part of all DRAM standards.

For early DRAM designs like EDO-DRAM (e.g., Micron
MT4LC4M4E8 [15]), the DRAM controller dictated a
specific row address to refresh as part of the refresh com-
mand (sometimes called “RAS-only” refresh or “ROR”).
This operation is similar to a read operation, but with no
data transfer. In newer DRAM standards like synchronous
DRAM (SDRAM), “auto-refresh” has been introduced and
used. With auto-refresh, the DRAM controller no longer
needs to specify the row address when it issues refresh;
the DRAM has an internal counter that is incremented
with each refresh command, and the row pointed to by the
counter (in all available internal banks) is “automatically”
selected and refreshed.

The “self refresh” mode is provided in virtually all
DRAM designs to suppress static power consumption when
a DRAM is not actively accessed (e.g., the system is in an
idle mode). Once a DRAM enters the self refresh mode,
the majority of its interface pins and internal circuitry are
shut down. With no explicit refresh commands from the
DRAM controller, the self refresh circuit in the DRAM
chip initiates refresh actions.

Recent low-power DRAM standards like LPDDR and
LPDDR2 [14] have additional provisions for optimizing
refresh behavior of a DRAM chip. First of all,partial
array self refresh(PASR) allows the system to define the
partial DRAM capacity (e.g.,1/2, 1/4, 1/8, 1/16) that
must be refreshed in the self refresh mode. Moreover, as
the DRAM chip is “isolated” in the self refresh mode,
LPDDR/LPDDR2 DRAM designs incorporate a tempera-
ture sensor so that the self refresh circuit can automatically
tune the refresh rate based on periodic temperature sens-
ing.2 At a high temperature, the self refresh circuit refreshes
the DRAM arrays more frequently (e.g., 4× at 85◦C or
higher). In turn, at a low temperature, a slower refresh
rate could be used (than the nominal rate). Finally, certain
LPDDR2 DRAMs have a separate auto-refresh command
for all banks or a single bank. The single bank auto-refresh
incurs smaller peak current during refresh operation.

2. DRAM cell leakage mechanisms are sensitive to temperature. Typ-
ically, cell leakage current grows super-linearly with theincrease in
temperature. In an active mode, the DRAM controller has to dynamically
change the rate of auto-refresh commands according to the temperature.

IEEE TRANSACTIONS ON COMPUTERS 3

2.2 Prior work on reducing DRAM refresh activi-
ties

Existing work on reducing the frequency and overheads
of DRAM refreshing is motivated by three observations.
First, DRAM cell retention time distribution is normal [2],
[10], [16], i.e., most DRAM cells have a longer retention
time than weak cells on the left tail. This observation has
inspired much prior work [9], [10], [13], [17], [18]. Second,
it is unnecessary to refresh a DRAM row if it holds no
useful data [11], [19]. Lastly, regular DRAM accesses make
some refresh operation redundant [7], [20]. For example,
if a row is read by the CPU, the same row does not need
immediate refreshing. Let us discuss in detail only the most
recent related work to ours.

The “RAPID” work by Venkatesan et al. [10] builds on
the first two observations. RAPID-1 deletes a small number
(1%) of page frames containing weak cells and extends
the refresh period (to 3 seconds at room temperature and
1 second at 70◦C). RAPID-2 and RAPID-3 classify page
frames into sorted bins based on their retention time and
allocate page frames from the last non-empty bin. They set
the DRAM refresh period to match the shortest retention
time of all allocated bins.

The observation on which both RAPID-1 and RIO pro-
posed in this work build on is essentially identical and
not new but shares the spirit of the predated work [17],
[18]. However, this paper makes a major contribution
that a real system can be built based on carefully made
design decisions. The RAPID-1 work is not implemented
in a real system, and hence did not identify real design
problems such as how to determine margins, what are
ingredients for fast testing and how to determine cells to
discard. Also, an important implication of our work is
that RAPID-2 and RAPID-3 are neither realizable (will
be discussed in Section 4.1.2), nor warranted (will be
discussed in Section 3.2). Our close examination of modern
LPDDR/LPDDR2 chips guides us to make very different
design trade-offs. Importantly, RIO deletes far fewer pages
(less than 0.1% vs. 1% of RAPID-1) to avoid excessive
DRAM fragmentation and pushes the refresh period just
enough (e.g., 256ms) to obtain near-maximum benefits.
PARIS is aware of a system’s DRAM usage like RAPID-
2 and 3. However, PARIS does not require binning of
all page frames and does not alter the refresh period
according to DRAM usage changes, significantly reducing
the related design complexities. Both RIO and PARIS have
been implemented in Linux and are evaluated on a real
platform.

The “RAIDR” work by Liu et al. [13] also builds on the
first observation. Like RAPID-2/-3, RAIDR classifies page
frames into a few sorted bins based on their retention time.
Unlike RAPID-2/-3 that maintain a single refresh period
across all DRAM rows at a given time, however, RAIDR
applies different refresh periods to DRAM rows that belong
to different bins. RAIDR represents the bin information
space-efficiently using Bloom filters and implements mul-
tiple refresh rates with clever use of several counters. In

comparison, RIO simply takes the weakest page frames off-
line in the OS and increases the refresh period, achieving
near-maximum reduction of refresh overheads while main-
taining just one refresh period. RAIDR is orthogonal to
PARIS and can be used together.

Isen and John utilize the second observation in their
ESKIMO scheme [11]. They add to the CPU architecture
two new instructions to track memory allocation and deallo-
cation events in user applications. ESKIMO assumes there
is a flag per DRAM row to denote whether the row has to
be refreshed or not [19].

PARIS proposed in this paper aims at eliminating refresh
actions targeting unused DRAM rows like ESKIMO. How-
ever, PARIS is very different from ESKIMO in terms of the
overall approach and the actual design. While the ESKIMO
paper presents a conceptual design, it does not discuss in
detail the possible complexities of implementation. Adding
new CPU instructions to provide user-level memory usage
information to a hardware structure within a CPU, is not
trivial. For example, the instructions specify an address
range in the virtual address space; the address range then
has to be translated into a set of physical pages (before
further translated down to DRAM rows), which involves ac-
cessing the translation look-aside buffer (TLB) potentially
multiple times. Furthermore, events like page swapping
and page sharing in a system require saving and retrieving
virtual page level information across the events, leading
to serious complexities to the design of hardware and
the OS. In comparison, PARIS directly and conveniently
extracts global physical memory usage information from
within the OS and requires no intrusive changes to the CPU
and applications. The global memory usage information
of PARIS, including the usage of the OS and hardware
accelerators, gives a precise snapshot of the DRAM usage.
Even if ESKIMO offers more tight view of memory usage
in the virtual address space, it is the consecutive physical
pages that matters when we identify free or used DRAM
rows because DRAM rows are typically a multiple of page
frames. The gains with fine-grained information in the
virtual address space are believed to be less than substantial
to justify the high complexities of implementation.

Flikker builds on the first observation and a principle
similar to the second observation (“it is unnecessary to
refresh a DRAM row fast if the data it holds is not
critical”) [9]. It partitions the DRAM space into “normal
refresh area” and “low refresh area”. The low refresh area
is for storing non-critical, error-tolerable data like mpeg
movie. As such, Flikker requires modifications to both
user applications (especially the data retention model at
the programming language level) and the DRAM design.
RIO and PARIS do not expose the low-level DRAM refresh
management tasks to the programmer by hiding them
within the OS and do not depend on special support from
commodity DRAMs.

Smart Refresh [7], according to the third observation,
skips refreshing a DRAM row if it was accessed recently.
Refresh skipping is effective when the DRAM is actively
utilized. Smart Refresh is orthogonal to RIO and PARIS

IEEE TRANSACTIONS ON COMPUTERS 4

and they can be employed together.

3 LIMITS OF DRAM REFRESHING

In this section, we present a detailed characterization study
of cell retention behavior for samples of two low-power
DRAM types, LPDDR and LPDDR2.

3.1 Approach and experimental setup

We use a measurement method to collect retention times of
DRAM cells, similar to [10], [16]. We employ two different
hardware platforms in this study: The first platform, Beagle-
Board [21] (“Beagle” hereafter) has a DM3730 CPU with
a single 1 GHz ARM Cortex-A8 core, a Micron 512 MB
LPDDR DRAM (package-on-packaged (POP’ed) on the
CPU, running at 200 MHz) and a variety of peripheral
devices like NIC, USB, HDMI and SD card. The second
platform is Pandaboard [22] (“Panda”) and is comprised
of an OMAP4430 CPU with dual 1 GHz ARM Cortex-
A9 cores, an Elpida 1 GB LPDDR2 DRAM (four 2 Gb
parts POP’ed on OMAP4430, running at 400 MHz) and
peripherals. These platforms are fairly comparable to recent
smartphone releases with a single or dual-core processors.
We have ported and run Linux kernel 2.6.32 on both Beagle
and Panda. To measure power consumption, we use a Rigol
DM3058 digital multimeter.

Next, we describe the experimental procedure. After
booting up the platforms, we run a test code from an on-
chip SRAM. The code first initializes DRAM and test it
according to the following steps:
1. Set DRAM refresh period toTref .
2. Write value (valw) into the whole DRAM space.
3. Wait for Twait.
4. Read out value (valr) from DRAM at all addresses.
5. If (valw 6= valr) for an address, print the address.

The focus of this study is to identify and characterize
the weak cells that determine the DRAM’s refresh period,
rather than obtaining the full retention time distributionof
the examined DRAM chips (there are such studies [2],
[10], [16]). Accordingly, we use 32ms (the nominal
period) to 1,024ms (the maximum value allowed by the
DRAM controller) for Tref . We use two different values
for valw, 0x00000000 and 0xffffffff, because a
DRAM chip may use two polarity assignments (charged
state corresponds to the logic value ‘0’ or ‘1’).Twait is set
to max(10 seconds, 10 × Tref) to ensure that weak cells
have sufficient time to be manifested.

As DRAM cell retention times are sensitive to ambient
temperature, we repeat the above test at different ambi-
ent temperatures—45◦C (labeled “Normal”), 55◦C, 65◦C,
75◦C and 85◦C (labeled “High”) using an in-house cham-
ber. It is important to consider a wide range of temperature,
especially with the low-power DRAM. This is because
mobile devices are exposed to widely varying operating
conditions (e.g., a smartphone on the dashboard of a car
in Texas on a sunny summer day). Moreover, low-power
DRAMs are typically packaged on top of the CPU chip,
and mobile devices have limited cooling capacity.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

32 64 128 256 512 1024

#
 o
f
e
rr
o
rs

Refresh period (ms)

85

75

65

55

45

(a) Beagle

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

32 64 128 256 512 1024
#

 o
f
e
rr
o
rs

Refresh period (ms)

85

75

65

55

45

(b) Panda

Fig. 1: Number of cell error occurrences vs. refresh period.

3.2 Results

Retention errors as a function of refresh period.Figure 1
shows how many DRAM cell errors occur under five dif-
ferent ambient temperatures as we vary the refresh period.
In our result, a cell error manifested at refresh period
Tref implies that the cell has a retention time between
(Tref/2 + ǫ) andTref whereǫ is a small value. The same
result is tabulated in Table 1 with additional details. We
make several observations from the result.

First of all, the DRAM cells in the studied chips are very
sensitive to ambient temperature. We saw only 2 and 264
errors on Beagle and Panda each atTref = 1, 024 ms and
45◦C but the error count climbs rapidly to over one million
and ten millions at 85◦C. Once errors start to occur,they
multiply by over 10× when we double the refresh period.
We believe that the large variation of error counts against
temperature change presents the most important practical
issue to consider for any DRAM refresh reduction scheme.
Clearly, DRAM refresh period must be adapted quickly to
the ambient temperature change. Moreover,for safe system
operation, we need to systematically reserve a sufficiently
large margin between the target refresh period and the
weakest DRAM cell at all temperatures of operation.

Second, there are only a small number of cells that have
a retention time shorter than 512ms at 45◦C to 65◦C. For
example, on Beagle, there are less than 10 errors at 256ms.
Even at 85◦C, there are no errors on Beagle until 64ms and
as few as 5 on Panda. We identify both an opportunity and
a limitation from the result:One may mask off only a few
cells to substantially extend the refresh period. However,
one must not extend the refresh period too much, say, to

IEEE TRANSACTIONS ON COMPUTERS 5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

0 4 8 12 16

s
e

g
m

e
n

t
n

u
m

b
e

r

byte offset (MB)

0x00000000

(a) Beagle, Normal, 512ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

0 4 8 12 16

s
e

g
m

e
n

t
n

u
m

b
e

r

byte offset (MB)

0xFFFFFFFF 0x00000000

(b) Beagle, Normal, 1,024ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

0 4 8 12 16

se
gm

en
t n

um
be

r

byte offset (MB)

0xFFFFFFFF 0x00000000

(c) Beagle, High, 128ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

0 4 8 12 16

se
gm

en
t n

um
be

r

byte offset (MB)

0xFFFFFFFF 0x00000000

(d) Beagle, High, 256ms

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64

0 4 8 12 16

se
gm

en
t n

um
be

r

byte offset (MB)

0xFFFFFFFF 0x00000000

(e) Panda, Normal, 512ms

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64

0 4 8 12 16

se
gm

en
t n

um
be

r

byte offset (MB)

0xFFFFFFFF 0x00000000

(f) Panda, Normal, 1,024ms

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64

0 4 8 12 16

se
gm

en
t n

um
be

r

byte offset (MB)

0xFFFFFFFF 0x00000000

(g) Panda, High, 64ms

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64

0 4 8 12 16

se
gm

en
t n

um
be

r

byte offset (MB)

0xFFFFFFFF 0x00000000

(h) Panda, High, 128ms

Fig. 2: Spatial distributions of cell errors.

512 ms, especially at an elevated temperature.

Lastly, Panda was much more sensitive to temperature
than Beagle. The relative number of errors (against the total
number of cells) at 1,024ms was an order of magnitude
higher on Panda. There is a large difference in the overall
cell-level retention behavior across chips (we also saw non-
trivial variation between different Panda boards) suggests
thatwe must test systems individually for safe and effective
adaptive DRAM refresh reduction.

Spatial distributions of weak cells.Figure 2 presents two
snapshots of DRAM cell error locations (in the physical
address space) on Beagle and Panda at Normal (45◦C) and
High (85◦C). In the plot, a ‘+’ mark is an error detected
when valw = 0x00000000, while a ‘×’ mark corre-
sponds to an error detected whenvalw = 0xffffffff.
The first snapshot is taken at a refresh period value when
we start to see errors (e.g., 512ms on Beagle at Normal)
and the second snapshot is taken at twice the refresh period
(e.g., 1,024ms).

We make interesting observations from the result. First,
cell errors are distributed randomly in the address space.
The errors do not appear to be spatially clustered on
both Beagle and Panda. This observation offers significant
insight intohow the choice of weak cell masking granularity
leads to different amounts of wasted space in memory.
Second, the location of the first detected error was dif-
ferent at different temperatures on a chip. For example,
on Panda, there are errors that are found at 64ms and
High (Figure 2e) that do not appear at 512ms and Normal
(Figure 2g), and vice versa. Our result strongly suggests that
DRAM cells respond to temperature variation differently
and data from DRAM cell retention time analysis at a
specific temperature may not apply to other temperatures.
Still, all cell level retention behavior instances were re-
peatedly and stably observed under the same condition.
Finally, interestingly, the cell polarity assignment pattern
was visible and regular on Beagle (boundaries were at
(4 MB×i) and(4 MB×(i+1)−1)). On Panda, however, our
initial inspection failed to identify visible patterns. Inany

0

10

20

30

40

50

32 64 128 256 512 1024

m
W

Refresh rate (ms)

(a) Measured result on Beagle

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024

m
W

Refresh rate (ms)

R/W Active Background

(b) Estimated result with Micron Power Calculator

Fig. 3: Power consumption vs. refresh period.

case, the reason for different polarity assignment is believed
to be driven by circuit- and layout-level optimization and
does not affect design trade-offs for RIO and PARIS.

Power consumption as a function of refresh period.We
measure and compare the power consumption of Beagle
at different refresh periods. We only report Beagle’s result
because it provides external pins for reliable power mea-
surements near the power management chip while Panda
doesn’t.

Figure 3a plots our measurement result. We measured
the power consumption of the entire Beagle board as we
vary the refresh period. Measuring DRAM power separately
is hard on Beagle because the DRAM chip is within the
processor chip package. As expected, the system power de-

IEEE TRANSACTIONS ON COMPUTERS 6

TABLE 1: Number of weak cells and number of bits/bytes/page frames (in %) to cover all weak cells for each (refresh period,
temperature). Shaded configurations have to list more than 0.1% of all page frames to cover all weak cells.

(a) Beagle

32 ms 64 ms 128 ms 256 ms 512 ms 1,024ms

45◦C

errors

0 0 0

1 2
% bits 2.32E-8% 4.65E-8%

% bytes 1.86E-9% 3.72E-7%
% pages 7.62E-4% 1.52E-3%

55◦C 0 0 0 0

180 2,683
4.19E-6% 6.24E-5%
3.35E-5% 4.99E-4%
1.37E-1% 1.74%

65◦C 0 0 0

6 570 17,827
1.39E-7%1.32E-5% 4.15E-4%
1.11E-6%1.06E-4% 3.32E-3%
4.57E-3%4.34E-1% 10.89%

75◦C 0 0

17 851 4,276 181,290
3.95E-7%1.98E-5%9.95E-5% 4.22E-3%
3.16E-6%1.58E-4%7.96E-4% 3.37E-2%
1.29E-2%6.49E-1% 2.82% 68.40%

85◦C 0 0

268 3,878 43,235 1,366,408
6.23E-6%9.02E-5%1.01E-3% 3.18E-2%
4.99E-5%7.22E-4%8.05E-3% 2.54E-1%
2.04E-1% 2.96% 24.31% 99.98%

(b) Panda

32 ms 64 ms 128 ms 256 ms 512 ms 1,024ms

45◦C

errors

0 0 0

7 264
% bits 8.14E-8% 3.07E-6%

% bytes 6.51E-7% 2.45E-5%
% pages 2.67E-3% 1.01E-1%

55◦C 0 0 0 0

144 17,707
1.67E-6% 2.06E-4%
1.34E-5% 1.64E-3%
5.34E-2% 6.19%

65◦C 0 0 0

11 6,736 216,544
1.28E-7%7.84E-5% 2.52E-3%
1.02E-6 6.27E-4% 2.01E-2%

4.19E-3% 2.36% 56.41%

75◦C 0 0

10 3,730 150,334 2,862,698
1.16E-7%4.34E-5%1.75E-3% 3.33E-2%
9.31E-7%3.47E-4%1.40E-2% 2.66E-1%
3.81E-3% 1.31% 41.88% 99.99%

85◦C 0

5 161 114,183 3,337,10327,022,708
5.82E-8%1.87E-6%1.32E-3%4.88E-2% 3.14E-1%
4.65E-7%1.49E-5%1.06E-2%3.20E-1% 2.51%
1.90E-3%6.14E-2% 33.15% 99.99% 100%

creases as we increase the refresh period. Power difference
was measurable until 256ms but the difference became
insignificant after that, implying that the power contribution
by the refresh operation itself becomes negligibly small
when the refresh period reaches 256ms. The power dif-
ference between 256ms and 1,024ms was less than 1%
of the difference between 32ms and 256ms. We obtain
independent results showing a similar trend using Micron
Power Calculator [23], presented in Figure 3b. In the plot,
refresh power is captured in the “background power”, the
bottom stack of each bar. Again, this result shows that
additional power savings are diminishing rapidly as we
increase the refresh period past 256ms.

Our results reveal two insights about the benefit of re-
ducing DRAM refresh operations. First, the power savings
with aggressive DRAM refresh reduction has an upper
bound (e.g., 7 to 15 mW per 512 MB in the above
study) andextending the refresh period to 256ms will
achieve 90% or more of the maximum power savings. This
observation implies that techniques to very aggressively
extend a DRAM refresh period (to several seconds) at non-
trivial implementation complexities like RAPID-2/-3 [10]
and Flikker [9] are hard to justify in a practical sense.

Second, in turn, the relative power savings of refresh
reduction will be high in DRAM’s self refresh mode
because there is no memory access in this mode and most
external and internal circuits are shut down (i.e., the two
upper stacks are goine in Figure 3b). Hence, the information
we collect and use in RIO and PARIS will be extremely
useful to control self refresh power. Pursuing this direction
requires major changes in the DRAM interface, however,
and remains a future work.

Putting it all together—cost of masking weak cells.
Our findings corroborate previous studies [2], [10], [16]—
average DRAM cells have much longer retention times than
the nominal refresh period and there are a few cells having
much shorter retention times. Clearly, the result motivates
a better-than-worst design approach. In order to summarize

our findings and motivate specific design strategies taken
by RIO, let us consider the cost of masking weak cells to
achieve a long refresh period. Table 1 presents the number
of weak cells detected under different conditions and the
amount of bits, bytes and page frames required to cover the
weak cells on Beagle and Panda.

Under the worst condition of 1,024ms and 85◦C, the
weak cell population corresponds to 0.0318% (Beagle)
and 0.314% (Panda) of all DRAM cells. As was pointed
out, this ratio is small. However, masking them using
an OS-manageable granularity of page frame leaves little
usable memory space on both platforms. Weak cells’ spatial
distribution was shown to be random, implying thatthe
cost of weak cell masking increases (almost) linearly with
weak cell occurrences. RIO has to make a right trade-off
between achievable refresh period and wasted resources to
mask weak cells.

In fact, we find that a more pressing issue ismemory
fragmentationthat occurs when we mask off weak cells.
The random nature of weak cell location implies thatit
becomes exponentially harder to find consecutive memory
space when more weak cells are introduced, critically hurt-
ing the feasibility of weak cell masking from the software
design perspective. We will discuss this issue in further
detail in Section 4.1.2.

4 REFRESH NOW AND THEN IN RIO AND
PARIS
4.1 RIO

RIO (Refresh Incessantly but Occasionally)logically
deletespage frames that have a weak DRAM cell (“weak
page frames”) to push the refresh period to a larger value
than required at a given temperature. A simple way of
deleting weak page frames is to exclude them permanently
when booting the system. The main trade-off in RIO is the
number of page frames deleted (wasted resources) and the
increase in the refresh period (improvement in energy and

IEEE TRANSACTIONS ON COMPUTERS 7

TABLE 2: Safe refresh period at different temperatures with RIO.

(a) Beagle

TemperatureMaximum refresh period
without RIO with RIO

(0) ∼55◦C 32 ms 512 ms

56 ∼65◦C 32 ms 128 ms

66 ∼75◦C 32 ms 128 ms

76 ∼85◦C 16 ms 64 ms

85 ∼(90◦C) 8 ms 32 ms

(b) Panda

Temperature
Maximum refresh period
without RIO with RIO

(0) ∼55◦C 32 ms 256 ms

56 ∼65◦C 32 ms 256 ms

66 ∼75◦C 32 ms 128 ms

76 ∼85◦C 16 ms 64 ms

85 ∼ (90◦C) 8 ms 64 ms

performance). For example, Table 1 suggests that if RIO
deletes 17,707 page frames in Panda (6.19% of all page
frames), it may push the refresh period to 512ms or more
at 55◦C. However, according to Figure 3, additional gain
in energy and performance is diminishing beyond 256ms.
Clearly, pushing the refresh period beyond 256ms (at high
cost) is not cost-effective. Therefore,RIO statically deletes
a very small fixed set of weak page frames to achieve
near maximum performance and energy gains. Also, RIO
dynamically adapts refresh period to ambient temperature
by exploiting on-chip temperature sensors. In what follows,
we will discuss how we test a DRAM to identify weak cells,
how RIO utilizes the weak cell information to adjust the
refresh period at run time and how we implemented RIO
in the Linux OS.

4.1.1 Identifying weak cells

Our limit study revealed that testing DRAM cells at a single
temperature is not sufficient for RIO to reliably operate.
However, invoking DRAM testing at different temperatures
is hard once a system has been deployed. Therefore, prac-
tically, a system DRAM must be tested before the system
leaves the factory, but after the DRAM is soldered to the
system board. This is the most feasible scenario since: (1)
it is costly for the DRAM manufacturer to communicate
the individual cell retention behavior information to the OS
that will run on the system, even if the manufacturer col-
lects such information; (2) DRAM cell retention behavior
changes due to heat applied during soldering; and (3) all
new systems have to go through software based factory
testing anyway (e.g., checking component functionality
(including DRAM)).

The actual DRAM test process for RIO is similar to
the test procedure described in Section 3.1. For practical
reasons, it is important to reduce the test time while not
compromising the precision of weak cell identification.
Since we focus only on the weak cells that determine
the achievable refresh period, our test time is significantly
shorter than a method that considers the whole span of
refresh periods. For example, we were able to reduce the

test time to∼20 seconds via program optimizations on
Beagle (i.e., 512 MB DRAM) for a given refresh rate and
temperature, which multiplies to 120 seconds if we sweep
through six periods (e.g., Table 1). By comparison, testing
a 16 MB DRAM for the whole retention time distribution
span took more than 22.3 minutes [10]. The actual required
test time is longer because test has to repeat at different
temperatures.

Because RIO does not “over-extend” the refresh period,
there are opportunities to reduce the test time. For example,
among the 30 configurations in Table 1, six configurations
that bud from the “worst” configuration (1,024ms and
85◦C) as well as the last column (1,024ms) do not
need to be tested. Four configurations from the top in
the first column do not need to be considered (for reten-
tion test) according to the LPDDR/LPDDR2 specification.
Other configurations could be visited systematically to find
relevant “boundaries” (e.g., using binary search). While
designing a full-fledged factory testing process is beyond
the scope of this paper, the common patterns revealed in
our study will help determine an order of visitation that
minimizes test time.

4.1.2 Translating raw DRAM test information
The proposed DRAM test identifies weak cells—their loca-
tion and error manifestation condition (i.e., refresh period
and temperature). For use in RIO, the raw information is
translated into a set of temperature-refresh period mappings
that prescribe the maximum refresh period RIO may use
at a given temperature. The mappings are then written to
a persistent storage like flash memory on the system for
RIO to pick up. Table 2 presents an example temperature–
refresh period mapping for Beagle and Panda, derived from
Table 1.

The key question in this step is,how do we determine
the maximum refresh period target for each temperature?
We have already identified a (weak) constraint that going
further than 256ms gives diminishing returns. There are
two other critical constraints we must consider before
addressing the above question adequately. The first one
is safety—we must not risk losing data by extending
the refresh period too aggressively. The second one is
feasibility—we must not delete too many page frames that
will leave the physical memory excessively fragmented. Let
us explain each separately.
Safety. Manufacturers design DRAM cells to retain in-
formation much longer than the nominal, recommended
refresh period of, say, 32ms. This practice guarantees
that there is a sufficiently large “guard band” between
weakest cells’ retention time and the nominal refresh period
in spite of process variation. Table 1 shows that there
is at least a 2× gap at 75◦C (64 ms vs. 32 ms). At
85◦C, we start to have weak cells at 64ms, and more
will likely be manifested at a (slightly) higher temperature,
even at a short refresh period of 32ms. Not surprisingly,
LPDDR/LPDDR2 specifications require that a DRAM chip
be refreshed at 8ms at 85◦C or higher [14]. Based on the
observation, we sustain that RIO must honora guard band

IEEE TRANSACTIONS ON COMPUTERS 8

of at least 2× for safety which is the same gap maintained
by the manufacturer. For example, with no deletion of page
frames, RIO may refresh Beagle at 128ms at below 55◦C.
With deletion, RIO can extend refresh period further, as
Table 2 suggests, which was constructed assuming the 2×

guard band.
Feasibility. Our limit study showed that a small number of
weak cells may correspond to a large amount of wasted
page frames. Because RIO masks errors at page frame
granularity,how many page frames do we delete?is more
relevant thanhow many bits?To obtain good feasibility, we
determine that RIO may deletefewer than 0.1% of all page
frames. This may sound extremely conservative; however,
consider the probability of having a 4 MB contiguous
memory space (i.e., the largest memory chunk required in
Linux) from a “strong” page frame picked up randomly.
This probability iswell less than 1%even if we delete only
0.5% of all page frames (0.9951,024 assuming a page frame
is 4 KB), because weak cells are distributed randomly in
the memory space. Importantly, many low-level software
like OS kernel and device drivers require a contiguous
physical memory space (e.g., kernel image, network buffer).
Indeed, we experienced frequent system crashes during and
after boot if we delete more than 0.1% of page frames. To
summarize, RIO determines the maximum refresh period
at each temperature based on a small number of page
frames it deletes (under the feasibility constraint) and after
accounting for at least a 2× guard band.

4.1.3 Implementation

We have implemented RIO in the Linux OS for evaluation.
Thanks to the simple design choices made for RIO, we ex-
pect the RIO algorithms and our implementation strategies
to be easily adapted to other OS’es with virtual memory
support. Table 3 lists the Linux source files that have been
modified and summarizes our modifications. We modified
only two files to be able to adjust the default refresh period
and another file to permanently delete weak page frames at
boot time. In our current implementation, DRAM test data
are organized in a format similar to Table 1.

RIO (and all other DRAM refresh reduction optimiza-
tions) must dynamically adjust to changes in ambient
temperature. It is worth discussing two practical design
issues with regard to temperature adaptation:accurate and
timely temperature sensingand safe changing of refresh
period at run time.

Temperature sensing is rather straightforward in today’s
platforms. For example, we have at least two temperature
sensing sources on Beagle and Panda: a DRAM-internal
sensor (LPDDR2) and a sensor inside the CPU chip. The
LPDDR2 sensor can be read through a special DRAM
command. The on-CPU sensor is mapped to a memory
address. RIO may obtain temperature when a temperature
sensor triggers an interrupt. Periodic polling also works
well for RIO because the meaningful delta of temperature
change is typically in the hundreds of millisecond. Because
not all available temperature sensors throw an interrupt, our

TABLE 3: List of modified files in Linux (Beagle).

Modified Files Descriptions
arch/arm/mach-omap2/

• Adjust refresh periodboard-omap3beagle.c,
sdram-micron-mt46h32m32lf-6.h

arch/arm/mm/mmu.c

• Delete page frames that include a
weak cell using alloc bootmem

low function
• Create a kernel thread for periodic

temperature sensing

current implementation uses polling. The reading involves
only five hardware register read/write operations.

Efficient temperature sensing facilitates timely refresh
period adaptation by detecting the direction and the speed
of temperature changes. We track temperature changes by
keeping past sixteen temperature sensor readings. When
switching to a different refresh period (e.g., according
to Table 2), RIO must exercise conservative policies to
determine the triggering point. For example, to switch to
a longer refresh period (i.e., temperature is cooling), RIO
may wait until the temperature is well within the new,
low temperature range. On the other hand, to switch to
a shorter refresh period (i.e., temperature is rising), RIO
could change the refresh period early, prior to reaching the
upper boundary of the current range. The above policies
may keep the refresh period unnecessarily small for some
time. However, it is important to refresh all (weak) cells fre-
quently enough at a small region of temperature near each
boundary of temperature ranges.3 Conservative reaction to
temperature change also helps avoid potentially frequent
shifts of the refresh period at the boundaries of temperature
ranges.

4.2 PARIS

PARIS (Placement-Aware Refresh In Situ)logically ex-
cludes DRAM rows that do not currently store useful
data from being refreshed. PARIS identifies these “empty
DRAM rows” using the OS level information on page frame
usage with no programmer and application intervention.
With the help of PARIS, a platformselectively refreshes
DRAM rows on demand, achieving a substantial reduction
of refresh activities when DRAM capacity is not fully
utilized. We will first discusshow we extract empty DRAM
row information from Linux. We will then describea
desirable architectural supportfor PARIS and explainhow
we emulate the support in software. Figure 4 is an overview
of PARIS, depicting how the OS interacts with the DRAM
controller and the DRAM.

4.2.1 Extracting empty DRAM row information in
Linux
In order to extract empty DRAM row information, we must
first obtain information about page frame usage. There
are at least two feasible methods to get the page frame
usage information in Linux. The first method relies on the

3. To guarantee reliable data retention, for example, DRAM specifica-
tions require that all DRAM rows be refreshed before entering and after
exiting from the self refresh mode.

IEEE TRANSACTIONS ON COMPUTERS 9

...
...

Chip

...
...

Chip

...

DRAM controller

...
...

Chip

DRAMOS

1

1

0

1

0

1

...

Bitmap

Row group 0

Row group 1

Row group N

R
e
fr

e
s
h

c
o

m
m

a
n

d

Bitmap update

Page data

structure

Alloc / dealloc

semantic

information

Fig. 4: Overview of PARIS.

information in a static bitmap data structure. Linux manages
physical memory resources in page frame unit (typically
4 KB). At boot time, we create a bitmap where each bit
corresponds to a page frame in the system. Note that Linux
does not manage bitmap for each page frame since it adopts
aLazy Buddyalgorithm. Then, with minimum modification,
we can make Linux set or clear the bitmap when Linux
allocates or deallocates page frames usingalloc pages()
and free pages(), which are the lowest-level memory
management interfaces of the LinuxBuddyallocator. Using
this bitmap, we can decide which page frames should be
refreshed.

The second method dynamically gathers page frame
status information from the Linuxpagedata structure. The
page data structure is at a specific DRAM address and
stores page frame status information in a simple array called
mem map. Each page structure hasflags, which reflects
the current status of the corresponding page frame. Linux
updatesflagsdynamically whenever the corresponding page
frame status is changed. We can identify currently unused
page frames by scanningflags of each page structure
in mem map. We have implemented both methods and
evaluated their overheads. Because page frame usage status
changes incrementally on specific events (i.e., allocation
and deallocation), both methods are feasible with negligible
overheads.

Once page frame usage information is collected, the
information must be translated into DRAM row level in-
formation. How this translation must be done depends on
how page frames are mapped to specific DRAM addresses
and varies from platform to platform. Once the mapping is
known, the translation is straightforward.

4.2.2 Architectural support for selective refreshing
For PARIS, the DRAM controller has to provide a mech-
anism for the OS to convey the empty row information.
A simple bitmap (Figure 4) is sufficient to express which
row groupsto refresh or not. A row group is2M DRAM
rows (M ≥ 0) that is assigned a singlefull/empty bitin the
bitmap. A DRAM row may span multiple chips (tapping the
same chip select signal and receiving data in an interleaved
manner). Hence, a single F/E bit covers potentially large
capacity (multiple DRAM rows). For example, if we lay
out two x32 LPDDR2 chips in parallel (like in Panda), the
minimum capacity covered by a single F/E bit is 4 KB.

0

5

10

15

20

25

30

35

40

10 9 8 7 6 5 4 3 2 1

O
v
e
rh
e
a
d

 (
%
)

10% 50% 90%

Fig. 5: Refresh overhead vs.M (under memory usage of 10%,
50% and 90%).

In general, a F/E bit coversmax(page frame size, 2M ×

DRAM row size). Because refresh actions are required per
DRAM row and not physical page frame,M determines the
bitmap size (=DRAM capacity/(2M×DRAM row size)).

The bitmap size grows with the increase in the DRAM
capacity. In Panda (1 GB DRAM), the bitmap could be
as large as 1 GB/4 KB=256 Kbits, assuming single-bank
refresh andM = 0. With more common all-bank refresh,
we need 256 Kbits/8 banks=32 Kbits or 4 KB.4 The bitmap
size can be further reduced by increasingM (i.e., row group
size). However, because a largerM implies more DRAM
rows per bit and more chances for unnecessary refresh on
empty rows, we studied howM affects the number of
refresh operations.

Figure 5 presents the result. We counted additional
refresh operations whenM > 0 and compute their relative
contribution to the base case ofM = 0 under DRAM mem-
ory usage of 10%, 50% and 90%. We artificially allocate
memory in a dummy Linux kernel module usingkmallocto
reach a desired memory usage condition before gathering
memory status information from the buddy allocator. The
result shows thatM can be increased to 7 while limiting the
overhead to below 5%. Overhead was less than 4% when
memory usage was 10%. Hence, whenM = 7, the PARIS
bitmap size on Panda is only 32 Kbits/27 or 256 bits.

The PARIS DRAM controller uses a timer to catch inter-
refresh interval (=refresh period/number of rows) like con-
ventional DRAM controllers. However, the PARIS DRAM
controller issues a refresh command for a row selectively

4. Both the platforms used in this work support only all-bankrefresh.

IEEE TRANSACTIONS ON COMPUTERS 10

100

120

140

160

180

200

220

240

260

Copy Scale Add Triad

M
B
/s
e
c

PR 32ms 32ms PR 64ms 64ms

PR 128ms 128ms PR 256ms 256ms

Fig. 6: Pseudo-refresh calibration result.

(i.e., using a RAS-only refresh (ROR) command), only
when the corresponding F/E bit has been set to 1. While
not required by PARIS, a preferred DRAM design supports
ROR. We believe that the required architectural support for
PARIS is simple and realizable.

4.2.3 Implementation
To prove the concept of PARIS and the proposed archi-
tectural support through experimentation without actual
hardware, we design and implementpseudo-refresher(PR),
a completely flexible software DRAM refresher. PR is
implemented as a Linux loadable kernel module. To obtain
execution efficiency and predictability, PR is run as a real-
time kernel thread on a dedicated processor core (Panda).
As a result, PR is not interrupted or scheduled out. After
initialization, PR is in an infinite loop, each iteration of
which walks three steps:page frame status check, refresh
command issueand refresh period wait.5 When PR runs,
we turn off the hardware DRAM refresherin the DRAM
controller.

The first step of PR iteration identifies empty DRAM
rows (Section 4.2.1). The second step issues refresh com-
mands to non-empty DRAM rows. In order to emulate
selective refreshing, PR actually reads target non-empty
rows. Hence, when PR is in charge of DRAM refreshing,
simply counting the number of DRAM reads issued by
PR allows us to accurately estimate the number of refresh
actions. To ensure a read reaches DRAM, we flush the
corresponding cache line first. Finally, PR waits for the
current refresh period to expire using a platform’s high-
resolution hardware timer.

Despite our efficient implementation, PR (essentially
a co-scheduled thread) may incur unwanted perturbation
during experiments. As we run PR on a dedicated processor
core, the perturbation is caused primarily by cache flush/fill
operations and contention in the datapath to DRAM. In
order to quantify the degree of perturbation, we cali-
brated PR by comparing the performance of stream-oriented
benchmarks (whose details are in Section 5.1) under PR and
the hardware refresher.

Figure 6 reports four pairs of experiments per bench-
mark: PR vs. hardware refresher when the refresh period is

5. PR can emulate arbitrary algorithms for ROR, e.g., RAIDR [13]. We
limit the use of PR to studying PARIS in this work.

32 ms, 64ms, 128ms and 256ms. The obtained result is
intuitive; performance is lower with PR due to its overhead.
What is important ishow lower: The performance gap
between PR and the hardware refresher becomes smaller
as we increase the refresh period, to the point that the
gap is nearly unnoticeable at 128ms and beyond. Our
calibration study shows that program performance under
PR is affected little if the refresh period is fairly long.
Because PARIS is effective only when the system’s memory
utilization is low (i.e., the number of non-empty DRAM
rows is small), the overhead of PR will likely remain very
limited in that case. It is worth noting that the use of PR
leads to conservative evaluation of PARIS and does not
put PARIS in an advantageous position compared with a
hardware refresher.

5 EXPERIMENTAL EVALUATION

5.1 Setup and benchmark

To evaluate RIO and PARIS, we employ both Beagle and
Panda. For intuitive discussions, we choose two tempera-
tures for experiments: Normal (45◦C) and High (85◦C). We
use benchmarks drawn from the following four suites:
• Stream [24]: A synthetic benchmark used for measuring
sustainable memory bandwidth. Stream executes four tests,
Copy, Scale, Add and Triad, and reports result in MB/sec.
• Lmbench [25]: A simple bandwidth and latency bench-
mark designed to compare Unix systems. Lmbench ex-
ecutes two tests, RDWR and CP, and reports results in
benchmark-specific score.
• Unixbench [27]: A general-purpose benchmark designed
to evaluate the performance of Unix systems. Unixbench
integrates CPU, memory and file I/O tests as well as system
behavior under various loads. It reports the number of
loops performed within a given time. We report five results:
“Dhrystone2”, “Arithmetic (double)”, “Execl throughput”,
“File read (4 KB buffer size)” and “File write (4 KB buffer
size)”.
• MiBench [26]: A set of commercially representative em-
bedded programs for benchmarking purposes. These bench-
marks are divided into six suites (Automotive, Industrial,
Consumer, Office, Automation, Networking, Security and
Telecommunications) with each suite targeting a specific
area of the embedded market.

Benchmark programs were run on an unloaded target
platform five times. Before running a benchmark program,
we always put the system into a known, clean state by
rebooting it. We checked the system integrity by encoding
MP3 files and decoding them again (and repeating this pro-
cess), before performing performance measurement. When
reporting results, we use an average value of execution
times or benchmark-specific scores.

For performance studies, we compare three configu-
rations, “RIO”, “RIO+PARIS” (two techniques used to-
gether), and a baseline configuration (“Base”) that follows
the refresh period specified by the examined DRAM. Base
refreshes DRAM at 32ms at Normal and 8ms at High.
RIO uses Table 2 to determine the refresh period.

IEEE TRANSACTIONS ON COMPUTERS 11

0.7

0.8

0.9

1

1.1

1.2
C
o
p
y

S
ca
le

A
d
d

T
ri
a
d

R
D
W
R

C
P

D
h
ry
st
o
n
e
2

A
ri
th
m
e
ti
c

E
x
e
cl

R
e
a
d
(4
0
9
6
)

W
ri
te
(4
0
9
6
)

B
a
si
cm

a
th

B
it
co
u
n
t

Q
so
rt

S
u
sa
n

C
R
C
3
2

FF
T

A
D
P
C
M

G
S
M

JP
E
G

T
y
p
e
se
t

C
o
p
y

S
ca
le

A
d
d

T
ri
a
d

R
D
W
R

C
P

D
h
ry
st
o
n
e
2

A
ri
th
m
e
ti
c

E
x
e
cl

R
e
a
d
(4
0
9
6
)

W
ri
te
(4
0
9
6
)

B
a
si
cm

a
th

B
it
co
u
n
t

Q
so
rt

S
u
sa
n

C
R
C
3
2

FF
T

A
D
P
C
M

G
S
M

JP
E
G

T
y
p
e
se
t

Stream Lmbench Unixbench MiBench Stream Lmbench Unixbench MiBench

Low High

Base RIO

(a) Beagle

0.7

0.8

0.9

1

1.1

C
o
p
y

S
ca

le

A
d
d

T
ri
a
d

R
D

W
R

C
P

D
h
ry

st
o
n
e
2

A
ri
th

m
e
ti
c

E
x
e
cl

R
e
a
d
(4

0
9
6
)

W
ri
te

(4
0
9
6
)

B
a
si

cm
a
th

B
it
co

u
n
t

Q
so

rt

S
u
sa

n

C
R
C
3
2

F
F
T

A
D

P
C
M

G
S
M

JP
E
G

T
y
p
e
se

t

C
o
p
y

S
ca

le

A
d
d

T
ri
a
d

R
D

W
R

C
P

D
h
ry

st
o
n
e
2

A
ri
th

m
e
ti
c

E
x
e
cl

R
e
a
d
(4

0
9
6
)

W
ri
te

(4
0
9
6
)

B
a
si

cm
a
th

B
it
co

u
n
t

Q
so

rt

S
u
sa

n

C
R
C
3
2

F
F
T

A
D

P
C
M

G
S
M

JP
E
G

T
y
p
e
se

t

Stream Lmbench Unixbench MiBench Stream Lmbench Unixbench MiBench

Low High

Base RIO

(b) Panda

Fig. 7: Performance of RIO (normalized to Base) at Normal and High.

5.2 Results

Performance improvement with RIO. Figure 7 presents
the relative performance of RIO against Base. Performance
improvement was measurable for many programs, espe-
cially at High. The maximum performance gain was 17.2%
for Execl on Beagle, obtained at High. Execl saw the
highest performance improvement on Panda as well. Larger
performance gains at High are plausible because High
forces the use of faster refresh rates, and as a result, more
frequent DRAM access conflicts occur. Still, interestingly,
the amount of gain varies across benchmarks and across
platforms. For example, performance gain with RIO was
larger on Beagle at High. Dhrystone2 and Arithmetic are
insensitive to refresh reduction at all, because they are
compute-intensive throughout their execution. Application
benchmarks (Execl and MiBench) gained more perfor-
mance with refresh reduction than simple microbenchmarks
(Stream and Lmbench) that have predictable, sequential
accesses because those show memory intensive behavior
during the executions.

DRAM access conflict caused by refreshing may incur
two types of performance penalties. First, while DRAM
undergoes refreshing, DRAM is unavailable and the effec-
tive DRAM bandwidth is decreased. Subsequent DRAM
accesses are held back by the DRAM controller, increasing
the latency seen by the accesses. Second, data in the per-
bank row buffers are lost and subsequent DRAM accesses
that would otherwise hit in row buffers may have to re-open

the banks.
It is believed that architectural differences between Bea-

gle and Panda are responsible for some variation. Beagle
has an ARM Cortex-A8 processor with 16 KB L1 caches
and a 256 KB L2 cache. By comparison, Panda has more
capable Cortex-A9 processors with 32 KB L1 caches and a
1 MB L2 cache. Furthermore, Beagle’s maximum DRAM
bandwidth is only half that of Panda. The smaller caching
capacity of Beagle increases its performance dependence on
DRAM bandwidth and access latency, especially at High.
At Normal, bandwidth competition becomes less severe,
and hence, the effect of row buffer misses may become
more pronounced.

Other architectural artifacts are believed to create
the behavioral distinction between memory-intensive mi-
crobenchmarks (Stream and Lmbench) and application
benchmarks (Execl and MiBench). Stream and Lmbench
programs have long, yet fairly predictable read and write
accesses on array data. Because they are memory-intensive,
they could have been sensitive to DRAM bandwidth loss
due to refresh actions. However, because of their data
streaming nature, there are frequent dirty block evictions
from the cache and the write buffer remains the perfor-
mance bottleneck and dilutes their performance dependence
on the DRAM bandwidth.

Performance gain across all benchmarks was 3.3% at
Normal and 6.9% at High on average. Individual perfor-
mance gain was 0.7% (Stream), 2.0% (Lmbench), 0.7%

IEEE TRANSACTIONS ON COMPUTERS 12

0.7

0.8

0.9

1

1.1

Copy Scale Add Triad Execl

Stream Unixbench

Base-Low RIO-Low RIO+PARIS-Low(90%)

RIO-PARIS-Low(MultiProg-90%) RIO+PARIS-Low(50%) RIO-PARIS-Low(MultiProg-50%)

RIO+PARIS-Low(10%) RIO-PARIS-Low(MultiProg-10%)

(a) Normal

0.7

0.8

0.9

1

1.1

Copy Scale Add Triad Execl

Stream Unixbench

Base-High RIO-High RIO+PARIS-High(90%)

RIO-PARIS-High(MultiProg-90%) RIO+PARIS-High(50%) RIO-PARIS-High(MultiProg-50%)

RIO+PARIS-High(10%) RIO-PARIS-High(MultiProg-10%)

(b) High
Fig. 8: Performance of Stream and Unixbench (Execl) with Base
and RIO+PARIS on Panda.

(Unixbench, excluding Dhrystone2 and Arithmetic) and
6.5% (MiBench) at Normal and 4.9%, 7.3%, 8.9% and 10%
at High on Beagle. On Panda, gain was 1.5% (Stream),
2.5% (Lmbench) 2.1% (Unixbench, excluding Dhrystone2
and Arithmetic) and 3.5% (MiBench) at Normal and 4.2%,
5.0%, 5.7% and 5.8% at High, respectively. We are encour-
aged by our result, evidencing thatextending refresh period
can translate into non-trivial performance gains.
Performance of RIO+PARIS. Figure 8 compares the
performance of RIO and RIO+PARIS against Base when
running the Stream benchmark (most insensitive programs
to RIO) and Execl (most sensitive). For PARIS, we con-
sider three memory usage scenarios—low (roughly 10%),
medium (50%) and high (90%) memory utilization. To
adjust memory utilization, we run a dummy process that
reserves a desired amount of DRAM space before exper-
imenting, denoted as 10%, 50% and 90% in the Figure.
From the point of view of the OS, this dummy process
effectively mimics heavy memory pressure of real workload
because OSes use demand-paging mechanisms in page unit.
However, we additionally use another method to adjust
memory utilization to emulate more realistic environment.
We run multiple numbers of Lmbench benchmark, whose
memory working set size is 120MB, and STREAM bench-
mark, whose memory working set size is 32MB, at the same
time. For example, we run one Lmbench benchmark for the
10% of memory utilization, four Lmbench benchmarks and
one STREAM benchmark for the 50% of memory utiliza-
tion, and seven Lmbench benchmarks and one STREAM
benchmark for the 90% of memory utilization, which are
denoted as MultiProg-10%, MultiProg-50% and MultiProg-
90%, specifically. Because PARIS requires running the
pseudo-refresher, we use only Panda in this section.

Overall, our result shows that PARIS can increase the

1000

10000

100000

1000000

10000000

10% 20% 30% 40% 50% 60% 70% 80% 90%

#
 o
f
re
fr
e
sh

 o
p
e
ra
ti
o
n

 p
e
r
se
co
n
d

Memory usage

Base!High

Base!Low

RIO!High

RIO!Low

RIO+PARIS!High

RIO+PARIS!Low

Fig. 9: Number of refresh operations per second.

application performance beyond what RIO achieves alone,
and the performance gain increases with the decrease in
memory usage (90% down to 10%). However, the addi-
tional gain of PARIS was rather marginal, especially at
Normal. This is because RIO reduces the refresh overhead
to the level that leaves little room for further performance
improvement. At Normal, additional performance gains
with PARIS (RIO+PARIS vs. RIO) under low memory
utilization (10%) were: Copy (0.18%), Scale (0.11%),
Add(0.15%), Triad (0.81%) and Execl (0.18%). At High,
additional performance gains with RIO+PARIS under low
memory utilization (10%) were: Copy (2.12%), Scale
(1.61%), Add (1.56%), Triad (1.25%) and Execl (0.86%).
Refresh reduction with RIO and PARIS. Finally, Fig-
ure 9 plots the number of refresh operations per second
demanded by each examined scheme. The plot captures the
ultimate effectiveness of RIO and PARIS; by increasing
the refresh period and excluding empty DRAM rows for
refreshing, they reduce the refresh operations required in
unit time.

At Normal, RIO reduces refresh operations by about an
order of magnitude, achieving a 87.5% reduction (RIO-Low
vs. Base-Low). PARIS extends the gap further; RIO+PARIS
achieves a reduction of nearly two orders of magnitude
under a low memory utilization (10%) and a redunction of
93.8% under a medium memory usage (50%) on average
(RIO+PARIS-Low vs. Base-Low). Similarly, at High, RIO
and RIO+PARIS achieve a reduction of 8× and up to
80× against Base under a memory usage of 40% or
less. The plot also shows that gains with PARIS diminish
with the increase in memory usage and by 90% of usage
RIO+PARIS converges to RIO.

6 CONCLUSIONS

This paper closely examined modern LPDDRx DRAM’s
cell-level retention behavior using real, on-board mea-
surements. Our examination motivates RIO and PARIS
to deeply reduce refresh operations. We implement both
schemes in the Linux OS and evaluate them on smartphone-
like platforms. As such, our key design strategies and
decisions were made based on practical system design
perspectives. We summarize the system modifications and
overheads incurred by RIO and PARIS, along with other
schemes, in Table 4. While all listed schemes require

IEEE TRANSACTIONS ON COMPUTERS 13

TABLE 4: Refresh reduction schemes.nPages: # page frames.nRows: # DRAM rows. nRGroups: # row groups (PARIS). Schemes
are classified into two groups; two schemes from different groups can be used together, e.g., RAPID+Flikker, RIO+ESKIMO,
RAIDR+PARIS.

Scheme Key Modifications Storage Overhead
CPU DRAM ctrl. DRAM Software (complexity) (for 4 GB DRAM)

RAPID-1 [10] - - - OS (very light) -
RAPID-2/-3 [10] - - - OS (heavy) 4 MB (nPages× 4B)
RAIDR [13] - Bloom filter ROR cmd. OS (very light) ∼1 KB (Bloom filter)
RIO [this work] - - - OS (very light) -

ESKIMO [11] New instr. Bitmap ROR cmd. Library, OS (heavy) 472 KB (nRowsbits + tracking data)
Flikker [9] - - Two ref. regions App, compiler, library, OS (heavy) -
PARIS [this work] - Bitmap ROR cmd. OS (very light) 1 KB (nRGroupsbits)

changes to the OS, no prior work realized them in a real
OS and experimented on a real platform. This paper, based
on real implementation, makes the following contributions:
• Our measurement study led to findings and insights
about feasibility and limits of DRAM refresh reduction
techniques. Weak cells are manifested when the refresh rate
is slowed by 2× to 16×. They occur randomly in space.
We also found that pushing the refresh period to more than
256 ms brings little additional benefits. In fact, our result
strongly suggests that extending the refresh period to more
than 512ms is simply not feasible because of physical
memory fragmentation.
• We propose, design and evaluate RIO. We determined that
at least a 2× guard band (between the chosen refresh period
and the weakest cell’s retention time) is necessary to safely
employ RIO, for the DRAM chips studied in this paper. We
delete fewer than 0.1% of all page frames to extend refresh
period by 2× to 16×. Performance improvement with RIO
was measurable and up to 17.2% and 4.5% on average.
• We propose, design and evaluate PARIS. We discuss
how PARIS can be efficiently implemented in Linux and
proposes simple architectural support to selectively refresh
DRAM rows. We emulate the proposed hardware using a
flexible software DRAM refresher that runs alongside a
benchmark under study. PARIS, when combined with RIO,
was shown to reduce refresh operations by as much as
93.8% on average.

We envision a couple of directions for future research.
First, studies the impact of RIO and PARIS on the perfor-
mance of hardware accelerators like HD video codec will be
interests. Typically, accelerators have substantially higher
DRAM bandwidth requirements than equivalent software.
Second, exploring new hardware and software techniques
to reduce refresh overheads in DRAM’s self refresh mode
could be worthwhile. The partial array self refresh interface
has been implemented in LPDDR/LPDDR2 DRAMs; how-
ever, the interface is rarely used in practice due to lack of
software support. Based on our experience with RIO and
PARIS, a new interface to flexibly represent memory usage
appears feasible.

ACKNOWLEDGMENT

This work was supported in part by the National Re-
search Foundation of Korea Grant funded by the Korean

Government (NRF-2011-220-D00098), Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2012R1A6A3A03040447) and
the US National Science Foundation (CCF-1064976 and
CNS-1012070).

REFERENCES

[1] K. Saino, S. Horiba, S. Uchiyama, Y. Takaishi, M. Takenaka,
T. Uchida, Y. Takada, K. Koyama, H. Miyake, and C. Hu, “Impact
of Gate-Induced Drain Leakage Current on The Tail Distribution
of DRAM Data Retention Time,” inInternational Electron Devices
Meeting (IEDM), Technical Digest, pp. 837 –840, 2000.

[2] S. S. Takeshi Hamamoto and S. Sawada, “On The Retention Time
Distribution of Dynamic Random Access Memory (DRAM),”IEEE
Transactions on Electron Devices, vol. 45, no. 6, pp. 1300–1309,
Jun 1998.

[3] “Micron 8Gb Mobile LPDDR2 SDRAM Datasheet.” http://www.
micron.com/products/dram/mobilelpdram.html

[4] “Samsung 512Mb SDRAM Datasheet.” http://www.samsung.com/
global/business/semiconductor/products/dram/Products DRAM.
html

[5] J. Stuecheli, D. Kaseridis, H. C.Hunter, and L. K. John,
“Elastic Refresh: Techniques to Mitigate Refresh Penalties in High
Density Memory,” in Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’43), pp.
375–384, 2010.

[6] U. Hoelzle and L. A. Barroso,The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed.,
Morgan and Claypool Publishers, 2009.

[7] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced
Memory Controller Design for Reducing Energy in Conventional
and 3D Die-Stacked DRAMs,” inProceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
40), pp. 134–145, 2007.

[8] M. A. Viredaz, M. A. Viredaz, D. A. Wallach, and D. A. Wallach,
“Power Evaluation of a Handheld Computer: A Case Study,” Com-
paq Western Research Laboratory, Tech. Rep., 2001.

[9] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM Refresh-Power through Critical Data Partitioning,”
in Proceedings of the sixteenth international conference on
Architectural support for programming languages and operating
systems (ASPLOS ’11), pp. 213–224, 2011.

[10] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware
Placement in DRAM (RAPID):Software Methods for Quasi-Non-
Volatile DRAM,” in In Proceedings of the Twelfth Annual Sympo-
sium on High Performance Computer Architecture (HPCA ’06), pp.
155–165, 2006.

[11] C. Isen and L. John, “ESKIMO: Energy Savings using Semantic
Knowledge of Inconsequential Memory Occupancy for DRAM
Subsystem,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 42), pp.
337–346, 2009.

[12] J. Kim and M. C. Papaefthymiou, “Dynamic memory design for
low data-retention power,” inProceedings of the 10th International
Workshop on Integrated Circuit Design, Power and Timing
Modeling, Optimization and Simulation, 2000, pp. 207–216.

IEEE TRANSACTIONS ON COMPUTERS 14

[13] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent DRAM refresh,” in Proceedings of the 39th annual
international symposium on computer architecture (ISCA ’12),
2012.

[14] “JEDEC.” http://www.jedec.org
[15] “Micron MT4LC4M4E8.” http://download.micron.com/pdf/

datasheets/dram/d47b.pdf
[16] V. Bhalodia, “Scale DRAM Subsystem Power Analysis,” Master’s

Thesis, Massachusetts Institute of Technology, 2005.
[17] J. Kim and M. C. Papaefthymiou, “Dynamic Memory Design

for Low Data-Retention Power,” inProceedings of the 10th
International Workshop on Integrated Circuit Design, Power and
Timing Modeling, Optimization and Simulation (PATMOS ’00), pp.
207–216, 2000.

[18] C. H. Louis Lu, F. Gerd, S. Hohenkirchen, and G. Oliver Weinfurtner,
“Dynamic DRAM Refresh Rate Adjustment based on Cell Leakage
Monitoring,” United States Patent, US 6,483,764, Sep. 26 2002.

[19] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the DRAM
Refresh Count for Merged DRAM/Logic LSIs,” inProceedings of
the 1998 international symposium on Low power electronics and
design (ISLPED ’98), pp. 82–87, 1998.

[20] S. P. Song, “Method and System for Selective DRAM Refresh to
Reduce Power Consumption,” United States Patent, US 6,094,705,
Jul. 25 2000.

[21] “Beagle board.” http://beagleboard.org
[22] “Panda board.” http://pandaboard.org
[23] “Micron Power Calculator.” http://www.micron.com/support/dram/

power calc.html
[24] “STREAM.” http://www.cs.virginia.edu/stream
[25] “Lmbench.” http://www.bitmover.com/lmbench
[26] “Mibench.” www.eecs.umich.edu/mibench/
[27] “Unixbench.” http://code.google.com/p/byte-unixbench

Seungjae Baek received his BS, MS and
PhD in computer engineering from Dankook
University in 2005, 2007, and 2010, respec-
tively. He joined Peromnii Inc. in 2010, as
a start-up member, and contributed to the
definition and development of instant boot-
ing technique. He has been a post-doctoral
research associate at the University of Pitts-
burgh (Pitt) since 2011. Before joining Pitt,
he focused on system software issues that
arise when Flash memory and novel memory

technologies such as PCM, FeRAM and MRAM are deployed. After
joining Pitt, his work expanded to the DRAM management scheme
for reliability and performance enhancement. In particular, he is
interested in file system, storage device, and operating system itself.
He is a member of the IEEE and the ACM.

Sangyeun Cho received his B.S. degree in
Computer Engineering from Seoul National
University in 1994 and a Ph.D. in Computer
Science from the University of Minnesota in
2002. In 1999, he joined Samsung Electron-
ics Co., where he was a lead architect of
CalmRISC-32, a 32-bit microprocessor core,
and designed its caches, DMA, and stream
buffers. Since 2004, he has been with the
Computer Science Department at the Univer-
sity of Pittsburgh, where he is an Associate

Professor. His research interests include computer architecture and
embedded systems, with a focus on performance, power, and relia-
bility of the memory and storage hierarchy.

Rami Melhem received a B.E. in Electrical
Engineering from Cairo University in 1976,
an M.A. degree in Mathematics and an M.S.
degree in Computer Science from the Univer-
sity of Pittsburgh in 1981, and a Ph.D. degree
in Computer Science from the University of
Pittsburgh in 1983. He was an Assistant Pro-
fessor at Purdue University prior to joining
the faculty of The University of Pittsburgh in
1986, where he is currently a Professor in
the Computer Science Department which he

chaired from 2000 to 2009. His research interests include Power
Management, Real-Time and Fault-Tolerant Systems, Optical Net-
works, High Performance Computing and Parallel Computer Archi-
tectures. Dr. Melhem served and is serving on program commit-
tees of numerous conferences and workshops and on the editorial
boards of the IEEE Transactions on Computers (1991-1996, 2011-),
the IEEE Transactions on Parallel and Distributed systems (1998-
2002), the Computer Architecture Letters (2001-2010), the Journal
of Parallel and Distributed Computing (20032011) and The Journal
of Sustainable Computing, Informatics and Systems (2010 -). Dr.
Melhem is a fellow of IEEE and a member of the ACM.

